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Abstract

Background: RNA-Sequencing analysis methods are rapidly evolving, and the tool choice for each step of one
common workflow, differential expression analysis, which includes read alignment, expression modeling, and
differentially expressed gene identification, has a dramatic impact on performance characteristics. Although a
number of workflows are emerging as high performers that are robust to diverse input types, the relative
performance characteristics of these workflows when either read depth or sample number is limited–a common
occurrence in real-world practice–remain unexplored.

Results: Here, we evaluate the impact of varying read depth and sample number on the performance of differential
gene expression identification workflows, as measured by precision, or the fraction of genes correctly identified as
differentially expressed, and by recall, or the fraction of differentially expressed genes identified. We focus our analysis
on 30 high-performing workflows, systematically varying the read depth and number of biological replicates of patient
monocyte samples provided as input. We find that, in general for most workflows, read depth has little effect on
workflow performance when held above two million reads per sample, with reduced workflow performance below
this threshold. The greatest impact of decreased sample number is seen below seven samples per group, when more
heterogeneity in workflow performance is observed. The choice of differential expression identification tool, in
particular, has a large impact on the response to limited inputs.

Conclusions: Among the tested workflows, the recall/precision balance remains relatively stable at a range of read
depths and sample numbers, although some workflows are more sensitive to input restriction. At ranges typically
recommended for biological studies, performance is more greatly impacted by the number of biological replicates
than by read depth. Caution should be used when selecting analysis workflows and interpreting results from low
sample number experiments, as all workflows exhibit poorer performance at lower sample numbers near typically
reported values, with variable impact on recall versus precision. These analyses highlight the performance
characteristics of common differential gene expression workflows at varying read depths and sample numbers,
and provide empirical guidance in experimental and analytical design.
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Background
RNA sequencing (RNA-Seq), despite being the choice
technique for transcriptome-wide identification of differ-
entially expressed genes, is still rapidly evolving. A num-
ber of tools are available for each major processing step
in data analysis: read alignment, expression modeling,
and differential gene identification [1], but their per-
formance in concert is only beginning to be understood
[2–6]. Additionally, most existing evidence concerning
their performance has been built on samples from simu-
lated or highly controlled datasets, which lack the vari-
ability inherent in many experimental—particularly
clinically-derived—datasets. We recently performed a
broad comparison of RNA-Seq differential expression
analysis workflows, applied to human clinical samples of
highly purified monocyte subsets, using previously pub-
lished microarray and BeadChip data as our reference
gene sets. We found that a number of workflows per-
formed poorly, but that the majority of workflows per-
form similarly well, with differences in their calibration
with respect to having higher recall or precision [7].
Although the cost of RNA-Seq experiments has been

steadily decreasing as technology improves, it continues
to be an important consideration when designing
RNA-Seq experiments. In particular, a large component
of that cost is derived from the sample preparation and
sequencing, where a tradeoff between read depth and
sample number (e.g. the number of biological replicates
per condition) must be taken into consideration [8].
Currently there is no consensus on adequate sequencing
depth for differential gene expression studies, and sev-
eral studies on multiple organisms and sample types,
varying in their heterogeneity, have suggested a wide
range of read depths as optimal. At the low end, increas-
ing read depths beyond 10 million reads was found to
have minimal effect on the power to identify the effects
of hormone treatment on a breast cancer cell line [8]; at
the high end, increasing read depth up to 200 million
reads, the highest depth available in the study, led to an
increase, albeit small, in the detection of differentially
expressed genes when comparing three male and three
female human monocyte samples [9]. In simulations of
three murine and four human data sets, including cell
line, viral infection, disease, and population studies, a
minimal power gain was seen above 20 million reads
[10] or 30 million reads [11]. In studies employing one
versus one sample comparisons, 200 million reads were
suggested to identify the full range of differentially
expressed transcripts between the MAQC dataset and a
colorectal cancer line, and between human liver and kid-
ney cells [12]; whereas 300 million reads was the depth
identified as necessary to identify 80% of differentially
expressed genes in human subcutaneous fat, pre and
post induction of an inflammatory response [13].

