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Abstract

investigate bacterial genotype-phenotype relationships.

Background: Several studies demonstrated the feasibility of predicting bacterial antibiotic resistance phenotypes
from whole-genome sequences, the prediction process usually amounting to detecting the presence of genes
involved in antibiotic resistance mechanisms, or of specific mutations, previously identified from a training panel of
strains, within these genes. We address the problem from the supervised statistical learning perspective, not relying
on prior information about such resistance factors. We rely on a k-mer based genotyping scheme and a logistic
regression model, thereby combining several k-mers into a probabilistic model. To identify a small yet predictive set of
k-mers, we rely on the stability selection approach (Meinshausen et al,, J R Stat Soc Ser B 72:417-73, 2010), that
consists in penalizing logistic regression models with a Lasso penalty, coupled with extensive resampling procedures.

Results: Using public datasets, we applied the resulting classifiers to two bacterial species and achieved predictive
performance equivalent to state of the art. The models are extremely sparse, involving 1 to 8 k-mers per antibiotic,
hence are remarkably easy and fast to evaluate on new genomes (from raw reads to assemblies).

Conclusion: Our proof of concept therefore demonstrates that stability selection is a powerful approach to
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Background

Recent advances in Next-Generation Sequencing (NGS)
technologies provided new tools to sequence large
amounts of DNA at a reasonable cost and in a limited
period [1]. This technological breakthrough is expected
to significantly modify the landscape and practices in the
field of clinical microbiology. Microorganisms can now be
characterized with unprecedented resolution, which can
have a significant impact for both research and diagnos-
tics purposes (see e.g., [2, 3]). In terms of diagnostics,
NGS indeed holds the promise of addressing, in a single
experiment, the main questions of clinical interest: iden-
tifying an isolate and determining its antibiotic resistance
and virulence profile [4]. The genetic bases of antibiotic
resistance and virulence remain partly unknown for most
bacterial species, and it is still on open question whether
the resistance or virulence of a microorganism can be
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inferred from its genome only. A recent study showed
for example that an isogenic bacterial population exhib-
ited heterogeneity in drug susceptibility due to random
partitioning of efflux-pumps during cellular division [5].
Nevertheless, several works have demonstrated the fea-
sibility of genotypic approaches for detection of antibiotic
resistance, where a good concordance has been observed
between resistance phenotypes predicted from microor-
ganisms genomes, and their reference phenotypes, deter-
mined experimentally by assessing their ability to grow in
the presence of antibiotics. The genetic bases of antibiotic
resistances are for instance well known for Staphylococ-
cus aureus and Mycobacterium tuberculosis, and accurate
predictions could be achieved for these species by simply
detecting specific genetic resistance determinants [6—11].
This strategy is notably implemented in well-established
tools like Mykrobe [7] and TBProfiler [9], that lever-
age for instance catalogs of more than 200 and 1300 muta-
tions, respectively, to predict resistance of M. tuberculosis
to 9 and 10 antibiotics or antibiotic families. While this
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approach proved to be effective for these relatively clonal
species, it may suffer from two limitations if transposed to
other bacterial species and/or drugs. The first limitation is
that it intrinsically relies on prior knowledge of resistance
determinants, which may not be available for all species.
Non-coding regions are not explored either, which could
be beneficial even for M. tuberculosis, for which resistance
is mostly due to the presence and accumulation of muta-
tions and indels within a limited number of core genes
[12-14]. Secondly, resistance prediction rules typically
rely on the presence of at least one resistance determi-
nant, whereas it may be beneficial to combine several
ones in a common prediction model to address complex
multi-factorial resistance mechanisms, or to model the
accumulation of several mutations eventually leading to
resistance [12, 15]. With these two limitations in mind,
we address the problem from the supervised learning per-
spective and build multi-factorial prediction rules from a
panel of strains, for which whole-genome sequences and
resistance phenotypes are available, without relying on
any prior knowledge about the resistance determinants.
We adopt a systematic k-mer based strain genotyping
scheme, where any possible k-mer is a candidate determi-
nant, and rely on the logistic regression model to combine
several k-mers into a probabilistic prediction rule.

Genotyping strains with k-mers, where every sequence
of length k found in a genome is a putative resistance
determinant, allows to circumvent knowing the genes
involved in antibiotic resistance. This approach offers the
additional benefits of being alignment-free and able to
capture various types of genetic determinants, like the
presence of genes, as well as Single-Nucleotide Polymor-
phisms (SNPs) and indels that can be located in coding
or non-coding regions [16]. Such k-mer based representa-
tions are therefore increasingly popular in this context, for
both genome-wide association studies [16, 17] and pre-
dictive modelling [18, 19]. The probabilistic framework
offered by the logistic regression model is also appealing.
First, it naturally combines several genomic determinants
in a global predictive model with weights modulating their
respective effects, hence quantifying their relative predic-
tive power and reflecting the fact that they can be associ-
ated with different levels of resistance [12]. It also provides
a probabilistic prediction, which allows to quantify the
confidence the user can have in the results provided.

