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Abstract

Background: Selecting animals for breeding in the optimum way plays an essential role for the management of
genetic resources and in selective breeding of livestock species. It requires to compute the optimum genetic
contribution of each selection candidate to the next generation. Current software packages for optimum contribution
selection (OCS) are not able to handle the main conflicting objectives of animal breeding programs simultaneously,
which includes to increase genetic gain, to increase or to maintain genetic diversity, to recover the original genetic
background of endangered breeds with historic introgression, and to maintain or increase genetic diversity at native
alleles.

Results: The free R package optiSel offers functions for estimating the above mentioned parameters from pedigree
and marker data, and for solving OCS problems. One parameter can be optimized, whereas the remaining ones can be
constrained. The results reveal the optimum numbers of offspring of all selection candidates, and can subsequently
be used for mate allocation. Different solvers can be used. Solver slsqp was superior when the genetic diversity at
native alleles was to be maximized, whereas solvers cccp and cccp2 were superior for all other OCS problems.

Conclusion: Optimum contribution selection applied to local breeds requires special attention due to the conflicting
objectives of their breeding programs. The free R package optiSel is an easy-to-use software taking these conflicting
objectives into account.

Keywords: Optimum contribution selection, Animal breeding, Conservation, Segment-based kinship, Native kinship,
Native contribution, Runs of homozygosity, optiSel

Background
The objectives of breeding programs for livestock breeds,
companion animals, and zoo populations of endangered
species may be quite different. In any case, however,
selecting animals for breeding in the optimum way
requires to compute the genetic contribution each selec-
tion candidate should have to the next generation.
For high-performance livestock breeds, the objective of

a breeding program is to maximize genetic gain while
at the same time a sufficient effective size of the breed
should be maintained to avoid inbreeding depression or
a depletion of the additive genetic variance. Maintenance
of a sufficient effective size is achieved by restricting the
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rate of increase in mean kinship. Thus, the optimum con-
tributions of the selection candidates are the solution of
an optimization problem where the objective is to maxi-
mize the mean breeding value in the offspring while the
increase in mean kinship in the population is constrained.
This approach is the classical optimum contribution selec-
tion (OCS) proposed by [1].
High performance livestock breeds, however, have often

been used for upgrading local breeds [2, 3]. This displace-
ment crossing has often progressed to the point where
the original genetic background of the local breed must
be considered endangered. Hence, breeding programs for
local breeds with historic introgression have the addi-
tional objective to recover the original genetic background
of the breed. This means to reduce their genetic contri-
bution from non-endangered breeds [4], to conserve the
genetic diversity at native haplotype segments [5], and to
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maintain a sufficient genetic distance to non-endangered
breeds [6].
In contrast, for many companion breeds (e.g. dog

breeds), accurate breeding values for total merit are not
available and historical genetic bottlenecks have depleted
their gene pool. For these breeds, the main objective of
the breeding program is to maintain or to increase genetic
diversity by minimizing the mean kinship in the popula-
tion. In this case, genetic introgression with other breeds
may be not avoidable but should be restricted.
In summary, animal breeding programs can have dif-

ferent objectives simultanously, which are to increase
genetic gain, to increase or to maintain genetic diversity,
to recover the original genetic background of breeds with
historic introgression, and to maintain or increase genetic
diversity at native haplotype segments. Optimizing one of
these criteria and restricting the others is called advanced
OCS [7, 8].
Current software packages for OCS are not able to han-

dle all conflicting objectives of animal breeding programs
simultaneously and many of them may not find the global
optimum. The implementation of classical OCS in the
program GenCont uses Lagrangian multipliers [9], but
is not guaranteed to find the optimal solution [10]. An
alternative is the free softwareEVA [11] that uses an evolu-
tionary algorithm for optimization. Methods using evolu-
tionary algorithms are also described e.g., by [12] and are
implemented in the commercial softwareTGRM. Some of
these software packages provide flexible opportunities for
mate allocation, but breeding programs that aim at recov-
ering the native genetic background of a breed cannot
be optimized with the software. An alternative is the use
of general purpose software for optimization. Pong-Wong
andWoolliams [10] demonstrated howOCS problems can
be reformulated as semidefinite programming problems
and used software SDPA [13] for optimization. Since the
free software R is widely used by statisticians, of particular
interest is general purpose software for optimization avail-
able as an R package. A variety of suitable packages exist.
However, preparing animal data for use with general pur-
pose software is a quite complex task, so it is rarely used
by animal breeders or breeding organizations.
This paper introduces the free R package optiSel which

provides a framework for solving advanced OCS prob-
lems with little R code. It also offers functions for esti-
mating various parameters from pedigree and marker
data. These are the kinships, kinships at native haplotype
segments, and genetic contributions from native ances-
tors. The advanced OCS methods currently implemented
include maximizing genetic gain, minimizing the average
kinship, maximizing contributions from native ancestors,
and minimizing the mean kinship at native haplotype
segments, while criteria not included in the objective
function can be used as constraints. This results in a

table from which the optimum numbers of offspring of
all selection candidates can be obtained, and which can
subsequently be used for mate allocation to minimize the
average inbreeding in the offspring.
The package enables to use a variety of free solvers

for optimization and allows for easy switching between
solvers by setting the parameter solver of function
opticont() appropriately. Optimization problems can
currently be solved by augmented lagrangian mini-
mization as implemented in the R package alabama
[14] (solver="alabama"), by semidefinite program-
ming using the CSDP library introduced by [15]
(solver="csdp"), by gradient-based optimization with
sequential least-squares quadratic programming as imple-
mented in function slsqp() [16] from package nloptr
(solver="slsqp"), and by function cccp() from
package cccp [17] for solving cone constrained convex
programs (solver="cccp" or solver="cccp2").
The aims of this paper are to demonstrate how the

free package optiSel can be used for the estimation of
genetic parameters and for OCS. In addition, the suitabil-
ity of the different solvers for solving a variety of OCS
problems is compared.

