Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346
https://doi.org/10.1186/s12859-018-2367-z

BMC Bioinformatics

SOFTWARE Open Access

@ CrossMark

Biotite: a unifying open source
computational biology framework in Python

Patrick Kunzmann" @ and Kay Hamacher

Abstract

Background: As molecular biology is creating an increasing amount of sequence and structure data, the multitude
of software to analyze this data is also rising. Most of the programs are made for a specific task, hence the user often
needs to combine multiple programs in order to reach a goal. This can make the data processing unhandy, inflexible

biotite-dev/biotite.

software makes unique.

and even inefficient due to an overhead of read/write operations. Therefore, it is crucial to have a comprehensive,
accessible and efficient computational biology framework in a scripting language to overcome these limitations.

Results: We have developed the Python package Biotite: a general computational biology framework, that
represents sequence and structure data based on NumPy ndarrays. Furthermore the package contains seamless
interfaces to biological databases and external software. The source code is freely accessible at https://github.com/

Conclusions: Biotite is unifying in two ways: At first it bundles popular tasks in sequence analysis and structural
bioinformatics in a consistently structured package. Secondly it adresses two groups of users: novice programmers
get an easy access to Biotite due toits simplicity and the comprehensive documentation. On the other hand,
advanced users can profit from its high performance and extensibility. They can implement their algorithms upon
Biotite, sothey can skip writing code for general functionality (like file parsers) and can focus on what their

Keywords: Open source, Python, NumPy, Structural biology, Sequence analysis

Background

Biology becomes more and more data-driven, with an
increasing amount of available genomic sequences and
biomolecular structures. In order to make use of this data,
a multitude of software has been developed in recent
years. Most of these programs have a very specific pur-
pose, like sequence alignment or secondary structure
annotation to protein structures. Usually these programs
are used via the command line; they are taking some input
parameters and files and put their results in output files. It
is the task of the user to convert their data of interest into
the software specific input format and parse the produced
output. This output can be the final result or serve as input
for the next program. Depending on the complexity of the
user’s initial question this process can be too inflexible

*Correspondence: kunzmann@bio.tu-darmstadt.de
Department of Computational Biology and Simulation, TU Darmstadt,
Schnittspahnstral8e 2, 64287 Darmstadt, Germany

and too unhandy to be viable. Furthermore, reading, writ-
ing and converting files can yield a significant overhead,
increasing the computation time.

These problems can be solved by shifting the workflow
from this file-based approach into a scripting language.
Here the data needs to be loaded only once and the sub-
sequent analysis is performed based on the framework’s
internal representation of the data, with the full flexibility
of a programming language. One programming language,
suited for this, is Python: It has a simple and easy-to-
learn syntax, it is heavily supported by the open source
community and the possibility to interface native C code
made it to one of the most popular languages for scientific
programming.

Related Work

There are some computational biology frameworks in
Python that are already available: MDTraj [1] and
MDAnalysis [2] are tools for analysis of trajectories

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2367-z&domain=pdf
http://orcid.org/0000-0002-9756-0914
https://github.com/biotite-dev/biotite
https://github.com/biotite-dev/biotite
https://github.com/biotite-dev/biotite
mailto: kunzmann@bio.tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346

from molecular dynamics simulations. PyCogent [3] and
scikit-bio support the analysis of (genomic) sequence
data. A framework for working with sequence and struc-
ture data combined is Biopython [4], however, this
Python package mostly works as glue between differ-
ent programs. The algorithms directly implemented in the
Biopython package are limited in scope and efficiency.

We set out to develop a comprehensive computational
molecular biology framework for analysis of sequence and
structure data, where most of the data can be handled
internally, without the usage of additional software. Hence
we introduce Biotite, an open source Python package,
that can handle the complete bioinformatics workflow,
from fetching, reading and writing relevant files to the
efficient and intuitive analysis and manipulation of their
data.

Implementation

Biotite is divided into four subpackages: sequence
and structure provide tools for handling sequences or
biomolecular structures, respectively. database is used for
fetching files from biological databases and application
offers interfaces for external software.