Our approach is closely related to [18, 19], who recently
relied on machine learning approaches to predict cate-
gorical antibiotic resistance phenotypes from k-mers. The
resulting prediction rules are based on the detection of
possibly multiple k-mers, which are automatically selected
by the algorithm and are respectively combined by means
of logical operations (conjuctions or disjunctions) or a
linear combination. Likewise, [20] recently relied on a
standard linear regression model to predict the Minimum
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Inhibitory Concentration (MIC) from candidate muta-
tions found in pre-defined genes, and [11] explored sev-
eral machine learning strategies to predict M. tuberculosis
resistance from a pre-defined list of SNPs, with promis-
ing results. By combining k-mers and logistic regression,
we therefore aim to bridge the gap between these two
approaches, hence to build prediction models allowing
to combine several genomic determinants within a versa-
tile probabilistic framework, without relying on the prior
knowledge of the underlying resistance mechanisms.

For the sake of interpretability and computational effi-
ciency of the prediction, we have the utmost interest in
building concise models, involving as few genetic determi-
nants as possible. From the statistical learning perspective,
the challenge is to identify a small yet predictive set of
k-mers from a very large number of redundant and cor-
related ones (several 100.000’s). We rely for this purpose
on the so-called stability selection approach [21], that
consists in penalizing the logistic regression model with
the sparsity-promoting Lasso penalty, within an exten-
sive resampling procedure. We present a proof of con-
cept of this approach for M. tuberculosis and S. aureus
using existing datasets [7, 19]. Our main contribution is
to demonstrate that stability selection is a very efficient
strategy in this context, leading to robust and extremely
sparse signatures of resistance. The empirical results
obtained allow furthermore to differentiate between the
association and prediction perspectives on antibiotic
resistance in bacteria, and suggest several promising leads
for further work.

Methods

Strain genotyping with k-mers

To genotype a training panel of n assembled bacterial
genomes using k-mers, we first build a large matrix
encoding the presence or absence of all k-mers of length
k = 31 within each strain, using the Ray software [22].
Considering k-mers of length 31 is a safe default choice in
this context, offering in general a good trade-off between
sequence specificity and computational efficiency [18, 19].
Since k-mers occurring in too few or too many strains
have a limited predictive power, we then discard k-mers
found in one or two strains only, or in all the strains but
one or two. Finally, since this k-mer based representation
is highly redundant [18, 19], we define sets of equivalent
k-mers from k-mers having the same presence/absence
profile in all the strains. For the sake of model building,
we can only keep one of them, which in practice dramati-
cally reduces the number of k-mers to consider. We keep
track of these sets of equivalent k-mers in order to better
interpret the model obtained and carry out the predic-
tions, as discussed in “Prediction from genome assembly
or sequencing reads” and “Model interpretation” sections.
Equivalent k-mers typically correspond to contiguous
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stretches of sequences conserved across strains, but can
also correspond to non-contiguous stretches in total Link-
age Disequilibrium (LD).

k-mer selection using L, penalty and stability selection
Logistic regression is a widely used generalized linear
model addressing binary classification problems. In our
case, it consists in building a linear function defined for a
strain represented by a vector x € {0, 1} as:

p
f@® =B+ B, (1)

j=1

where p corresponds to the number of non-redundant k-
mers obtained by the previous process, and x encodes the
presence/absence of these k-mers. To estimate the model
coefficients and simultaneously select a limited number
of k-mers from a training panel of # strains, one can rely
on the L; or Lasso penalty and consider the following
optimization problem:

n

B = arg min L (yi,f (x(i))) + A i 1Bl (2)
j=1

p+1
BeR —1

where y; = 1 if the ith strain, represented by x?, is
resistant and O otherwise. The function L is the logistic
loss function, which quantifies the discrepancy between
the true phenotypes y; of the strains and the predictions
f(x®) obtained by the model. The A parameter achieves
a trade-off between this empirical error and the Lasso
regularization term, and is usually optimized by cross-
validation.

Effectively tuning the Lasso regularization parameter
is however a challenging problem. Cross-validation tech-
niques usually succeed to build models of good predictive
power, but the set of variables with non-zero coefficients
is known to be unstable with respect to small variations
in the training dataset or in the value of regularization
parameter.