Several studies have examined the interplay of sample
number with read depth, with general consensus that in-
creasing biological replicates increases power or gene re-
call more drastically than increasing read depth [8, 10,
14, 15]. However, similar to read depth, recommenda-
tions for sample number vary. At the lower end of rec-
ommendations, three to four samples were determined
to be sufficient for differential gene identification in a
mouse neurosphere study, based on the relatively small
incremental improvements in the AUC at these sample
numbers [15], and three samples per group were neces-
sary to detect the majority of differences tied to geno-
type, sex, and environment in a Drosophila melanogaster
study, although additional replicates did increase power
[16]. Ching et al. recommended a minimum of five sam-
ples per group, based on a variety of RNA-Seq datasets,
but both they and others noted that much higher sample
numbers are necessary to provide adequate power in
samples with high gene dispersion, such as in a popula-
tion comparison of Caucasian and Nigerian derived cells
[10, 15]. Similarly, in a S. cerevisiae study, a minimum of
six replicates was recommended for differential expres-
sion studies, based on identification of true positive and
false positive genes, although twelve replicates were ne-
cessary to identify the majority of differentially expressed
genes [17]. It is likely that the wide range of organisms
studied, including the genomic complexity, level of gen-
etic heterogeneity within sample groups, the magnitude
of differences in conditions, and the target fraction of
differences to be identified, impacts these disparate re-
sults across read depth and sample number. Beyond
attempting to reach a generalization about input design,
it is even harder to extrapolate these findings to
clinically-derived samples. Several studies have proposed
methods for sample size calculation [10, 18–23]; how-
ever, their performance on real world data has shown
widely variable results in sample size estimation, without
clear indication that one outperforms the others [24]. As
such, there remains a need for empirical studies of sam-
ple size effect, with a particular need for studies on ex-
perimental conditions more similar to study designs
increasingly found in the literature.
Due to the paucity of real-world RNA-Seq samples for

which reference datasets are available for comparison,
studies of RNA-Seq tools have frequently been limited
to using up-sampled RNA-Seq data as a metric of truth
[8, 10, 13] or relied on highly controlled datasets gener-
ated in silico [10, 11, 15]. Additionally, many of the data-
sets frequently used for evaluation of RNA-Seq
performance, such as the MAQC dataset [25] and the
human kidney and liver dataset [26], do not allow for
the study of effects of biological replicates, and exhibit
extreme differences in gene expression that are not rep-
resentative of typical study designs, where test groups
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are often much more closely related. Furthermore, many
of the aforementioned studies only use a single workflow
for differential gene identification, with none examining
the interplay of tool choice at the three levels (read
alignment, expression modeling, and differential expres-
sion) with read depth and sample number. Altogether,
the limitations of these studies reflect the challenge of
grappling with the multi-factorial parameters that can
dramatically influence the performance of RNA-Seq ana-
lysis, and highlight the need for further assessments.
Here, we examined the effects of read depth and sam-

ple number on the performance of several differential
expression analysis workflows, which have previously
been identified as good performers when applied to in-
put datasets with high read depth and sample number
[7]. Performance was assessed using real-world, clinical
samples of highly purified monocytes, with the use of
four previously published microarray and BeadChip
studies as a reference for biological truth [27–30]. The
results of this study provide empirically-derived guid-
ance to inform the design of RNA-Seq experiments, in-
cluding the choice of RNA-Seq analysis workflow.

Methods
RNA-Seq samples
The RNA-Seq datasets used in this study were previ-
ously published [7] and are available from the NCBI Se-
quence Read Archive (SRA) under accession number
SRP082682.

Read subsampling, alignment, expression modeling, and
differential expression identification
FASTQ files were randomly subsampled without re-
placement to create samples of depths 3 × 104, 5 × 104,
1 × 105, 3 × 105, 5 × 105, 1 × 106, 2 × 106, 5 × 106, 1 × 107,
and 2 × 107 reads using the R package ShortRead [31], as
allowed for by the original read depth of the sequenced
sample (Additional file 1). Each subset of reads was
aligned to release GRCh38 of the human genome
(Gencode Release 26) with HISAT2, Kallisto, Salmon,
and STAR [32–35]. Gene expression was modeled with
Kallisto, RSEM, Salmon, STAR, and Stringtie [33–37].
Gene counts obtained for genes on the pseudoautosomal
region of the Y chromosome were excluded from further
analysis, as they are identical in annotation and counts
to these genes on chromosome X. For Kallisto and Sal-
mon, transcript-level expression values were condensed
to gene-level values using tximport [38]. Expression
matrices for differential expression input were generated
using custom scripts as well as the prepDE.py script pro-
vided at the Stringtie website. Ten iterations of differen-
tial expression analysis were run using different,
randomly-chosen combinations of classical and nonclas-
sical monocyte samples, with 3, 4, 5, 6, 7, 8, 9, 12, or 15