Since computational efficiency is one central aim of the
Biotite project, the package makes heavy use of NumPy
[5], in places where vectorization is applicable. In cases,
where this is not possible, the source code is usually writ-
ten in Cython [6], resulting in performance comparable
to native C code.

The sequence subpackage

Sequences are important objects in bioinformatics. Beside
the classical ones, nucleotide and protein sequences, there
are for example sequences describing protein structures
[7-9] or pharmacophores [10].

In order to account for these special types of sequences,
Biotite has a very broad understanding of a sequence:
The symbols in a sequence are not limited to single char-
acters (e.g. 'AJC;G’ and 'T’), but every immutable and
hashable Python object can be a symbol, as long as it
is present in the alphabet of a sequence. An alphabet
represents the set of allowed symbols in the sequence.

In practice, a sequence is represented by a Sequence
instance. When creating a Sequence, each symbol is
encoded into an unsigned integer value (symbol code)
using the Alphabet instance of the Sequence (Fig. 1).
The symbol code ¢ of a symbol s is the index of s in
the symbol list of the Alphabet instance. Eventually,
the symbol codes are stored in a NumPy ndarray of
the Sequence object. The number of bytes per symbol
code in the ndarray is adapted to the number of differ-
ent symbols in the alphabet. Hence, it is possible to use
alphabets with more than 256 different symbols typical for
byte-oriented mappings traditionally employed.

Page20of 8

d
Symbols————=Code
ACATTG g,_Jo10332

' Alphabet 1

ACGT

Thas

——Sequence—

Fig. 1 Biotite's internal representation of sequences. A Sequence
object takes symbols as input parameter. Each symbol is encoded
into its symbol code, using a Sequence class specific alphabet. The
resulting code is then stored as NumPy ndarray in the Sequence
object

b
L

takes stores

This approach has multiple advantages:

e Larger variety of possible symbols (multi-character
strings, numbers, tuples, etc.)

e Most operations (searches, alignments, etc.) rely on
symbol codes and consequently are independent of
the actual type of sequence

e Vectorized operations yield a performance boost
Symbol codes are direct indices for substitution
matrices in alignments (discussed below)

Nucleotide and protein sequences
NucleotideSequence and ProteinSequence are
specialized Sequence subclasses that offer common
operations for nucleotide and protein sequences (Fig. 2a).

Biotite provides read and write capabilities for the
FASTA format, hence FASTA files can be used to load and
save nucleotide and protein sequences.

Alignments

Biotite offers a function for global [11] and local
[12] pairwise sequence alignments with both, linear and
affine gap penalties [13] using dynamic programming.
Biotite does not use the more complex divide and
conquer principle [14], hence both, computation time
and memory space scale linearly with the lengths of the
two aligned sequences. In order to align two Sequence
objects a SubstitutionMatrix instance is required.
These objects consist of two Alphabet instances, that
must fit the alphabets of the aligned sequences, and a
score matrix, implemented as 2-dimensional ndarray.
The similarity score of two symbols with symbol code
m and n, respectively, is the value of the score matrix
at position [m,n]. This simple indexing operation renders
the retrieval of similarity scores highly efficient. In order
to decrease the computation time of alignments even

Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346

A

>>> dna = NucleotideSequence ("ATGCGCTAG")
>>> print (dna)

ATGCGCTAG
>>> print (dna.get_alphabet ())
[rar, rcr, 'Gc’, 'T']

>>> print (dna.code)

[03212130 2]

>>> print (dna.reverse () .complement ())
CTAGCGCAT

>>> print (dna.translate (complete=True))
MR *

B

>>> seqgl = NucleotideSequence ("TACA")
>>> seqg2 = NucleotideSequence ("AGAT")

>>> mat = (SubstitutionMatrix.
e std_nucleotide_matrix())
>>> alignments = align_optimal (seql, seg2, mat)
>>> ali = alignments|[0]
>>> print (ali)
TACA-
—AGAT
>>> print (ali.trace)
[[0 -1]
[1 0]
[2 1]
[3 2]
[-1 311
C
’array’ is an AtomArray
Filter a single chain
array = arraylarray.chain_id == "A"]
Filter CA atoms
array = arraylarray.atom_name == "CA"]
Filter residues from 10 to 20
array = array/| (array.res_id >= 10) &