Several resampling based strategies have been proposed
to cope with this issue [21, 23, 24]. We rely on the sta-
bility selection approach of [21], which is illustrated in
Additional file 1: Figure S1. It consists in subsampling
several times the entire dataset (step 1), solving for each
subsample the Lasso-penalized logistic regression (step 2),
and computing for each k-mer the proportion of mod-
els in which it was selected. This process is repeated
for several values of the regularization parameter, which
allows to define “stability paths” quantifying the probabil-
ity of selecting each k-mer along the grid of regularization
values (step 3). Instead of optimizing the regularization
parameter A itself, [21] propose to consider a threshold on
the probability of being selected at some point on the reg-
ularization path: every k-mer whose stability path exceeds
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this threshold gets ultimately selected. Having identified
stable k-mers, we finally fit a standard un-penalized logis-
tic regression model that can be used to make predictions
on new genome sequences (step 4). We note however that
the issue of optimizing the regularization parameter of the
Lasso is cast with this approach into that of optimizing the
stability threshold, which can be done by cross-validation.
To do so, we repeat the whole process described in
Additional file 1: Figure S1 within each cross-validation
fold, as detailed in “Models obtained” section. Using this
optimized probability threshold, we repeat the process on
the entire dataset to build the final model. In practice,
we relied on the R software, and more precisely on the
glmnet package [25], to compute regularization paths.
Moreover, we considered subsamples involving half of the
dataset and normalized each k-mer by its Ly norm to
ensure an homogeneous level of penalization, as suggested
and discussed in [21].

Prediction from genome assembly or sequencing reads
Given sequencing data obtained from a new strain,
the prediction process amounts to detecting the k-mers
selected beforehand and making a prediction based on
the score provided by the final logistic regression model,
which can be turned into a probability of being resistant
by the logistic function. We do not tolerate any mismatch
to call a k-mer present and rely on the nucmer utility
of the Mummer package [26] to do so. Predictions can
be obtained from an assembled genome or directly from
sequencing reads. In the latter case, however, a mini-
mum threshold related to the sequencing depth must be
considered to call a k-mer present from its number of
occurrences, in order to be robust to sequencing errors.
Importantly, to call present each k-mer involved in a
model, we rely on its entire set of equivalent k-mers.
We detect each of them, and consider several strategies
to ultimately call the k-mer present. The stringent strat-
egy calls a k-mer present only if all its equivalent k-mers
are detected. Conversely, the conservative strategy calls it
present as soon as one of them is detected. Between these
two possibilities, the vote strategy calls a k-mer present
when more than half of its equivalent k-mers are detected,
and the smooth strategy uses the proportion of equivalent
k-mers detected instead of a binary presence/absence call.
For instance, if we detected 8 k-mers out of a set of 10
equivalent ones, both the conservative and vote strategies
would call the k-mer present, while the stringent would
not. The smooth strategy would use a value of 0.8 — instead
of 1 or 0 for presence or absence respectively — thereby
effectively modulating the weight given to this k-mer by
the logistic regression model, in order to account for the
uncertainty in its detection. The optimal strategy to con-
sider may in particular depend on the genomic plasticity
of the bacterial species under study and the extent to
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which the training panel of strains properly accounts for it.
Provided that the reads of the training data are available, it
could easily be optimized by cross-validation techniques:
the impact of the various strategies on the predictive per-
formance could indeed be empirically measured and the
best strategy retained. In this study, we solely assess the
impact of the various strategies on the predictive per-
formance, measured on independent validation sample,
and leave the task of optimizing it automatically from
the training data for future work. This prediction pro-
cess takes a few seconds for an assembled genome and
typically a couple of minutes for reads, depending on the
sequencing depth (see “Predictive performance” section).

Model interpretation

We aim to annotate the k-mers included in the model,
to identify whether they fall within known genes or reg-
ulatory regions, and provide their putative function when
possible. We consider the set of equivalent k-mers asso-
ciated to each k-mer included in the model and try to
reconstruct the longer stretch(es) of sequence(s) that they
originate from. A set of equivalent k-mers usually corre-
sponds to a larger sequence perfectly conserved across
several strains of the panel, and sometimes to several
such sequences in total LD. Following the terminology
used by genome assembly algorithms, we assemble equiv-
alent k-mers into longer unitigs, defined as the longest
sequence(s) that can be obtained when they overlap by
exactly kK — 1 nucleotides, using the bcalm?2 software [27].
A unitig is interesting to represent a set of equivalent k-
mers because it has the same presence/absence profile on
the training genomes, but is in general longer that the
individual equivalent k-mers, hence easier to annotate.
Unitigs are finally aligned against one or several annotated
reference genome(s) using the blastn-short program
with a minimum of 80% identity and 85% coverage as fil-
tering parameters, which, although not deeply optimized,
gave satisfactory results in our experiments.

Results and discussion

We now present a proof of concept of the method
described in the previous section on two bacterial species,
M. tuberculolis and S. aureus.