samples per group, using the same ten combinations for all
workflows and read depths, as shown in Additional file 2.
We kept sample combinations consistent for a given sam-
ple number when varying read depth to better isolate the
effects of decreasing read depth. However, our sample
combinations were restricted by the initial read depths of
the samples (Additional file 1) and therefore some samples
were excluded from individual analyses. Specifically, three
samples were excluded from the two highest read depths
(classical09, nonclassical01, and nonclassical10), and an
additional nine samples were excluded from the highest
read depth (classical01, classical04, classical10, classical15,
classical16, nonclassical06, nonclassical07, nonclassical13,
and nonclassical17). Because of these exclusions, we were
unable to test 15 samples per group at the two highest
read depths and 12 samples per group at the highest read
depth. Differentially expressed genes were identified with
Ballgown, DESeq2, edgeR exact test, limma coupled with
voom transformation, NOISeqBIO, and SAMseq [39–44].
Of these, all but Ballgown and SAMseq used intrinsic fil-
tering or recommended extrinsic filtering of genes prior
to testing. All differential expression tools were specified
within the tool commands to run at a detection level of
alpha of 0.05 or FDR of 0.05. In general, all software was
run with default parameters; specific runtime parameters
and software versions are listed in Additional file 3, and
scripts for running all code are available at https://github.
com/cckim47/kimlab/tree/master/rnaseq. Further infor-
mation about implementation is available upon request.
Note that tool and genome versions have been updated
since our previous paper [7], so performance metrics may
differ slightly.

Preparation of reference datasets
Reference datasets were prepared from four published
studies of classical and nonclassical monocytes conducted
on microarray or BeadChip platforms and retrieved from
the NCBI gene expression omnibus (GEO) with accession
numbers GSE25913, GSE18565, GSE35457, GSE34515
[27–30], as previously described [7]. A third division of
monocytes, intermediate monocytes, has recently been
established [45], and these were isolated together with
nonclassical monocytes in the two microarray experi-
ments [28, 30], but not in the BeadChip and RNA-Seq
data sets [7, 27, 29]. Significant differentially expressed
genes between classical and nonclassical monocytes were
identified for each dataset with significance analysis of mi-
croarrays (SAM) [46] with an FDR of 0.05, and limma
[41], with a BH-adjusted p-value of 0.05. Performance of
the RNA-Seq workflows against both the SAM and limma
analyzed microarray data were previously compared to
one another and found to exhibit good reproducibility re-
gardless of the statistical method used to analyze the
microarray data [7]; as such, we chose to use the genes at
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the intersection of the two methods for our final reference
gene sets here

Quantification of recall and precision
Both performance metrics were calculated as previously
described [7]. Because absolute recall and precision
values are influenced by the repertoire of analytes that
can be measured by a given platform, following signifi-
cance testing, we filtered each reference and RNA-Seq
gene set to include only features measurable both by
RNA-Seq (i.e., present in the GRCh38 genome release,
Gencode version 26) and by the microarray (i.e., a probe
targeting the feature was present on the microarray plat-
form) within a given comparison. All gene set counts are
reported based on these filtered numbers, as are all cal-
culations of recall and precision. Recall was calculated as
the number of significant genes in the intersection of the
test RNA-Seq dataset with the reference dataset, divided
by the number of genes identified as significant in the
reference dataset. Precision was calculated as the num-
ber of significant genes in the intersection of the test
RNA-Seq dataset with the reference dataset, divided by
the number of genes identified as significant in the test
RNA-Seq dataset.