Implementation
The software package optiSel is implemented in R and
C++. This section demonstrates the functionality of the
package. This includes the estimation of genetic parame-
ters and their use in OCS. Exact mathematical formulas
for objective functions and constraints in OCS and their
derivations can be found in (Wellmann R, Bennewitz J:
Key genetic parameters for optimal population manage-
ment, submitted).
The required packages optiSel and data.table

can be downloaded from cran and then loaded as follows:

R> library("optiSel")

R> library("data.table")

Package data.table is used because it provides a fast
file reader. A simulated data set consisting of phenotypes,
genotypes and pedigrees of simulated Angler cattle and a
replication script can be found in the electronic appendix
(Additional file 1). Estimation of genetic parameters and
OCS are described below at the example of 1132 simulated
genotyped individuals. Vector animals contains the IDs
of these individuals. All estimated genetic parameters will
be displayed for three related animals, which are an indi-
vidual and its parents. These are the individuals included
in vector I.

R> animals <- read.indiv("Population/Angler.

Chr1.phased")

R> I <- c("animal7396", "animal8713",

"animal11514")
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Kinships
The kinship fIBD(i, j) of two individuals i, j is the probabil-
ity that two alleles Xi, and Yj, randomly chosen from both
individuals from a single locus, are identical by descent
(IBD). This means that they descend from a common
ancestor. That is,

fIBD(i, j) = P
(
Xi

IBD= Yj
)
.

Kinships can be estimated either from the pedigree
or from marker data. In order to distinguish between
segment-based estimates and pedigree-based estimates,
we use for pedigree-based estimates the prefix or suf-
fix PED, and for segment-based estimates SEG in this
paper.
The pedigree-based kinship or geneological coances-

try f̂PED(i, j) between each pair of individuals i, j can be
computed with function pedIBD(). The function allows
to define a relationshipmatrix for the founders. By default,
the founders are unrelated and not inbred. However,
before a pedigree can be used, it needs to be prepared with
function prePed(). This function sorts the pedigree,
adds new lines for founders, and corrects some pedigree
errors.

R> Ped <- fread("Population/Pedigree.txt")

R> Pedig <- prePed(Ped, keep=animals)

R> fPED <- pedIBD(Pedig, keep.only=animals)

R> fPED[I, I]

animal7396 animal8713 animal11514

animal7396 0.5070 0.0421 0.2745

animal8713 0.0421 0.5277 0.2849

animal11514 0.2745 0.2849 0.5210

The additive relationship matrix A=2*fPED can also be
computed with function makeA().
Pedigree-based evaluations require sufficiently com-

plete pedigrees. Parameters quantifying the completeness
of the pedigrees of all individuals can be obtained with
function summary(). Of particular interest is the num-
ber of equivalent complete generations, which can be
found in column equiGen. It is the sum of the pro-
portions of known ancestors of an individual over all
generations traced [18]. Below, data table phen, which
contains the simulated breeding values in column EBV is
loaded, and column equiGen is appended.

R> phen <- fread("Population/

BreedingValues.txt")

R> Sy <- summary(Pedig)

R> phen <- merge(phen, Sy[, c("Indiv",

"equiGen")], on="Indiv")

R> phen[I, on ="Indiv"]

Indiv Sire Dam Born...

1: animal7396 animal5378 animal4843 2019...

2: animal8713 animal5418 animal6178 2020...

3: animal11514 animal8713 animal7396 2025...

Sex Breed EBV equiGen

female Angler 91 9.158

male Angler 106 10.167

female Angler 94 10.662

Pedigree-based estimates have the disadvantage that
Mendelian sampling in all ancestors is considered to be
random, so it cannot account for the alleles the ances-
tors actually inherited from their parents. In general, the
usage of segment-based estimates is recommended in
order to account for Mendelian sampling. The most use-
ful marker-based kinship estimates are based on runs of
homozygosity (ROH). A ROH with respect to two hap-
lotypes is a segment consisting of consecutive base pairs
which are identical in both haplotypes [19].
The segment-based kinship f̂SEG(i, j) between individ-

ual i and j is the probability that two alleles, taken at
random from both individuals from a single locus, belong
to identical segments. Thematrix containing the segment-
based kinships of all individuals can be computed with
function segIBD(). The number of cores to be used can
be specified by argument cores, so different chromo-
somes can be processed in parallel.