M. tuberculosis study

Dataset constitution

We gathered two datasets from previous studies. The
training dataset was taken from [19], who recently made
available a set of 1306 assembled M. tuberculosis genomes,
together with binary resistance phenotypes relating to
7 drugs, namely ethambutol, ethionamide, isoniazid,
kanamycin, ofloxacin, rifampicin, and streptomycin. The
resistance phenotype of each strain was not always avail-
able for each drug, but for each drug the number of
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resistant and susceptible strains was reasonably high
(Table 1). The validation dataset involved 1586 strains!
that were previously used to validate the performance of
the Mykrobe software [7]. Binary resistance phenotypes
were available for 5 out of the 7 antibiotics included in
the training panel, but not for ethionamide and ofloxacin.
We used moxifloxacin as a proxy for ofloxacin resistance,
since these two drugs belong to the same family and
exhibit a very high level of cross-resistance [28]. We note
that a variable number of each phenotype was available for
each antibiotic, with in particular only nine strains resis-
tant to kanamycin and ofloxacin (Table 2). This made esti-
mating the sensitivity of the predictive models for these
drugs uncertain. We also note that we directly worked
from raw sequencing data to obtain predictions, that is,
without relying on a prior step of genome assembly.

A total of 19,876,230 distinct k-mers of length 31 were
obtained from the 1306 training (assembled) genomes.
5,113,633 k-mers remained after filtering those occurring
in less than three strains or in all the strains but one or two,
which approximately resulted in a fourfold reduction. This
set of k-mers corresponded to 151,403 sets of equivalent
k-mers, among which a single one was randomly picked
to define the set of non-redundant candidate variables to
learn the models. This drastic reduction of the number
of k-mers was due to the high clonality of M. tuberculosis
genomes.

Models obtained

As described in “k-mer selection using L; penalty and
stability selection” section and illustrated in Fig. 1, the
sole parameter to optimize in our approach is the
probability threshold of the stability selection proce-
dure, which defines the set of stable k-mers. In this
study, it was optimized by cross-validation over the grid
{0.6;0.65;0.7; 0.75; 0.8}, for each antibiotic. Three repeti-
tions of a 10-fold cross-validation process were carried

Table 1 M. tuberculosis study: cross-validation results

R/S k-mers AUC p
ethambutol 333/712 8(79) 91.0(92.0) 0.75
ethioniamide 172/ 250 309 82.2(85.3) 0.7
isoniazid 815/472 4(5) 96.2 (96.0) 0.8
kanamycin 187 /484 2 (49) 1(93.2) 0.8
ofloxacin 238/ 458 1(1) 91.2(91.1) 0.8
rifampicin 668 /533 7(6) 96.6 (96.6) 0.8
streptomycin 492 /678 7(22) 90.8 (92.3) 0.8

R/ S:number of resistant and susceptible strains. k-mers: number of k-mers in final
models obtained with the stability selection approach and with the classical lasso
penalty (between brackets). AUC: cross-validated AUC obtained with the stability
selection approach and with the classical lasso penalty (within brackets). p:
probability threshold selected for the stability approach



Mahé and Tournoud BMC Bioinformatics (2018) 19:383

Table 2 M. tuberculosis study: validation results

Stability Mykrobe
R/S sensi. speci. sensi. speci.
ethambutol  194/1391 603(6.9) 975(08) 716(63) 958(1.1)
isoniazid 370/1216 89.7(3.1) 975(09) 843(3.7) 986(0.7)
kanamycin 9/460 333(30.8) 98.9(09) 33.3(308) 99.6(0.6)
ofloxacin 9/478 556(325) 996 (0.6) 55.6(32.5) 100 (0)
rifampicin 303/1262 941 (2.7) 99(05) 937(.7) 99(05)
streptomycin  353/1227 779(43) 99.1(0.5) 788(43) 99.3(0.5)

R/ S: number of resistant and susceptible strains. Stability : sensitivity (sensi.) and
specificity (speci.) values obtained with the stability-based final models. Mykrobe:
sensitivity and specificity values obtained with the Mykrobe predictor. Figures into
brackets correspond to half of the width of the 95% confidence intervals (Cl) that
shoud be added and substrated to get the upper and lower bounds of the 95% Cl

out and the value of the parameter was chosen accord-
ing to the average Area Under the (Receiver Operating
Characteristic — ROC) Curve (AUC) obtained: the high-
est threshold allowing to reach the highest AUC value
up to one point was retained, which allowed to favour
sparser models for a comparable accuracy. The same
cross-validation procedure was also applied to evaluate
the standard L -penalized logistic-regression approach. In
both cases we considered a grid of 200 candidate val-
ues of the regularization parameter. It was defined by the
glmnet software and ranged in a log scale from a maxi-
mum value defined as the smallest value ensuring that at
least one variable is selected (i.e., has a non-null coeffi-
cient), to a minimum value defined as this maximum value
divided by 10%. For the stability selection approach, we
resampled 100 times the training dataset.