Literature survey
To survey current sample number practices in the
RNA-Seq literature, the following PubMed search was
queried in January 2018: ((rna seq OR rna-seq OR Rna-
Seq)) AND (differential OR differentially) NOT (miRNA
OR non-coding OR “single cell” OR lncRNA OR “circu-
lar RNA”). There was no date-based selection, but the
earliest studies in the randomly chosen datasets were
from 2010. Results were either unfiltered or filtered on
species “human”. Only studies which performed differ-
ential expression analysis were included. Studies utilizing
previously published datasets, including large-scale se-
quencing efforts (such as TCGA) were excluded, to en-
sure a representative sampling of the most common
experimental designs. For the human-specific survey,
only studies utilizing primary patient samples or cell
lines derived from individual patients were included.
Results of either filtered or unfiltered searches were
randomized, and then reviewed sequentially until 100
papers meeting inclusion criteria were reviewed
(Additional file 4). Average sample number was deter-
mined by adding the number of samples included in
each pairwise comparison, divided by two times the
total the number of comparisons in a given study. Sam-
ple number was corroborated by two authors for 10%
of papers with 90% concordance between two re-
viewers. In studies in which there was discordance in
the average sample number calculated, both authors

independently reviewed the study and were in agree-
ment following this review.

Results
Generation of subsampled real-world RNA-Seq dataset for
benchmarking
We sought to empirically assess the impact of read
depth and sample number on RNA-Seq workflow per-
formance, using patient-derived clinical samples, which
integrate many sources of variability that are not well
represented in typical benchmarking datasets. Our
RNA-Seq dataset has been previously described [7]. In
brief, RNA from nonclassical and classical monocytes
was isolated from cryopreserved PBMCs collected as
part of a study of Ugandan children. A total of 16 clas-
sical and 16 nonclassical patient monocyte samples were
utilized in this study. RNA-Seq libraries were sequenced
as 51-base single-end reads on an Illumina HiSeq 2500.
Total reads per sample were variable, ranging from 6 to
37 million, but with no significant difference of read
number or quality between the 16 classical and 16 non-
classical samples [7]. Raw fastq files were randomly
subsampled to create fastq files of 3 × 104, 5 × 104, 1 × 105,
3 × 105, 5 × 105, 1 × 106, 2 × 106, 5 × 106, 1 × 107, and 2 × 107

reads for each sample, as allowed for by the original read
depth (Additional file 1).

Overview of empirical testing
As previously described, we used four studies which ex-
plored expression differences between classical and non-
classical monocytes, using microarray and BeadChip
analysis [27–30], to generate a reference of biological truth
for comparison. By utilizing data from four independent
studies we were able to minimize the effect that any indi-
vidual preparation had on the results, while still analyzing
clinical samples with inter-sample variability and effect
size characteristics commonly found in real-world
RNA-Seq studies, but not in traditional benchmarking
datasets. Despite differences in collection and processing
methods, as well as variability in the genetic backgrounds
between studies, in our previous analysis we found that
the performance of various RNA-Seq workflows was re-
markably consistent when using any of the four reference
datasets as truth [7]. As such, we have chosen to report
only on performance averaged across the four datasets for
the current analysis. Additionally, we previously found
strong concordance between results when using either
SAM or limma to detect differentially expressed genes
from the microarray and BeadChip datasets [7], so have
used the intersection of the two analysis methods to gen-
erate our “ground-truth” gene lists.
With these four datasets as our references for per-

formance comparisons, we focused our evaluation of
RNA-Seq analysis workflows on those which we had
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previously identified as “high performers” -- high recall,
high precision, or among the top in combined perform-
ance [7]. From within this subset, we additionally selected
for commonly used workflows, ease of implementation,
and run speed. Finally, to constrain our exploration space,
we limited our analysis to workflows that would ultimately
lead to differential expression testing done on read counts
(as opposed to FPKM or TPM), and on gene level data (as
opposed to transcript level). Based on our previous ana-
lysis [7] that found that the differential expression analysis
tool had the largest effect on performance, we predicted
that it would be more informative to include more differ-
ential expression detectors than read aligners or expres-
sion modelers. In total, we evaluated four read aligners,
five expression modelers, and six differential expression
detectors, as shown in Table 1, in thirty total combina-
tions. We applied these workflows to ten iterations of ran-
domly selected samples at each of the following number
of samples per group: 3, 4, 5, 6, 7, 8, 9, 12, and 15. Because
only 16 samples per condition were available, the higher
sample number iterations had more overlapping samples
than the lower sample number iterations. The same 10
sample iterations were used at all read depths and across
all workflows for consistency among comparisons. If there
were not enough samples available for 10 distinct sample
combinations at a given read depth, the sample number/
read depth combination was not run. To benchmark per-
formance, we calculated the precision (intersecting signifi-
cant genes divided by total number of significant genes
identified by RNA-Seq) and recall (intersecting significant
genes divided by the total number of significant reference
genes) of each iteration.