R> bfiles <-paste0("Population/Angler.Chr",

1:29, ".phased")

R> map <- fread("Population/map.txt")

R> fSEG <- segIBD(bfiles, map, minSNP=20,

minL=2.5, keep=animals)

R> fSEG[I,I]

animal7396 animal8713 animal11514

animal7396 0.5145 0.0555 0.2859

animal8713 0.0555 0.5451 0.3004

animal11514 0.2859 0.3004 0.5263

Important arguments of function segIBD() are
minSNP and minL. A segment needs to have a minimum
length for being taken into account. By default, the min-
imum number of markers to be included in a segment
is minSNP=20 because considerably smaller sections of
a haplotype may be identical by chance. The minimum
length of a segment is by default minL=1.0 Mb. For the
example data set we used minL=2.5 in accordance with
[8]. Since short shared segments predominantly originate
from early common ancestors, this value should be cho-
sen depending on the age of the inbreeding that should be
taken into account, but also dependent on the size of the
marker panel [20].

Native contribution
The native contribution N(i) of an individual i is the pro-
portion of its genome which is native [8]. In other words,
it is the genetic contribution it has from native ancestors,
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or the probability that an allele Xi, randomly chosen from
the individual, is native. That is,

N(i) = P (Xi ∈ AN ) ,

where AN is the set of alleles originating from native
ancestors. It is usually defined with respect to a base
population, i.e. a time t0 before which all registered indi-
viduals were considered native. Native contributions can
be estimated either from pedigree or from marker data.
The pedigree-based native contribution N̂PED(i)

of individual i is the sum of the genetic contributions
individual i has from native founders, whereby a founder
is an individual with unknown parents. For estimating
native contributions, the pedigree needs to be prepared
differently than for estimating kinships. Below, arguments
lastNative=1970 and thisBreed="Angler"
ensure that the breed name of founders born after
t0 = 1970 is shifted from "Angler" to "unknown".
The native contributions and the contributions of other
breeds to the genome of each individual are estimated
with function pedBreedComp(). Thereafter, the col-
umn with native contributions is appended to data table
phen and renamed as pedNC.
R> Pedig2 <- prePed(Ped, lastNative=1970,

thisBreed="Angler", keep=animals)

R> BC <- pedBreedComp(Pedig2,

thisBreed="Angler")

R> phen <- merge(phen, BC[, c("Indiv",

"unknown", "native")], on="Indiv")

R> setnames(phen, old="native", new="pedNC")

R> BC[I, 1:4, on="Indiv"]

Indiv native Holstein unknown

1: animal7396 0.2369690 0.4483490 0.1938477

2: animal8713 0.2208862 0.5047302 0.1732178

3: animal11514 0.2289276 0.4765396 0.1835327

It can be seen that the selected individuals have a low
native contribution, a high contribution from Holstein,
and also a substantial contribution from individuals of
unknown origin.
The segment-based native contribution N̂SEG(i) of

individual i is the proportion of its genome included in
native haplotype sections. Thereby, an allele is consid-
ered native, if the segment containing the allele has low
frequency in all breeds that might have been used for
upgrading. That is, a marker m is native in a haplotype,
if the frequency of the segment containing the marker is
smaller than some threshold value ubFreq in all breeds
that might have been used for upgrading the breed of
interest. If a segment is substantially more frequent than
(say) 0.01 in another non-endangered breed that was used
for upgrading, then it does not need to be conserved and
has likely been introgressed. Short segments predomi-
nantly arose from early introgression events, so segments

are required to have a minimum length minL, which
enables to neglect very old introgression.
Below, function haplofreq() is used to determine

the most likely origin of each allele from each hap-
lotype. The results are written to files in directory
w.dir="Population", and a list with file names is
returned. The first letters of the breed names are used
in the files for labeling the origins of the markers, so
care should be taken that these letters are different
for the different breeds. Function segBreedComp() is
used to compute the native contribution of each individ-
ual. Thereafter, the column with native contributions is
appended to data table phen and renamed as segNC.
R> bfiles <- paste0("Population/Angler.Chr",

1:29, ".phased")

R> rfiles <- paste0("refBreeds/OtherBreeds.

Chr", 1:29, ".phased")

R> files <- list(hap.thisBreed=bfiles,

hap.refBreeds=rfiles)

R> Cattle <- fread("genotypedIndiv.txt")

R> wfile <- haplofreq(files, Cattle, map,

thisBreed="Angler", minSNP=20, minL=2.5,

ubFreq=0.01, what="match",

w.dir="Population")

R> Comp <- segBreedComp(wfile$match, map)

R> phen <- merge(phen, Comp[, c("Indiv",

"native")], on="Indiv")

R> setnames(phen, old="native",new="segNC")

The scatter plot in Fig. 1 shows the pedigree-based esti-
mate of the genetic contribution from Holstein cattle vs.
the segment-based estimate. Thereby, contributions from
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Fig. 1 Joint Distribution. Pedigree-based estimates of the genetic
contribution from Holstein cattle vs. segment-based estimates for
simulated Angler cattle
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Holstein and Red Holstein are added and only individuals
with real parents are included that have at least 6 equiv-
alent complete generations in the pedigree. It can be
seen that the segment-based contribution from Holstein
is highly correlated with the pedigree-based estimate.
Probably, both estimates are slightly biased downward.
The pedigree-based estimate could be too low because
of wrong and missing ancestors in the pedigree, whereas
the marker-based estimate could be too low because some
Holstein cattle with rare haplotypes are missing in the
reference set.