Table 1 summarizes the predictive performance and
number of k-mers selected. As expected from [21], the sta-
bility procedure led to sparser signatures than the classical
L, penalization, especially for the ethambutol, kanamycin,
and streptomycin antibiotics, for a slight decrease in terms
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of AUC. The predictive performance remained compara-
ble, with the largest drop of 3 points observed for ethio-
niamide. Figure 1 illustrates the stability selection process
for ethambutol. We noted in this example that some
k-mers with a relatively high probability of being selected
(e.g., > 0.7, in orange), hence likely to be important to
obtain accurate predictions, entered relatively late in the
global regularization path of the Lasso, and vice-versa,
which explained why the Lasso model involved many
more k-mers. Additional file 1: Figures S2 and S3 show the
same curves for the other antibiotics.

Predictive performance

We then evaluated the models obtained by stability-
selection on the sequencing reads of the validation panel.
We considered thresholds to call a k-mer present from
its number of occurrences in reads ranging from 1 to
50, and the four strategies mentioned in “Prediction from
assembly or sequencing reads” section to call a k-mer
involved in a model present, based on the detection of
its equivalent k-mers. While the threshold on the num-
ber of occurrences could be optimized for each sample,
we systematically set it to 10. No major difference was
observed as soon as it was not too low (e.g., 1 or 2 lead-
ing to false positive k-mer detection) or not too high
(e.g., 25 or 50 missing some k-mers), as illustrated in
Additional file 1: Figure S4. The differences observed
between the various summarization strategies were also
minor, and we systematically relied on the stringent
approach.

Table 2 showed that the performances obtained on the
validation dataset by our approach and the Mykrobe pre-
dictor software were comparable. The most important
differences were observed for the antibiotics ethambu-
tol and isoniazid, where Mykrobe showed a higher and
lower sensitivity, with an opposite effect on specificity. A
ROC curve analysis indicated however that the sensitiv-
ity/specificity trade-offs achieved by Mykrobe could be

: stability

ethambutol : lasso coefficients

ethambutol : number of variables selected
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Fig. 1 lllustration of the stability selection process for ethambutol. Left: stability paths. Each curve corresponds to a k-mer and represents its
selection frequency over all the resampled datasets, across the values of the regularization paramater. Darker red curves correspond to larger
selection probabilities (from 0.6 to 0.8), while grey curves correspond to k-mers with probability of selection below 0.6. Middle : the regularization
path obtained by fitting a L; penalized logistic regression model across the entire dataset, with k-mers colored according to the color code defined
from the left panel. Right : number of k-mers selected by the stability selection approach for thresholds ranging from 0.6 to 0.8
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met by modifying the decision threshold of the regres-
sion logistic model, which was set by default to 0.5. This
is illustrated in Fig. 2 for ethambutol, and in Additional
file 1: Figure S5 for the other antibiotics. The flexibil-
ity offered by the logistic regression model to control the
trade-off between sensitivity and specificity can be useful
in a diagnostics context to meet the target performance
set by regulatory agencies.

We noted finally that the sequencing depth greatly var-
ied in the validation set, with a minimum value around
20 and a maximum greater than 700. The prediction time
increased linearly with the sequencing depth, showing
that 1.25 s were necessary to process each coverage unit,
which allowed to process a sample with a 100x coverage in
about two minutes (Additional file 1: Figure S6).

Model interpretation

To interpret the predictive models obtained, sets of equiv-
alent k-mers were assembled into unitigs, as described
in “Model interpretation” section, and blasted against
the H37Rv reference genome. The unitigs were highly
conserved, with a coverage equal to 100% for all the
unitigs and a minimum percent identify equal to 96.7%
(rifampicin model, unitig #3). Each set of equivalent
k-mers corresponded to a single unitig whose length
ranged from 31 (the size of the individual k-mers) to
61 nucleotides, with a median value of 44.5 nucleotides
(Additional file 1: Figure S7). These unitigs were easier

ethambutol — ROC curve

1.0

0.8

0.6

True positive rate
0.4

0.2

Mykrobe
default (0.5) threshold

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

0.0

False positive rate

Fig. 2 Ethambutol ROC curve obtained using the k-mers based
signature evaluated in the validation dataset. The orange dot
represents the performance obtained by the Mykrobe predictor, and
the blue one to our k-mer based approach when using the default
threshold of 0.5 to predict a strain resistant based on the probability
provided by the logistic regression model. Arrows represent 95%

confidence intervals
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to annotate than the individual k-mers because they were
more specific of particular genomic regions, hence led to
less ambiguous blast hits.

Figure 3 represents the models and annotations
obtained. Interestingly, without any any prior information
of known resistance determinants, a total of 22 unit-
igs was retained (1 to 8 per antibiotic), relating to 10
genes or RNA often already known to be associated with
M. tuberculosis antibiotic resistance, with unitigs origi-
nating from the embB gene for ethambutol, fabGI for
ethionamide, katG and fabG1 for isoniazid, rss and eis
for kanamycin, gyrA for ofloxacin, rpoB for rifampicin,
and rss and rpsL for streptomycin [12, 29]. Note that the
fabG1 gene is located just before the inhA gene, which
is one of the two main markers of resistance to isoniazid
and ethionamide. Some mutations associated to resistance
said to originate from the promoter region of inkhA, as for
instance in [9], could actually be considered to fall within
the fabG1 gene.