Differential influence of workflow stages
For each workflow consisting of all three steps (read
alignment, expression modeling and differentially
expressed gene identification), we evaluated the ability
to detect genes differentially expressed between classical
and nonclassical monocytes, at each aforementioned
read depth and sample number, over 10 iterations of
sample combinations at each sample number. We first
wanted to examine the relative impact of each step on
precision and recall, over the search space. Strikingly, it

was visually clear that the choice of differential expres-
sion tool was much more impactful than the choice of
the read aligner/expression modeler pair, with perform-
ance tending to cluster by differential expression tool
over iterations at each read depth and sample number
(Fig. 1 and Additional file 5; figures show the same data
with shape and color labels inverted). For example, Ball-
gown showed a large range of precision values across all
read alignment and expression modeling pairs whereas
NOISeqBio consistently exhibited a large range in recall
values. This is similar to our previous finding that the
choice of differential expression tool was the most impact-
ful workflow step, in the absence of read or sample sub-
sampling [7]. Given the similarity in performance across
different upstream steps when holding differential expres-
sion tool constant, we have chosen to subsequently high-
light the differential expression tool rather than complete
workflow in figures, for ease of comparison between dif-
ferential expression tools. To facilitate a more in-depth ex-
ploration of the data, we also provide an interactive figure
that enables visualization of performance metrics for indi-
vidual workflows (Additional file 6).
We note that we have compared significant gene lists

to each of four microarray datasets individually and then
calculated an average performance across the datasets.
Since any two of the truth datasets exhibited at least 500
unique differentially detected significant genes in a dir-
ect comparison [7], it is not surprising that absolute pre-
cision was not high when calculated with each truth
dataset, and supports the hypothesis that there would be
variability across independently collected and analyzed
patient monocyte samples. It is likely that this and other
factors play a combinatorial role in explaining the low
absolute precision values and demonstrate the difficulty
of defining a ground truth for genome-wide studies. As
such, we advise focusing on the relative comparisons of
various workflows’ precision/recall trade-off which pro-
vides useful guidance when weighing options for
RNA-Seq analysis.

Effects of read depth on performance
Within each workflow, performance varied dramatically as
read depth and sample number per group varied. To iso-
late the effect of read depth on the precision and recall of
the workflows, we focused on iterations run on the highest
numbers of samples per group to minimize the impact of
sample number effect on interpretation. At the higher
read depths, a performance trade-off between precision
and recall was present when comparing workflows, fol-
lowing an inverse linear relationship (Fig. 2), as we previ-
ously reported [7]. To aid in visual comparison of
performance at each read depth to the original, highest
read depth performance, we have depicted the original re-
gression line at each subsequent sub-sampled read depth.

Table 1 Analysis tools used in this study

Read aligner / Expression modeler Differential expression tool

HISAT2/Stringtie Ballgown

Kallisto/Kallisto DESeq2

Salmon/Salmon edgeR

STAR/RSEM limma-voom

STAR/STAR NOISeqBio

SAMseq

Additional details are available in Additional file 3
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This inverse linear relationship degrades as read depth de-
creases, primarily due to a loss in recall. Initial degradation
in linearity becomes apparent at 2 × 106 reads, with a drop
in correlation, and the majority of workflows deviate from
the high-read regression line by 1 × 105 reads (Fig. 2 and
Additional file 7). This was seen consistently at sample
numbers of 15, 12 and 9, with only slight variation in the
pattern of degradation at the different sample numbers.
Throughout the range of read depths, differential expres-
sion tools largely maintain their precision and recall posi-
tions relative to other tools (Additional file 7 and
Additional file 8), although Ballgown’s recall with nine
samples more quickly degraded than the other tools as
read depth decreased. Limma-voom and edgeR coupled
with HISAT2-Stringtie also lost recall more rapidly than
when coupled with the other read aligner / expression
modeler combinations, at all three sample numbers (Fig. 2
and Additional file 6). At these higher sample numbers,
NOISeqBIO was comparatively resilient to effects of de-
creasing read depth, with maintenance of its balance be-
tween precision and recall across the tested depths
(Additional file 6). Of note, SAMseq was unable to con-
sistently handle the lower read depths, with the majority
of iterations failing at 1 × 105 reads and all iterations fail-
ing at 3 × 104 read depth (Additional file 9). SAMseq’s per-
formance improved as read depth increased, and was able
to run with no failures at the two highest read depths