Native kinship
The native kinship fIBD|N (i, j) of two individuals i, j is the
conditional probability that two alleles Xi, and Yj, taken
at random from both individuals from a single locus, are
identical by descent (IBD), given that they are native.
That is,

fIBD|N (i, j) = P
(
Xi

IBD= Yj
∣∣Xi,Yj ∈ AN

)
.

In other words, it is the kinship computed only from the
alleles that are native in both individuals. Note that the
native kinship depends neither on the way, the migrant
ancestors were related with each other, nor on their
genetic contribution to the population. Since the kinship
is defined as a conditional probability, it can be computed
by the ratio

fIBD|N (i, j) = fIBD&N (i, j)
fN (i, j)

,

where fIBD&N (i, j) is the probability that two alleles taken
at random from both individuals are IBD and native,
whereas fN (i, j) is the probability that both alleles are
native. The numerator and the denominator, and thus the
native kinships, can be estimated either from pedigree or
from marker data.
The pedigree-based native kinship f̂PED|N (i, j)

between individuals i, j can be computed with func-
tion pedIBDatN(), whereby the native founders are
assumed to be unrelated and non-inbred.

R> fPEDN <- pedIBDatN(Pedig2,

thisBreed="Angler", keep.only=phen$Indiv)

R> natKin <- fPEDN$Q1/fPEDN$Q2

R> natKin[I, I]

animal7396 animal8713 animal11514

animal7396 0.8157 0.1449 0.6270

animal8713 0.1449 0.8273 0.6249

animal11514 0.6270 0.6249 0.8283

The native kinships of these individuals are rather high,
which means that the sets of native ancestors in their
pedigrees are considerably overlapping.

The segment-based native kinship f̂SEG|N (i, j) between
individuals i, j is the conditional probability that two alle-
les from the same locus taken at random from these
individuals belong to identical segments, given that the
alleles are native. It can be computed with function
segIBDatN().

R> fSEGN <- segIBDatN(files, Cattle, map,

thisBreed="Angler", minSNP=20, ubFreq=0.01,

minL=2.5)

R> natKin <- fSEGN$Q1/fSEGN$Q2

R> natKin[I, I]

animal7396 animal8713 animal11514

animal7396 0.7270 0.1187 0.5228

animal8713 0.1187 0.7964 0.5601

animal11514 0.5228 0.5601 0.7680

Population means
The mean values of the genetic parameters in the popu-
lation depend on the contributions the different age×sex
classes have to the population. The time interval covered
by an age class needs to ensure that no individual can have
offspring in the same age class. Typically, each age class
spans one year.
Function agecont() estimates the contributions of

the classes to the population. It assumes that the percent-
age of the population that is attributed to a particular class
is proportional to the expected proportion of its offspring
that is not yet born. Since these values are estimated from
the past, this requires some continuity in the breeding
program when this function is used for estimation. The
total contributions of non-juvenile males and females to
the population are assumed to be equal, whereby non-
juvenile animals are all individuals that are not born in
the current year. Note that the contributions are idealized
and may not coincide with the proportions of living ani-
mals included in the classes. The contributions of the age
classes are estimated from the ages of the parents at the
time when their offspring was born. The offspring consists
of the individuals indicated by argument use.

R> cont<- agecont(Pedig,

use=Pedig$Born%in%(2010:2014), maxAge=10)

R> head(cont)

age male female

1 1 0.071 0.108

2 2 0.071 0.108

3 3 0.069 0.098

4 4 0.065 0.077

5 5 0.065 0.062

6 6 0.065 0.038

...

In this example, males have lower contributions to
young age classes than females. This is because the males
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were predominantly progeny tested, so they were used
for breeding at an older age. Hence, their contributions
spread over a longer period of time.
Before we compute the population means, data frame

phen should be completed by appending column
isCandidate, which indicates the selection candidates
for OCS. In this example, the selection candidates are the
individuals that are at least one year old.

R> phen$isCandidate <- phen$Born <= 2026

Function candes() computes the population means
for all numeric columns in data table phen and for all kin-
ships and native kinships that are supplied as additional
arguments. Note that these additional arguments can have
arbitrary names and they can be omitted if the respective
kinship is not of interest. The population means depend
on the contributions the different age×sex classes have to
the population as defined by argument cont. If argument
cont is omitted, then discrete generations are assumed
and the total contributions of males and females to the
population are equal.

R> cand <- candes(phen=phen, fSEG=fSEG,

fPED=fPED, fSEGN=fSEGN, fPEDN=fPEDN,

cont=cont)

R> cand$mean

EBV equiGen unknown pedNC segNC

1 100.0003 9.5771 0.2807 0.1671 0.3282

fSEG fPED fSEGN fPEDN

0.0639 0.0359 0.0784 0.1383

It can be seen that the average number of equivalent
complete generations in the pedigree is rather high, even
though the proportion of the genome with unknown ori-
gin is also moderately high. The results deviate from
results of other studies for this breed [7, 8] because the
data set used in this paper for demonstration purposes
was not obtained from a random sample of the pop-
ulation. However, they demonstrate several interesting
relationships between the parameters.
The pedigree-based native contribution of 0.1671 is

probably underestimated because some of the founders
with unknown origin may be native. The pedigree-
based kinship is smaller than the segment-based kinship
because pedigrees are incomplete. Native kinships are
higher than the kinships because the diversity of native
alleles is usually smaller than the total diversity of all alle-
les. The segment-based estimates of the native kinships
are lower than the pedigree-based estimates. This has two
reasons. First, the individuals have a substantial genetic
contribution from founders with unknown origin. Alleles
from these individuals do not contribute to the pedigree-
based diversity of native alleles, even though some of
them could have been native. This results in overestimat-
ing the pedigree-based native kinships. Second, crossing

overs have shortened some haplotype segments, so that
some segments can no longer be considered identical.
This results in a slight underestimation of segment-based
estimates.