We noted that some k-mers were part of in sev-
eral signatures. This was probably due in large part
to the level of correlation between resistance pheno-
types observed within the training panel (Additional
file 1: Figure S8). While in some cases such correlation
is expected, for instance between rifampicin and isoni-
azid or between ethionamide and isoniazid [12], it may
also be a consequence of a peculiar constitution of the
training dataset due to a sampling bias, as discussed in
“Conclusion” section.

Interestingly, two k-mers involved in four signatures
originated from the 16S RNA (rrs). While this could
be expected for kanamycin and streptomycin [12], we
noted also that these k-mers captured general popula-
tion or “clade” effects, as illustrated in Additional file 1:
Figure S9. This suggested that resistance may in some
cases be intrinsically related to the evolutionary history
of the strains, which makes identifying causal resistance
determinants difficult [17].

A striking observation was that the predictive models
involved much fewer genetic determinants than alterna-
tive approaches relying on catalogues of mutations. For
instance, [9] compiled a library of 1345 mutations used to
predict the resistance to 15 antibiotics. Narrowing the list
to the 7 antibiotics considered in this study led to a list of
745 mutations, much greater than the number of k-mers
obtained by our approach. There are at least two reasons
for that. First, the library of mutations was obtained by
compiling results of several studies, involving altogether
probably a much greater number of strains than used here.
Reproducing our approach on a more exhaustive dataset
would most likely lead to selecting more k-mers. However,
we noted that k-mers allowed to represent in a concise
way complex patterns of genetic variations, as illustrated
in Fig. 4 for 3 genes included in the ofloxacin, isoniazid,
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intercept -{ 3.71 | 1.47 - 0.81 | 2.96 4.64
unitig-22 — vapC41 —
unitig-21 — espG1 3.22
unitig-20 — eis -3.74 ——> KAN
unitig—19 — gyrA —-1.44|-1.55 -5.8 —-—> OFL
unitig-18 — rpoB -4.6 ——> RIF
unitig-17 — rpoB — -1.28 -2.69 ——> RIF
unitig-16 — rpoB -1.69 -2.45 ——> RIF
unitig-15 - rpoB — 0.18 —-—> RIF
unitig-14 - rpoB —-1.77 —-0.46 ——> RIF
unitig-13 — katG —| -5.11 -1.09|-1.87| -—>1S0
unitig-12 — embB -0.77 -—> EMB
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Fig. 3 Signatures annotation at the unitig level. In total, 22 unitigs falling in 10 genes were retained. Known target / antibiotics association are
shown on the right hand side of the figure. Figures correspond to B coefficients in the unpenalized final logistic model and colors to their
magnitude (in absolute value). A negative coefficient leads to a decreased risk of resistance, i.e,, the presence of the corresponding unitig in the
strain genome is associated with a decreased risk of antibiotic resistance, and conversely for a positive coefficient. A strain is predicted as resistant is
the resulting score, taking into account the intercept of the model, is positive

and rifampicin signatures. These graphs were obtained by
mapping the unitigs corresponding to the k-mers of the
signatures against the training genomes, extracting and
aligning the unique hits obtained and eventually repre-
senting the unitigs on the aligned haplotypes. In the upper
panel, the unitig falling in the gyrA gene (obtained from
3 equivalent k-mers) captured a single SNP: a nucleotide
other than “G” at the SNP position increased the risk of
resistance to ofloxacin. In this simple example, 1 k-mer
(or equivalently 1 unitig) indeed corresponded to a single
mutation. It appears at position 7581 of the H37Rv chro-
mosome and has already been widely described [9]. In the

middle and lower panels, however, unitigs captured more
complex resistance determinant patterns than a single
SNP. The middle panel showed that a single unitig cap-
tured the increased risk of resistance to isoniazid brought
by two distinct well known SNPs [9], occurring at posi-
tions 2155167 and 2155168 in the katG gene, and defining
5 distinct haplotypes. The genomic variability observed in
the rpoB gene in the lower panel was even more complex.
We noted indeed that the unitigs corresponding to three
k-mers of the signature fell in the same region of the gene.
Eight SNPs were observed in the training panel in this
region between positions 761109 and 761161. They fall in
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a
7552 7584
ACCACCCGCACGGCGACGCGTICGATICTACAACA
ACCACCCGCACGGCGACGCGICGATCTACCACA
ACCACCCGCACGGCGACGCGTICGATICTACTACA
2155191 2155161
AACCGGTAAGGACGCGATCACCAACGGCATC
AACCGGTAAGGACGCGATCACCACAGGCATC
AACCGGTAAGGACGCGATCACCACCGGCATC
AACCGGTAAGGACGCGATCACCATCGGCATC
Cc
761097