(Additional file 9). While the inner workings of any indi-
vidual tool are beyond the scope of this study, it appears
that the failures were due to errors following SAMseq’s
read depth estimation, when the function samr.estimate.-
depth() returns an estimated read depth of 0 for at least
one sample in each failed comparison. Given that initial
estimates for RNA-Seq read depth requirements were esti-
mated to be one to two orders of magnitude higher than
the failure depths [12, 13], it is likely SAMseq was not de-
veloped to handle these lower read depths. Of note, in-
creasing sample size does decrease the number of failures
from SAMseq for the intermediate-high read depths
(Additional file 9), suggesting an interaction between these
parameters.

Effects of sample number on performance
Decreasing read depths consistently led to decreased
performance—particularly decreased recall—at high
sample numbers; however, it was clear that the slope of
the recall-precision relationship shifted as sample num-
ber changed (Fig. 2). To more closely examine the ef-
fects of sample number, we limited examination to the
highest read depths. Surprisingly, reduction in sample
number was impactful from a relatively high number of
samples. Changes in the slope of the recall-precision re-
lationship were apparent from eight samples per group,
with a large decrease in the recall-precision linearity

Fig. 1 Analysis workflow steps' impact on performance. Precision and recall for each iteration, separated by read aligner and expression modeler
(rows) and differential gene tool (columns). Colors represent sample number and shapes represent read depths
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relationship at six samples per group (Fig. 3). Similar to
our findings with read depth, this change was most
reflected by loss of recall, disproportionate to the loss of
precision (Fig. 3 and Additional file 7). Notably,
Ballgown performed particularly poorly at the lowest
sample numbers, with many iterations failing to call any
significant genes, leading to precision and recall values
of zero (Fig. 3). This poor performance was not related
to the upstream choice of read aligner and expression
modeler, but rather the same sample groupings tended
to return poor results for all upstream workflow combi-
nations. As noted by the Ballgown authors, although
Ballgown shares a similar underlying linear model to
limma for identification of differentially expressed genes,
the initial empirical Bayes modeling employed by limma
prior to differential testing allows for shrinkage of vari-
ance estimates, which has a larger effect for smaller sam-
ple sizes where less biological replicate information is
available [44]; thus, limma has superior performance at
low sample numbers, as we see here. NOISeqBIO also
demonstrated unusual behavior at the lowest sample
numbers – at three and four samples per group, per-
formance skewed heavily towards recall, with very low
precision, the opposite of the performance seen at higher
sample numbers. This behavior was independent of read
depth (Fig. 3 and Additional file 7). NOISeqBIO com-
bines a non-parametric model with an empirical Bayes
approach to shrink variance estimates, regardless of
sample number. However, when NOISeqBIO is used
with fewer than five samples per group, there is a change
in the methodology for the creation of the null distribu-
tion of its non-parametric model. At these lower sample
numbers, k-means clustering is employed to identify
genes with similar expression patterns and information
is shared between these genes when creating the null
distribution, whereas this is not done at higher sample
numbers [42]. This difference in methodology for man-
aging lower sample numbers might explain the abrupt
shift to high recall with reduced precision.
Given the somewhat surprising result that sample

numbers below six had severely reduced performance,
we next sought to assess how widely used low sample
numbers were in recent RNA-Seq studies. From 100
randomly chosen studies, over 90% used six or fewer