Constraint settings for kinships
Since the inbreeding coefficient of an individual is equal
to the kinship of its parents, constraining the increase in
mean kinship in the population enables breeders to avoid
inbreeding. The rate of increase in mean kinship is mea-
sured by the variance effective size Ne of the population.
The critical effective size, i.e. the size below which the
fitness of the population steadily decreases, depends on
the population and is usually assumed to be between 50
and 100 [21]. For most populations, maintenance of an
effective size of Ne ≥ 100 should be envisaged. Hence, we
define
R> Ne <- 100

The effective size of the population is at least Ne, if the
rate of increase in mean kinship per generation is �fg ≤
1

2Ne
[22]. In a population with overlapping generations and

generation interval L, the rate of increase in mean kinship
per year �fy is of interest for OCS, which should satisfy

�fy ≤ 1
2NeL

.

The generation interval can be approximated from the
results of function agecont() as
R> L <- 1/(4*cont$male[1])

+ 1/(4*cont$female[1])

This enables to define upper bounds for the mean kin-
ships in the population at the next evaluation time t + 1 as
R> ub.fSEG <- cand$mean$fSEG +

(1-cand$mean$fSEG)/(2*Ne*L)

R> ub.fPED <- cand$mean$fPED +

(1-cand$mean$fPED)/(2*Ne*L)

Of course, upper bounds need to be defined only for
the parameters that should be constrained in OCS. The
expected mean kinship in the population at time t + 1
depends on the vector c containing the genetic contri-
bution of each individual to the offspring, which is the
parameter that will be optimized. The expected mean
kinship can be computed by the quadratic function

fIBD(c) = (r0c + v)�fIBD(r0c + v) + lIBD(c),

where r0 is the percentage of the population represented
by the offspring, and component vi of v is the percentage
of the population represented by individual i itself. The
small linear correction term lIBD(c) accounts, for example,
for genetic drift (Wellmann R, Bennewitz J: Key genetic
parameters for optimal population management, submit-
ted). Estimates f̂PED(c) and f̂SEG(c) can be obtained by
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replacing fIBD and lIBD(c) with their estimates obtained
from pedigrees or marker data, respectively. Hence, con-
straining a kinship means to add a quadratic constraint of
the form

f̂PED(c) ≤ ub.fPED, or
f̂SEG(c) ≤ ub.fSEG

to the programming problem. Native kinships are of par-
ticular interest for populations with historic introgression
if removal of the introgressed genetic material is envis-
aged in the future. Defining the upper bound for the
mean kinship in accordance with the desired effective size
ensures that enough genetic diversity will be maintained
in the population after the introgressed genetic material
has been removed. Hence, upper bounds are defined as
R> ub.fSEGN <- cand$mean$fSEGN

+ (1-cand$mean$fSEGN)/(2*Ne*L)

R> ub.fPEDN <- cand$mean$fPEDN

+ (1-cand$mean$fPEDN)/(2*Ne*L)

The expected mean native kinship in the population at
time t + 1 can be computed by the rational function

fIBD|N (c) = (r0c + v)�fIBD&N (r0c + v) + lIBD&N (c)
(r0c + v)�fN (r0c + v) + lN (c)

,

where lSEG&N (c) and lN (c) are the small linear correction
terms defined in (Wellmann R, Bennewitz J: Key genetic
parameters for optimal population management, submit-
ted). Estimates f̂PED|N (c) and f̂SEG|N (c) are obtained by
replacing the terms by their estimates obtained from pedi-
grees or marker data, respectively. Hence, constraining a
native kinship means to add a rational constraint of the
form

f̂PED|N (c) ≤ ub.fPEDN, or

f̂SEG|N (c) ≤ ub.fSEGN

to the programming problem.

Traditional OCS
The goal of OCS is finding the optimum contribution ci
each selection candidate i should have to the next birth
cohort. It is the fraction of genes in the birth cohort that
should originate from individual i. Since 50% of the genes
originate from males and 50% originate from females,
the proportion of individuals in the birth cohort having
individual i as a parent should be 2ci.
Traditionally, OCS maximizes the mean breeding value

in the population in the next year or generation, while
the average kinship is required not to exceed a prede-
fined threshold value. The usage of package optiSel is
demonstrated below at the example of this optimization
problem.