(array.res_id <= 20)]

Fig. 2 Code examples for Biotite usage. Note that the examples are
shortened: Import statements and the AtomArray instantiation are
missing. a Creation and properties of a Nucleot ideSequence
and its translation into a ProteinSequence. b Global alignment
of two NucleotideSequence instances. ¢ Filtering an
AtomArray with boolean masks

more, the underlying dynamic programming algorithm is
implemented in Cython.

For a custom SubstitutionMatrix both alphabets
can be freely chosen. This implies at first that alignments
are independent of the sequence type and secondly that
even unequal types of sequences can be aligned. One
possible application for alignments of different sequence
types is testing the compatibility of a protein sequence
to a given protein structure [7]. In addition to custom
SubstitutionMatrix instances, all standard NCBI
substitution matrices (BLOSUM, PAM, etc.) and the cor-
rected BLOSUM matrices [15] can be loaded.

Alignments in Biotite return Alignment instances.
These objects store the trace of the aligned sequences,

Page 3 0of 8

i.e. the indices of the aligned symbols in the original
Sequence objects (-1 for gaps) (Fig. 2b).

Sequence features

Sequence features describe functional parts of a sequence,
for example promoters or coding regions. They consist
of a feature key (e.g. regulatory or CDS), one or mul-
tiple locations on the reference sequence and qualifiers
that describe the feature in detail. A popular format to
store sequence features is the text based GenBank format.
Biotite provides a GenBank file parser for conversion
of the feature table into Python objects.

Visualizations

Biotite is able to produce sequence-related visualizations
based on matplotlib [16] figures. Hence the visual-
ization can use the various matplotlib backends: It
can be displayed on screen, saved to files in different
raster and vector graphics formats or embedded in other
applications. The base class for all visualizations is the
Visualizer class. Its subclasses provide visualization
functionality for alignments, sequence logos and sequence
annotations. An example alignment visualization, created
with the AlignmentSimilarityVisualizer class,
is shown in Fig. 3. Further visualization examples are
available in the example gallery of the Biotite docu-
mentation (Additional file 1).

The structure subpackage

The most basic unit of the representation of a biomolecu-
lar structure is the At om class. An Atom instance contains
information about the atom coordinates with a length
three ndarray and information about its annotations
(like chain ID, residue ID, atom name, etc.). An entire
structure, consisting of multiple atoms, is represented by
an AtomArray. Rather than storing Atom objects in
a list, a much more efficient approach was used: Each
annotation category is stored as a length n ndarray
(annotation array) and the coordinates are stored as (1% 3)
ndarray for a structure with # atoms. In some cases the
atoms in a structure have multiple coordinates, represent-
ing different locations, for example in NMR elucidated
structures or in trajectories from molecular dynamics
simulations. AtomArrayStack instances represent such
multi-model structures. In contrast to an AtomArray, an
AtomArrayStack hasa (mxnx3) coordinate ndarray
for a structure with » atoms and m models.

Only in a few cases the user will work with single At om
objects. Usually AtomArray and AtomArrayStack
instances are used, which enable vectorized (and hence
computationally efficient) operations. The atom coor-
dinates and annotation arrays can be simply accessed
by calling the corresponding attribute. Furthermore,
these objects behave similar to NumPy ndarray
objects in respect of indexing: An AtomArray or

Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346

Page4of 8

Avidin MVHATSPLLLLLLLSLALVAPGLSAR- - --- - 26
Streptavidin - - - - - - - - - - - - - - - - - - DIPSKESKAQAAVA 13
Avidin KCSL KW DIN D NMT | GIAVINS KIGE F T 58
Streptavidin | E A G | TWYINQ TFIVTIA-INPDGSL E 4
Avidin T -TIATISNE/ I KESPLHGTFQNIT | NKRIFQPTF 8
Streptavidin ' S GNAESRYVLTGRYDSTPATDGSGIT - -AL 74
Avidin F N FS----ESTIFTVFT CF I DRNGKEV - 116
Streptavidin A NNYRNAHSATTWS YV---GGAEAR 103
Avidin L KITM RISSVNDI GDD AT R I'N | RLR 148
Streptavidin - |1 NIT Q TSGTT-AANA SIT L HDT KVK 134
Avidin TQKE - 152
Streptavidin @ P SAAS I DAAKKAGVNNGNPLDAVQQ 159
Fig. 3 Example sequence alignment visualization. The alignment of an avidin sequence (Accession: CAC34569) with a streptavidin sequence
(Accession: ACL82594) is visualized using the AlignmentSimilarityVisualizer

AtomArrayStack can be indexed like an one or two-
dimensional ndarray, respectively, with integers, slices,
index arrays or boolean masks. Thus, annotation arrays
in conjunction with boolean masks provide a convenient
way of filtering a structure, in contrast to the text based
selections used in MDAnalysis and MDTraj (Fig. 2c¢).

The structure subpackage can be used to measure dis-
tances, angles and dihedral angles, between single atoms,
atom arrays, atom array stacks or a combination of them.
The broadcasting rules of NumPy apply here.

Implemented algorithms

Beside geometric measurements, Biotite offers more
complex algorithms for structure analysis: atom-wise
accessible surface area calculation (based on the Shrake-
Rupley algorithm [17]), structure superimposition (based
on the Kabsch algorithm [18]) and secondary structure
assignment (based on the P-SEA algorithm [19]) are
available. Furthermore, the root-mean-square deviation
(RMSD) and fluctuation (RMSF) can be calculated. Cur-
rently, the analysis tools focus on protein structures, but
specialized functions for structure analysis of nucleic acids
are planned for future versions.

Reading and writing structure files

AtomArray and AtomArrayStack instances can be
loaded from and saved to multiple different file formats.
The most basic one is the PDB format, from which only
the ATOM and HETATM records are parsed. An alter-
native is the modern PDBx/mmCIF format that provides
additional information on a structure. Using Biotite,

each category in a PDBx/mmCIF file can be converted
into a Python dictionary object.

Biotite is also capable of parsing files in the recently
published binary MMTF format [20]. This format fea-
tures a small file size and short parsing times. Instead
of relying on the MMTF parser provided by the RCSB
(package mmtf-python), Biotite implements an
efficient MMTF decoder and encoder written in Cython.
Additionally, the conversion from MMTF’s hierarchi-
cal data model (chain, residue, atom) into a Biotite
AtomArray or AtomArrayStack is also C-accelerated.

If MDTraj is installed, Biotite is also able to load
GROMACS [21] trajectory files (¢rr, xtc, tng).

The database subpackage

This subpackage is used to download files from the RCSB
PDB and NCBI Entrez web server via HTTP requests. Fur-
thermore the RCSB PDB SEARCH service is supported.

The application subpackage

In this subpackage Biotite offers interfaces to exter-
nal software, including NCBI BLAST [22], MUSCLE
[23], MAFFT [24], Clustal-Omega [25] and DSSP [26].
These interfaces wrap the execution of the respective
program on the local machine, or use the HTTP-based
API (application programming interface) in case of NCBI
BLAST. The execution is seamless: Biot ite objects, like
Sequence or AtomArray are taken as input, and the
output (e.g. an alignment) is returned. Writing/reading
input/output files is handled internally.

Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346

Page 5 of 8

CREATED

crart () ,un)
—RUNN'NG »is_finished ()
cancel ().
CANCELLED fclean_up()
cancel ()7
FINISHED

ﬂ .. clean_up ()
jOlD () }evaluate ()
JOIN

-/

Application
specific

Fig. 4 Life cycle of an application. After creation, the Application
object is in CREATED state. When the user calls start (), the
Application enters the RUNNING state. When the execution
finishes, the state changes to FINISHED. The results of the execution
are made accessible by calling join (), changing the state to
JOINED. If the Applicationis still in the RUNNING state then, it is
constantly checked whether the execution is finished. The execution
can be cancelled using the cancel () method, then the
Application ends up inthe CANCELLED state. This life cycle is
equal in all Application subclasses, but each subclass has its own
implementation of the application specific methods, that are called
on state transition

Application interfaces inherit from the Application
superclass. Each Application has a life cycle, based on
application states (Fig. 4). After creation, the execution
of the Application is started using the start ()
method. After calling the join () method the results are
accessible. If the execution has not finished by then, the
Python code will wait until the execution has completed.
This approach mimics the behavior of an additional
thread: Between the start () and the join () statement
other operations can be performed, while the application
executes in parallel.

Software engineering considerations

The Biotite project aims to follow guidelines of good
programming practice. The package’s API is fully docu-
mented in order to maximize usability. Furthermore, the
documentation provides a tutorial and an example gallery.
The source code is unit tested with 72% code cover-
age (calculated via pytest-cov package). However, the
actual coverage is greater since Cython files are not con-
sidered in the calculation. To ensure that all supported
platforms and Python versions are properly supplied

200 -

100 4 Il Biotite —

50_E Il Biopython . -
T] e MDTr I. .
— 20 A MDAnalysis .. .
o
£ 104 FreeSASA
T
g 2- =
S I A
FEE N (N

/1NN HS BN HR

L HAHE- EN BN BN

RMSD Dihedral SASA Align

Fig. 5 Performance comparison for analysis algorithms. The
computation time of performing popular tasks on biological data,
starting from the package’s respective internal sequence or structure
representation. Note the logarithmic scale. The performance between
Biotite, Biopython, MDAnalysis, MDTraj and FreeSASA
is shown. A missing bar indicates that the operation is not supported
in the respective package. The average of 100 executions was taken.
RMSD: Superimposition of a structure onto itself and subsequent
RMSD calculation (PDB: 1AKI). Dihedral: Calculation of the backbone
dihedral angles (¢, ¥, @) of a protein (PDB: 1AKI). SASA: Calculation of
the SASA of a protein (PDB: TAKI). Align: Optimal global alignment of
two 1,000 residues long polyalanine sequences

with upcoming releases, the project uses AppVeyor and
Travis CI as continuous integration platforms.

Results and discussion

Performance of implemented analysis algorithms

In order to evaluate the capability of Biotite for large
scale analyses, the performance of popular tasks was com-
pared to Biopython, MDAnalysis and MDTraj (Fig. 5)
(benchmark script in Additional file 2). For structure
related tasks the crystal structure of lysozyme was chosen
(PDB: 1AKI [27], 1001 atoms), for sequence alignment two
1,000 residues long polyalanine sequences were used. All
benchmarks were started from the internal representation
of a structure (AtomArray in Biotite) or sequence
(Sequence in Biotite), respectively.

One usual task in structural bioinformatics is the super-
imposition of a structure onto another one (Kabsch algo-
rithm [18]) and the subsequent calculation of the RMSD.
In this test case the structure of lysozyme was superim-
posed onto itself. Biotite, MDTraj and MDAnalysis
showed comparable computation time. Compared to that,
Biopython was an order of magnitude slower due to
to the underlying data representation for structures in
Biopython, based on pure Python objects. In conse-
quence the data needs to be time-costly converted into a
C-compatible data structure, prior to the actual structure

Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346

superimposition. This circumstance generally hampers
the efficiency when analyzing structures in Biopython:
The analysis either requires an expensive conversion or
is implemented in pure Python. In the other men-
tioned packages, including Biotite, the function can
be directly executed on the internal ndarray objects.
Although this case demonstrates the RMSD computation
for a protein structure, Biotite can perform this task
also for structures of nucleic acids or any other molecule
since the superimposition and RMSD calculation does
only depend on atom coordinates.

Another test case was the dihedral angle measurement
(¢, ¥, w) of the peptide backbone atoms in the lysozyme
structure. Biot ite requires approximately half the com-
putation time compared to MDTraj.