Fig. 2 Read depth's impact on performance. Precision and recall,
averaged over the 10 iterations at a given sample number and read
depth, split by sample number (columns) and read depth (rows).
Values for each workflow (read aligner, expression modeler, and
differential expression tool) are averaged and displayed separately.
Points represent mean; bars represent standard deviation; colors
represent differential expression tool. Red solid line represents linear
regression line for plotted data. R2 value corresponds to plotted data.
Gray dashed line represents linear regression fit of the first row of data
for each column, superimposed over subsequent rows for comparison
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samples per group (Fig. 4a). When this survey was re-
peated and restricted to studies of human samples, the
average sample numbers were slightly higher, with about
half of the studies falling at or below six samples per
group (Fig. 4b). This suggests that while some authors of
human studies recognize the increased variability inherit
to clinical samples and increase sample size accordingly,
the performance characteristics of many human studies
would be improved with increased sample numbers.
Given these results, caution should be exercised in inter-
preting many recent RNA-Seq studies that may conform
to common experimental design approaches, but that
may be underpowered for RNA-Seq analysis. Addition-
ally, this highlights the necessity of benchmarking
RNA-Seq tool performance using datasets most similar
to those that the methods will be applied to, to better
define best practices for study design and analysis.

Fig. 3 Sample number's impact on performance. Precision and
recall, averaged over the 10 iterations at a given sample number
and read depth, split by read depth (columns) and sample number
(rows). Values for each workflow (read aligner, expression modeler, and
differential expression tool) are averaged and displayed separately.
Points represent mean; bars represent standard deviation; colors
represent differential expression tool. Red solid line represents linear
regression line for plotted data. R2 value corresponds to plotted data.
Gray dashed line represents linear regression fit of the first row of data
for each column, superimposed over subsequent rows for comparison

A B

Fig. 4 Literature survey of RNA-Seq experiment sample numbers. Violin
plots of sample numbers used in 200 studies containing RNA-Seq
differential gene expression analysis, either from all species (a) or limited
to primary human samples (b). Individual dots represent average sample
number used in each study. Grey dashed line represents six samples
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Correlations with significant gene numbers
In our initial study examining the performance of work-
flows, we observed that the number of genes called sig-
nificant by a workflow heavily influenced the recall and
precision, with a strong correlation between recall and
the number of genes identified as significant, and an in-
verse relationship between precision and the number of
significant genes [7]. As such, we hypothesized that
changes in the number of genes identified as significant
would be correlated with the degradation of perform-
ance at lower sample numbers and read depths. As pre-
dicted, we observe a strong relationship between recall
and number of genes called significant, with the number
of genes called significant tending to increase as sample
number increased, with a commensurate increase in re-
call (Fig. 5a and Additional file 10). Surprisingly, and in
contrast to our previous observations across workflows
[7], the converse was not true for precision (Fig. 5b).
While the trend that higher numbers of genes called sig-
nificant tended to have lower precision remained true,
this effect was much less pronounced. Interestingly, the
precision across workflows tended to decrease at the

highest sample numbers. While this could represent an
increase in falsely called genes as the total number of
significant genes increases, it is also possible that at
these higher sample numbers RNA-Seq overtakes micro-
array’s and BeadChip’s abilities to detect differentially
expressed genes. Notably, workflows employing NOISe-
qBIO at three and four samples called the highest num-
ber of significant genes of any workflows, which likely
accounts for the relatively high recall with poor preci-
sion displayed by these workflows at low sample num-
bers. This suggests that results from NOISeqBIO must
be interpreted with caution at low sample numbers, due
to the higher likelihood of type I error.

Conclusions
Of the workflows examined, all performed well at higher
read depths and sample numbers, and the choice of
workflows at these parameters should be largely influ-
enced by the tolerance of a specific application for type I
versus type II error, as we concluded previously [7].
However, caution should be used at lower read depths
and sample numbers, as performance is variable and