Fig. 4 Examples of genomic variation patterns captured by k-mers in the ofloxacin, isoniazid, and rifampicin signatures. For each signature, mutliple
alignments of haplotypes found in the training dataset are shown. Unitigs are surrounded by colored boxes and coordinates refer to nucleic positions
on the H37Rv chromosome (NC_000962.3). a Ofloxacin - DNA gyrase subunit A - gene gyrA: a single SNP in gyrA predicts oxfloxacin resistance. At
the SNP position, the 4 bases can be observed in the training dataset, the haplotype with the “G" being wild-type sensitive phenotype. b Isoniazid -
catalase peroxidase - gene katG: 2 SNPs in katG predict isoniazid resistance, and these 2 SNPs are captured by a single unitig. ¢ Rifampicin - DNA
directed RNA polymerase beta subunit - gene rpoB: 8 SNPs in rpoB predict rifampicin resistance, and these 8 SNPs are captured by 3 unitigs

761167

the well-known rifampicin resistance-determining region
[12], and all of them have been described in [9], except
that observed at position 761156. Using only 3 k-mers, the
model could therefore account for a much greater num-
ber of SNPs combinations, these eight SNPs defining 16
haplotypes in the training panel.

We note finally that the model coefficients allowed to
measure the relative importance of the various k-mers
defining the signatures. These coefficients could indeed
be interpreted as odds ratio, a well known statistical indi-
cator measuring the strength of association between a
variable and an outcome. We emphasize also that they
defined, through the logistic regression model, a probabil-
ity of resistance, a positive coefficient indicating a higher
risk of resistance. This property was interesting because
it allowed us to associate a level of confidence to the pre-
diction, and to control the trade-off between sensitivity
and specificity that can be achieved by the model (see
“Predictive performance” section).

S. aureus study

We applied the same procedure to S. aureus. The training
dataset was taken from [6]. It involved 501 genomes and
6 antibiotics, namely ciprofloxacin, erythromycin, fusidic

acid, methicillin, penicillin and tetracyclin. Three other
antibiotics were not considered here because the number
of resistant strains was too limited (7 and 3 out of 501
for rifampicin and gentamicin respectively, and 2 out of
176 for mupirocin). The validation dataset included 470
genomes and phenotypes, and was also used in [7] to
demonstrate the performance of the Mykrobe predictor
software. Additional file 1: Table S1 gives the number of
resistant and susceptible strains for these 6 antibiotics.
Table 3 summarizes the results obtained. We first noted
that the stability selection approach also led to very sparse
models (1 to 5 k-mers per model), often sparser than
the classical Lasso. Predictive performance was in gen-
eral comparable or slightly lower than that obtained by
Mykrobe, except for fusidic acid where our model sig-
nificantly lacked sensitivity. This was also the case, to a
lesser extent, for ciprofloxacin where a drop of almost
6 points was observed, which corresponded to a differ-
ence of 4 strains out of 65 resistant ones and was not
significant, as can be seen from the associated confi-
dence intervals. We noted an effect of the strategy used
to call present a k-mer involved in a signature from
its set of equivalent k-mers. We observed indeed that
while the stringent strategy was appropriate in most
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Table 3 S. qureus study: validation results

Stability Mykrobe

k-mers  sensi. speci. sensi. speci.
ciprofloxacin 1(18) 89.2(75) 99.8(05) 954(5.1) 99.8(0.5)
erythromycin =~ 3 (8) 96.2(42) 995(0.7) 987(25) 100 (0)
fusidic acid 3(26) 78(12.7) 100 (0) 100 (0) 99.1 (0)
methicillin (1) 98.1(3.6) 100 (0) 100 (0) 100 (0)
penicillin (M 99.7(0.5 883(65 99.7(05) 883(6.5)
tetracyclin 5(@7) 100 (0) 99.8(0.4) 100 (0) 99.8 (04)

R/ S:number of R/S strains. Stability: sensitivity (sensi.) and specificity (speci.) values
obtained with the stability-based final models. Mykrobe: sensitivity and specificity
values obtained with the Mykrobe predictor. Figures into brackets correspond to
half of the width of the 95% confidence intervals (Cl) that shoud be added and
substrated to get the upper and lower bound of the 95% Cl

cases, better results could be obtained for penicillin
using the smooth strategy and for tetracyclin using either
the vote or the conservative strategy. Additional file 1:
Figure S10 shows the impact of the various strategies,
as well as the threshold on the number of k-mer occur-
rences, on the predictive performance. Table 3 gives the
best result obtained for each antibiotic, with a threshold
set to ten.