Since pedigree data is used, care must be taken that the
completeness of the pedigrees is taken into account. Indi-
viduals with a low number of equivalent complete gener-
ations in their pedigree would otherwise be favored for
breeding because they appear to be less related with the
population. The constraints of the optimization problem
are defined in a list:
R> con <- list(uniform="female",

ub.fPED=ub.fPED,

lb.equiGen=cand$mean$equiGen)

In this example, only the contributions of males are to
be optimized, which is achieved by adding component
uniform="female". That is, all females within a par-
ticular age cohort are assumed to have equal contributions
to the offspring. This optimization problem is of inter-
est if the contributions of the females cannot be centrally
controlled.
Component ub.fPED=ub.fPED defines the upper

bound for the mean kinship in the population to be
equal to the value ub.fPED. This component has name
ub.fPED because the kinship was namedfPED in the call
of function candes().
Component lb.equiGen=cand$mean$equiGen

defines a lower bound for the average number of
equivalent complete generations in the population.
This constraint is only needed if incomplete pedigree
data is used. The threshold value should be chosen
such that individuals with incomplete pedigrees are
not unduly favored for breeding. This component has
name lb.equiGen because the column in data table
cand$phen that contains the numbers of equivalent
complete generations was named equiGen.
Optimization is carried out below with function

opticont(). The first argument defines the objective of
the optimization problem, which is to maximize the aver-
age breeding value in the population at time t + 1. This
is achieved with character string "max.EBV" because
the column of data table cand$phen that contains the
breeding values is named EBV.

R> fit <- opticont("max.EBV", cand, con,

solver="cccp")

Argument solver defines the algorithm to be used
for optimization. If numerical problems are encountered
then it is advisable to use another solver or to adjust
the tuning parameters of the solver, which can be sup-
plied as additional arguments to function opticont().
Available solvers are
cccp: Function cccp() from R package cccp for solv-

ing cone constrained convex problems is called. Quadratic
constraints are defined as second order cone constraints.
cccp2: Function cccp() from R package cccp is called,

but quadratic constraints are defined by functions.
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alabama: This solver calls function auglag() from R
package alabama for optimizing smooth nonlinear objec-
tive functions with constraints.
csdp:This solver calls function csdp() fromR package

Rcsdp for solving semidefinite programming problems.
slsqp: Function slsqp() from package nloptr is

called, which optimizes successive second-order approxi-
mations of the objective function with first-order approx-
imations of the constraints.
The result of function opticont() is a list with several

components. Data frame fit$info contains informa-
tion on the success of the optimization. That is, compo-
nent valid is TRUE, if all constraints are fulfilled by the
optimized contributions, whereas component status
describes the solution as reported by the solver.
R> fit$info

valid solver status

1 TRUE cccp optimal

Data frame fit$mean contains the predicted mean
values of heritable traits, kinships, and native kinships in
the population at the next evaluation time t + 1. For other
variables, such as component equiGen, the weighted
mean (r0c + v)�X is shown, whereX is the corresponding
column vector from data frame cand$phen.
R> fit$mean

EBV equiGen unknown pedNC segNC

1 102.2084 9.5771 0.2869 0.1645 0.3269

fSEG fPED fPEDN fSEGN

0.0655 0.0367 0.1444 0.0811

The optimized contributions of the breeding individuals
can be found in column oc of data frame fit$parent:
R> Candidate <- fit$parent

R> Candidate[Candidate$oc>0.01, c("Sex",

"EBV","oc")]

Sex EBV oc

animal10930 male 114.80 0.06207714

animal11043 male 119.10 0.09726187

animal11431 male 114.46 0.01172869

animal13251 male 124.94 0.20633104

animal14261 male 123.85 0.07728847

animal14362 male 118.55 0.02574573

animal9005 male 115.41 0.01951853

The example above optimizes only the contributions
of males. For optimizing the contributions of both sexes,
component uniform="female" needs to be removed
from the list of constraints. Moreover, since the number of
offspring a female can have is usually limited, upper lim-
its need to be defined for the female contributions. More
generally, upper and lower limits for the contributions of
arbitrary individuals can be specified. If each birth cohort
consists of N0 = 200 individuals and if a female can have
at most 5 offspring per year, then the upper limit for the

contributions of females needs to be 5
2N0

= 0.0125. The
corresponding list of constraints can be created as follows:

R> females <- cand$phen$Sex=="female"

& cand$phen$isCandidate

R> ub <- setNames(rep(0.0125, sum(females)),

cand$phen$Indiv[females])

R> con <- list(ub=ub, ub.fPED=ub.fPED,

lb.equiGen=cand$mean$equiGen)

Computation of the optimum contributions with this
list of constraints takes about 3 min. Their computation
with constraint uniform="female" is in general much
faster.

Advanced OCS
This section provides an overview on the constraints
and objective functions that can be handled by function
opticont() and are of interest in many breeding pro-
grams. In general, all kinship and native kinships, and all
numeric traits in data frame phen can be constrained.
These parameters can also be optimized, but only one
at a time. In animal breeding, the groups of males and
females contribute equally to the offspring. This may,
however, not be relevant in plant breeding. The constraint
that males and females have equal contributions to the
offspring is omitted, if column Sex in data frame phen
contains only NA.
For most breeding programs, traditional OCS turned

out to be not sufficient. This has several reasons. First,
marker data enables to obtain more accurate estimates of
kinships, native kinships and breeding values than pedi-
gree data. In the examples below, we assume that marker
data is available. However, if only pedigree data is avail-
able, then the examples can easily be adjusted by replacing
terms SEG and seg with PED and ped. In particu-
lar, for maximizing breeding values while restricting the
segment-based kinship, constraint ub.fPED=ub.fPED
needs to be replaced with ub.fSEG=ub.fSEG:

R> con <- list(ub=ub, ub.fSEG=ub.fSEG)

R> fit <- opticont("max.EBV", cand, con,

solver="cccp")