The calculation of the solvent accessible surface area
(SASA) is relatively time consuming. Both, Biotite
and MDTraj, use an implementation of the Shrake-
Rupley algorithm [17]. For this benchmark the SASA of
the lysozyme structure was calculated, with 1000 sphere
points per atom. The measurement shows that Biotite
is approximately two times faster than MDTraj. Another
benefit of the implementation in Biotite is the ability
to use atom radii suited for structures with missing hydro-
gen atoms [28] like most X-ray elucidated structures.
Additionally, the result is compared to the Lee-Richards
method [29] implemented in the C-accelerated package
FreeSASA. This algorithm uses sphere slices instead of
sphere points. The amount of sphere slices was chosen
so that the accuracy is equal to the Shrake-Rupley test
cases (Additional file 3 and 4). The computation speed is
comparable to Biotite.

In regard to sequence data, a frequent operation is the
optimal global alignment of two sequences using dynamic
programming [11]. Both, Biotite and Biopython, use
a C-acclerated function to solve this problem. However,
Biotite is an order of magnitude faster in perform-
ing this task. The main reason for this is the traceback
step, that is C-accelerated in Biotite in contrast to
Biopython. Moreover, Biotite uses a substitution
matrix to score the alignment, while Biopython only
distinguishes between match and mismatch. Although
Biopython also supports substitution matrices in align-
ments, these are based on Python dictionaries. This
comes with two disadvantages regarding the computa-
tional performance: At first the slow Python API is
invoked for every cell in the alignment matrix. Secondly,
as Biopython works directly with symbols, the dictio-
nary access with a tuple of symbols is relatively time-
consuming compared to the fast indexing operation with
symbol codes in Biotite.

Currently, Biotite can only produce pairwise align-
ments using the Needleman-Wunsch [11] and Smith-
Waterman [12] algorithm, respectively. Although these

Page 6 of 8

techniques produce optimal alignments, the computa-
tion can be unfeasible for large sequences like entire
genomes, as computation time and memory consump-
tion scales linearly with the length of both sequences.
Hence, more sophisticated heuristic pairwise alignment
methods will be added to the package in future releases.
Currently, Biotite can perform fast heuristic pairwise
alignments using its NCBI BLAST [22] interface in the
application subpackage.

Performance of structure file input and output
Additionally, the computation time for reading and
writing structure files in different formats was com-
pared between Biotite, Biopython, MDAnalysis
and MDTraj. The measured time is the time of loading
a structure file (PDB: 2AVI [30], 1952 atoms) into the
internal representation of the package or saving this rep-
resentation in a file, respectively. The results are shown in
Fig. 6 (benchmark script in Additional file 5).

PDB files are handled in comparable time by Biotite
and Biopython: While Biotite is faster in reading
PDB files, Biopython has an advantage in writing PDB
files. MDAnalysis is very slow in respect of output,
MDTraj is slow in PDB file input.

The modern PDBx/mmCIF format is only supported by
Biopython and Biotite, while Biopython only sup-
ports file parsing, whose performance is comparable to
Biotite.

Il Biotite

Il Biopython

B MDTraj
MDAnalysis

computation time (ms

/
;
/

3 .

PDB mmCIF MMTF

Fig. 6 Performance comparison for reading and writing structure files.
The computation time of loading a file into the package’s respective
internal structure representation (filled bar) and vice versa (hatched
bar) is shown. The performance compared between Biotite,
Biopython, MDAnalysis and MDTraj is shown. A missing bar
indicates that the operation is not supported in the respective
package. The structure of an avidin-biotin complex (PDB: 2AVI) was
used for computation time measurement. The average of 100
executions was taken

Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346

The binary MMTF format shows an exceptional perfor-
mance in combination with Biotite, with aloading time
of 3.7 ms and a saving time of 2.6 ms. The parsing speed
is multitudes higher than in Biopython and MDTraj.
There are probably two reasons for this. Biotite pro-
vides its own MMTF decoder/encoder, which has a higher
performance than the official one by the RCSB, since
the complete decoding/encoding process is either vector-
ized or runs in native C code. Furthermore, the conver-
sion of the decoded arrays from the MMTTF file into an
AtomArray (or AtomArrayStack) and vice versa is
accelerated via Cython code. Therefore, MMTF is the
preferable format when the user wants to analyze a large
amount of structure files with Biotite. Notably, to our
knowledge Biotite is the only Python framework that
is able to save a structure as MMTTF file.