Finally, Additional file 1: Table S2 presents the anno-
tations of the unitigs obtained. Starting without a priori
from more than 18 million k-mers, reduced to 335.238
filtered and non-redundant ones, known resistance deter-
minants were identified for all drugs. We noted however
that sets of equivalent k-mers were sometimes assembled
into several unitigs, which therefore corresponded to non
contiguous stretches of sequences in total LD within the
training dataset. This was in particular the case for peni-
cillin and tetracyclin, which may explain why the stringent
k-mer summarization strategy was not appropriate for
these antibiotics.

Conclusion

We applied a machine learning approach to predict bac-
terial resistance phenotypes, starting from their whole
genome sequences and without any prior information
about the underlying resistance determinants. Using a
penalized logistic regression model, coupled with a sta-
bility selection approach, we obtained predictive models
involving a very limited number of k-mers, yet allowing
to reach a performance comparable to alternative state of
the art bioinformatics strategies for two bacterial species.
The k-mers obtained uncovered previously known resis-
tance determinants, thereby confirming that such a data
driven strategy is promising to unravel bacterial genotype-
phenotype relationships [18, 19]. The approach is generic
and could readily be transposed to new bacterial species,
and/or phenotypes, provided that adequate training data
is available.
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By selecting them in a discriminative fashion, our data-
driven strategy allows to build complex prediction rules
from a limited number of k-mers, as shown here for M.
tuberculosis. A potential drawback of this approach, how-
ever, is that it intrinsically relies on the level of information
provided by the training dataset. In particular, if the level
of genomic variability around a causal determinant (e.g.,
a SNP) is under-represented in the training data because
of a sampling bias, our approach will lead us to build too
large sets of equivalent k-mers, that will not be detected as
such in a new strain showing a different genomic context
around the determinant. The various strategies proposed
to summarize equivalent k-mers may therefore be use-
ful to cope with this issue. Moreover, the study led on
M. tuberculosis revealed that this approach is sensitive
to the level of correlation between phenotypes. Some k-
mers capturing resistance determinants within the target
of a given antibiotic were involved in the model predicting
resistance to another antibiotic, simply because strains of
the training panels tended to be resistant to both antibi-
otics. M. tuberculosis strains may be simultaneously resis-
tant to several antibiotics, which is in part due to the fact
that therapies involve antibiotic “cocktails” [13]. In a pre-
dictive context where correlation between antibiotics is a
biological reality, we consider that such correlation pat-
terns may actually be helpful and leveraged by the model.
The overlap we observed between signatures may actually
capture some synergistic effects driving simultaneously
the resistance to several antibiotics. Coll et al. [9] showed
that specific mutations tended to co-occur among multi-
drug resistant strains, and evidence has been reported on
other bacterial species that a mutation conferring resis-
tance to a given antibiotic could also increase the level of
resistance to other antibiotics [30]. This observation also
suggests, however, that explicitly learning jointly these
predictive models within a multi-task learning framework
may be a promising way to exploit such correlation pat-
terns. Several extensions of the Lasso have been proposed
to enforce tasks to share a common support, depending on
their level of correlation [31]. They could provide an inter-
esting way to study and leverage such cross-resistance
mechanisms. If however this correlation is specific to the
training dataset, hence results from a sampling bias, it
can clearly compromise the generalization of the model.
Drouin et al. [18] and Davis et al. [19] proposed differ-
ent strategies to compensate for this correlation while
learning predictive models, relying respectively on a sub-
sampling of the dataset, or a post-processing of the list of
k-mers selected. Within the penalized regression frame-
work considered here, an alternative strategy could be
to rely on multi-task appproaches enforcing tasks to
have disjoint supports [32]. More generally, correlation
between phenotypes is an issue to establish causal rela-
tionships between genetic determinants and antibiotic
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resistance. It represents a confounding factor for bac-
terial genome-wide association studies that should be
taken into account, as it is commonplace for population
structure [17].

The versatile framework of the penalized logistic regres-
sion offers many perspectives to further investigate bac-
terial genotypes/phenotypes relationships. Besides the
extensions to the multi-task setting mentioned above
to model cross-resistance mechanisms, it can easily be
extended to consider semi-quantitative measurement of
antibiotic resistance, using the MIC as outcome for an
ordinal regression model [33]. It is indeed known that
mutations can sometimes induce a variable level of resis-
tance [12], and working directly from MICs may lead to
better models. Likewise, correlation between strains due
to their underlying population structure should be taken
into account, by reducing the loss incurred by close strains
or relying on mixed-model strategies [34].

In terms of diagnostics, the ability to carry out
the prediction from reads coupled with the emergence
of nanopore technologies paves the way to real-time
sequencing-based applications [35]. A recent proof of
concept, led on M. tuberculosis and starting from direct
respiratory samples, demonstrated the feasibility of this
approach [36]. How such k-mer based strategies could be
transposed to metagenomics settings, in order to predict
resistance directly from a sample, with a higher level of
sequencing noise, remains an open question and will be
the purpose of future work.

Endnote

! The original panel involved 1609 strains but 23 of them
have missing phenotypes for all the drugs considered in
this study.
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