A B

Fig. 5 Significant gene number's impact on performance. Average recall (a) or average precision (b) versus the average number of genes identified as
significant. Panels are split by read depths, with 2 × 107, 1 × 107, 5 × 106, and 2 × 106 reads plotted as high read depths, 1 × 106, 5 × 105 and 3 × 105

plotted as medium read depths, and 1 × 105, 5 × 105, and 3 × 104 plotted as low read depths. Dots represent values for individual workflows
(read aligner, expression modeler, and differential expression tool) at a given sample number and read depth, averaged over the ten sample combination
iterations run at each given sample number and read depth. Bars represent standard deviation. Colors represent sample number. Red line represents linear
regression for plotted data. R2 value corresponds to plotted data
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highly dependent on the choice of differential expression
tool, with much smaller impact from read aligner and
expression modeler. These results also give insight into
the read depth and sample number required for robust
results when designing RNA-Seq experiments involving
clinical samples, which exhibit more genetic and
pre-analytical heterogeneity than typical in vitro study
designs. Performance was relatively resistant to changes
in read depth, with very minimal impact down to two
million reads, which is considerably lower than previ-
ously published suggested read depths and may reflect
analysis of different organisms and/or sample types [10–
13]. Conversely, tool performance—particularly recall
and the commensurate number of genes called signifi-
cant—rapidly declined as sample number per group de-
creased, with changes apparent even by eight samples.
At six or fewer samples per group, tool choice became
increasingly impactful with SAMseq and Ballgown fall-
ing below the linear relationship, and thus being “worse”
performers in this context. These findings corroborate
past suggestions that increasing biological replicates will
generally have a greater impact than increasing read
depth [8, 10, 14, 15], although this also depends on the
“starting points” for read depth and sample number per
group. If sample number is constrained, caution must be
exercised in choosing a differential expression tool, as
performance is more variable. Specifically, there is in-
creased risk of Type II error, most disproportionately
when using Ballgown with the lowest sample numbers,
and Type I error in the case of NOISeqBIO used with
fewer than five samples. These findings represent a de-
parture from current practices used in many studies,
which tend to follow more traditional experimental de-
signs employing fewer replicates.

Additional files

Additional file 1: Original read depth of individual samples. (XLSX 12 kb)

Additional file 2: Sample combinations for each iteration at varying
sample numbers. The same sample combinations were run at all read
depths and for all workflows. (XLSX 21 kb)

Additional file 3: Table of software tools, with versions and runtime
parameters. (XLSX 15 kb)

Additional file 4: Literature survey citations and average sample number.
200 studies containing RNA-Seq differential expression analysis, either from
all species or limited to primary human samples. Average sample number
from these studies is also displayed in Fig. 4. (XLSX 52 kb)

Additional file 5: Analysis workflow steps' impact on performance.
Precision and recall for each iteration, separated by read aligner and
expression estimator (rows) and differential gene tool (columns). Colors
represent read depths and shapes represent sample number. These are the
same data presented in Fig. 1 with color and shape labels switched. (PDF
2300 kb)

Additional file 6: Interactive figure for comparison of performance
metrics. (A) Absolute precision and recall for each workflow. (B) Relative
ranks of precision and recall for each workflow. Grey dots show performance

for all workflows for the selected read depth(s) and sample number(s); red
dots highlight the selected workflow(s). (XLSX 536 kb)

Additional file 7: Impact on performance by read depth and sample
number. Precision and recall, averaged over the 10 iterations at a given
sample number and read depth, split by sample number (columns) and
read depth (rows). Values for each workflow (read aligner, expression
modeler, and differential expression tool) are averaged and displayed
separately. Points represent mean; bars represent standard deviation;
colors represent differential expression tool. Red line represents Lm fit for
plotted data. Text is the corresponding R2 value. (PDF 9556 kb)

Additional file 8: Impact on rank performance by read depth and
sample number. Rank precision and rank recall, averaged over the 10
iterations at a given sample number and read depth, split by sample
number (columns) and read depth (rows). Values for each workflow (read
aligner, expression modeler, and differential expression tool) are averaged
and displayed separately. Points represent mean; bars represent standard
deviation; colors represent differential expression tool. Red line represents
Lm fit for plotted data. Text is the corresponding R2 value. (PDF 9675 kb)

Additional file 9: Number of SAMseq failed iterations. Iteration was
counted as a failure if SAMseq was not successfully run due to an error
message. Bars represent count of failures, colored by read depth.
(PDF 142 kb)

Additional file 10: Number of significant genes by number of biological
replicates. Bar represents average number of significant genes for a given
read depth, sample number, and differential expression tool. Average was
calculated by averaging each of the ten sample combination iterations at a
given sample number and read depth, for all five read aligner/expression
modeler combinations upstream of a given differential expression tool.
Standard deviation is shown. Colored by read depth. (PDF 786 kb)
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