While the above setting is appropriate for most live-
stock breeds, many companion breeds and endangered
breeds have different breeding objectives. Several com-
panion breeds suffer from historic bottlenecks, which
resulted in high inbreeding coefficients and inbreeding
depression. For these breeds, the primary breeding goal
is minimizing the average kinship in order to reduce
inbreeding depression and the loss of genetic variation.
This is achieved with the following call to function
opticont():
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R> con <- list(ub=ub)

R> fit <- opticont("min.fSEG", cand, con,

solver="cccp")

If breeding values are available, then they can be con-
strained in order to achieve genetic gain:

R> con <- list(ub=ub, lb.EBV=101)

R> fit <- opticont("min.fSEG", cand, con,

solver="cccp")

For some companion breeds, the erosion of genetic
diversity has proceeded to a point that crossings with
other breeds are not avoidable. However, the genetic con-
tribution from other breeds should be restricted to the
necessary minimum. Hence, a lower bound for the native
contribution should be defined:

R> con <- list(ub=ub, lb.EBV=101,

lb.segNC=0.8)

R> fit <- opticont("min.fSEG", cand, con,

solver="cccp")

Note that the example above cannot be executed for the
example data set because the optimization problem has no
solution.
Some endangered livestock breeds, such as the breed

used in the examples, have been continuously upgraded
with high performance breeds in order to maintain
economic competitiveness. Replacement of the original
genetic background can have proceeded to the point that
the original breed can be considered genetically extinct.
For some of these breeds, de-extinction efforts are made
with the aim to recover the original genetic background.
Such breeding programs need to restrict the increase in
native kinship in accordance with the desired effective
size in order to ensure that enough genetic diversity per-
sists in the breed after the foreign genetic material has
been removed. Hence, the call to function opticont()
would be

R> con <- list(ub=ub, ub.fSEGN=ub.fSEGN)

R> fit <- opticont("max.segNC", cand, con,

solver="cccp")

In general, recovering the native genetic background
is not the only objective of the breeding program, but
genetic gain should be achieved as well. In this case,
breeding values for the native contribution should be esti-
mated from marker data and included in the total merit
index. Then, the total merit index would be maximized
instead of the native contribution. It may be desirable
to maintain specific introgressed QTL in the population,
which could be achieved by giving them an appropriate
weight in the total merit index.

Mate allocation
After the optimum contributions of the selection can-
didates have been computed, males and females can be
allocated for mating such that the mean inbreeding coeffi-
cient in the offspring is minimized. This can be done with
function matings(). Since the kinship of the parents is
equal to the inbreeding coefficient of the offspring, the
objective is to minimize

1
N0

∑
i∈M

∑
j∈F

nijfij,

where nij is the number of offspring from the mating
of individual i with individual j, M contains all male
selection candidates, F contains all female selection can-
didates, N0 is the total number of offspring, and fij is
either the segment-based kinship, or the pedigree-based
kinship, or another user-supplied similarity measure for
individuals i and j.
In any case, the genetic contribution of each parentmust

be equal to its optimum contribution. That is, for all males
i, the following equation holds

∑
j∈F

nij = ni,

and for all females j, we have
∑
i∈M

nij = nj.

where ni ≈ 2ciN0 is the number of offspring of individual i.
The maximum number of offspring per mating can be

constrained to be ub.nOff at most. In this case, for all
males i, and for all females j the following inequality
holds

nij ≤ ub.nOff.

Without this constraint, some superior animals may
always bemated to the same inferior individual, so all their
offspring may not be good enough for breeding.
Moreover, for each herd, the proportion of offspring

sired by the same male can be constrained to be at most α.
This increases genetic connectedness between herds, so it
enables to estimate more accurate breeding values. Take
Fh to be the set of females from herd h. For all herds h and
all males i we have

∑
j∈Fh

nij ≤ α Nh.

where Nh is the number of individuals in the birth cohort
that will be born in herd h. Mate allocation is demon-
strated at the example of OCS with segment-based kin-
ship matrix. Recall that the optimization problem can be
solved with
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R> con <- list(ub=ub, ub.fSEG=ub.fSEG)

R> fit <- opticont("max.EBV", cand, con,

solver="cccp")

Function noffspring() is used below to compute
the desired number of offspring per selection candidate
by assuming that the birth cohort covers 200 individuals.
The result of function matings(), which is used for
mate allocation, is a data frame with columns Sire, Dam,
and n. Column n contains the desired number of offspring
from matings between the respective sire and dam. Note
that this is the number of offspring that should be used
as selection candidates in the next generation. The total
number of offspring from the matings may be larger.

R> Candidate <- fit$parent

R> Candidate$n <- noffspring(Candidate,

N=200, random=FALSE)$nOff

R> Mating <- matings(Candidate, fSEG)

R> head(Mating)

Sire Dam n

1 animal10930 animal10987 4

2 animal13251 animal10987 1

3 animal13251 animal10996 5

4 animal13251 animal11268 5

5 animal9949 animal11290 5

6 animal13251 animal11297 3

The average inbreeding coefficient of the offspring is

R> attributes(Mating)$objval

[1] 0.04442328

Results
Comparison of solvers
The ability of different solvers to find optimum solutions
for different OCS problems was compared at the example
of a data set containing genotypes, breeding values, and
migrant contributions of 11000 simulated Angler cattle.
These simulated individuals were generated from geno-
types of 131 Angler bulls and 137 Angler cows during 2
generations of selection. Male selection candidates were
sampled at random from the population that consisted of
all 11000 individuals. Females were assumed to have equal
contributions within each age class. Breeding values were
simulated as described in [8]. Segment-based kinships,
native kinships, and native contributions were estimated
from haplotypes consisting of 23448 SNPs.
The followingOCS-scenarios for populations with over-

lapping generations were considered:
max.EBV: This is traditional OCS with segment-based

kinship matrix. The mean breeding value in population
was maximized, while the mean kinship was constrained
such that Ne ≥ 100.

max.segNC:This OCS approach is suitable for breeding
programs whose main objective is to recover the native
genetic background. The mean native contribution in the
population was maximized, while the mean native kinship
was constrained such that Ne ≥ 100.
min.fSEG: This objective function is suitable for breeds

suffering from inbreeding depression. The mean kin-
ship was minimized, while the mean native contribution
was constrained, and the mean breeding value was con-
strained not to decrease.
min.fSEGN: This OCS approach may be suitable for

breeding programs that aim at maximizing the genetic
diversity at native alleles and at recovering the native
genetic background. The mean kinship at native alleles
was minimized, while the mean native contribution was
constrained to increase by at least 2.5% per year.
The results shown in Figs. 2 - 3 were obtained from 50

replicates for scenarios with less than 300 selection candi-
dates, and from 10 replicates for scenarios with more than
300 selection candidates. Figure 2 shows the proportions
of correct results (green), the proportions of suboptimal
results (blue), and the proportions of cases in which no
feasible solution was found (red). These proportions are
shown for the different solvers, OCS-methods, and num-
bers of selection candidates. A result was classified as
correct if the ratio between the value found by the solver
and the best solution deviates from one by less than 1%.
Figure 3 shows the relative computation times needed by
the different solvers. Computation times are standardized
and can be compared directly only for a given number
of selection candidates. Bars representing computation
times of solvers that did not produce correct results in at
least 80% of the cases are red.
All solvers were able to find correct solutions when

the number of selection candidates was small. Solver
alabama provided suboptimal results for larger opti-
mization problems and had the longest runtime, so its
use can not be recommended. Solvers cccp and cccp2
had the shortest runtime for problems with linear or
quadratic objective function and provided correct results,
so their use can be recommended for breeding pro-
grams that aim at maximizing genetic gain, at recov-
ering the native genetic background, or at minimizing
kinships.
Minimization of the native kinship is in general not a

convex problem, so solver csdp could not be used for
this. Solvers cccp and cccp2 are also not designed to
solve non-convex problems, but were able to find the
solution when the number of selection candidates was
small. When the number of candidates was large, then
their solutions did not satisfy the constraints. Hence, only
solver slsqp can be recommended for breeding programs
that aim at maximizing the genetic diversity at native
alleles.



Wellmann BMC Bioinformatics           (2019) 20:25 Page 11 of 13

maxBV maxNC minKin minnatKin

75
150

300
600

1200

alabama
cccp

cccp2
csdp
slsqp

alabama
cccp

cccp2
csdp
slsqp

alabama
cccp

cccp2
csdp
slsqp

alabama
cccp

cccp2
csdp
slsqp

alabama
cccp

cccp2
csdp
slsqp

Solver

M
et

ho
d

Classification

no result

correct

not correct

Fig. 2 Classification of results. Proportion of correct results (green), the proportions of suboptimal results (blue), and the proportions of cases in
which no feasible solution was found (red) for different solvers, OCS-methods and numbers of selection candidates. A solution was classified as not
correct if the value of the objective function at the solution deviates from the best estimate by more than 1%
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Table 1 Time needed for computing kinship matrices on a 3.40
GHz PC with 32GB RAM

Pedigree
size

Individuals nadiv optiSel Pedigree pedigreeR pedigreemm

47064 4705 189 13 648 184 184

70075 12269 1082 64 - 930 1080

96411 32698 - 153 - - -

Computation of pedigree-based kinships
Different R packages exist to compute pedigree-based kin-
ships, or, equivalently, the additive relationship matrix A.
Table 1 shows the computation time needed to compute
the kinship matrix for different numbers of individuals.
The pedigree size was the number of individuals included
in the pedigree, which are the individuals for which the
kinships were to be computed and their ancestors. R pack-
age optiSel was 10 times faster than all other packages.
Moreover, all other packages failed to compute the kinship
matrix for the example data set with 32698 individuals
because the memory that would have been needed by
those packages was larger than 32 GB RAM.

Conclusion
Optimum contribution selection applied to local breeds
requires special attention due to the conflicting objectives
of their breeding programs. The free R package optiSel is
an easy-to-use software taking these conflicting objectives
into account. It enables to estimate the genetic parameters
that need to be controlled, and which can subsequently be
used to define the objective and constraints of a breeding
program. The optimization problem can be solved with
a variety of solvers, which provide a list with the opti-
mum numbers of offspring for all selection candidates,
and which can subsequently be used for mate allocation.

Availability and requirements
Project name: optiSel 2.0.1
Project home page: https://CRAN.R-project.org/package=
optiSel
Operating system(s): Platform independent
Programming language: R and C++
Other requirements: None
License: The software is free

Additional file

Additional file 1: Example data set and replication script. (ZIP 14700 kb)
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