Benchmark details

The presented benchmarks were run on an Intel® Core™

i7-4702MQ CPU with 8 x2.20 GHz. The operating system
was Xubuntu 16.04 and the CPython version 3.6.3. The
used packages had the following versions:

biotite 0.7.0
Cython 0.26.1
numpy 1.13.3
matplotlib 2.1.2
msgpack 0.5.6
requests 2.18.4
biopython 1.70
MDAnalysis 0.17.0
mdtraj 1.9.1
freesasa 2.0.3

The average of 100 executions was taken for each bench-
mark.

Conclusion

Due to the comprehensive content of Biotite, a large
part of the computational molecular biology workflow
can be performed with this package: Data of interest
can be downloaded from biological databases and sub-
sequently loaded into the Python environment. After
analysis or manipulation of the sequence or structure data,
it can be saved in various file formats or displayed using
the included visualization capabilities. In cases where the
required functionality is not directly integrated in the
package, Biotite provides means to interface external
software in a seamless manner.

To our knowledge, the only computational molecular
biology framework in Python that is able to fulfill this
function to a similar extent, is Biopython. However,
due to the high age of Biopython, the package does
not meet established standards of scientific programming

Page 7 of 8

in Python, especially the usage of NumPy. Therefore,
Biotite can be seen as an efficient alternative.

We think that Biotite is suitable for use by novice
programmers, since the extensive tutorial and the code
examples give a good introduction into the package. Fur-
thermore, the NumPy-like syntax provides an intuitive
way to work with biological data.

Additionally, advanced users benefit from the good
performance, that follows from the vectorization via
NumPy and the C-acceleration. The fact, that the internal
ndarray instances can be directly accessed by the user,
makes the Biotite package extensible. Custom algo-
rithms can be easily implemented based on the internal
representations of sequence and structure data. If a devel-
oper decides to build software upon Biotite, he/she is
able to utilize the already implemented file parsers and
analysis tools. Hence the development can focus on the
unique features of the software.

Biotite is continuously developed. Analysis tools
for nucleic acid structures, heuristic sequence alignment
methods and interfaces for more biological databases are
planned to be added in future versions. Feature requests,
bug reports, questions and development in general are
handled at https://github.com/biotite-dev/biotite.

Availability and requirements

Project name: Biotite

Project home page: https://www.biotite-python.org/
Operating system(s): Windows, OS X, Linux
Programming language: Python

Other requirements: At least Python 3.4, the packages
numpy, requests and msgpack must be installed

License: BSD 3-Clause

Any restrictions to use by non-academics: None

Additional files

Additional file 1: Biotite documentation. This archive contains the HTML
documentation of Biotite 0.7.0. The default entry point is index . html.
(72 3453 KB)

Additional file 2: Analysis performance benchmark. This Python script
contains the benchmark for evaluation of the performance of
implemented analysis algorithms. (PY 6 KB)

Additional file 3: Comparison of SASA accuracy. This figure compares the
accuracy of the SASA calculation depending on the computation time for
the Shrake-Rupley algorithm implementation in Biotite and the
Lee-Richards algorithm implementation in FreeSASA. (PDF 200 KB)

Additional file 4: Comparison of SASA accuracy - script. This is the Python
script corresponding to Additional file 3. (PY 4 KB)

Additional file 5: Read/write performance benchmark. This Python script
contains the benchmark for evaluation of the structure file read/write
performance. (PY 8 KB)

Additional file 6: Biotite repository snapshot. This archive contains a
snapshot of the Biotite repository at version 0.7.0. (7Z 6668 KB)

https://github.com/biotite-dev/biotite
https://github.com/biotite-dev/biotite
https://www.biotite-python.org/
https://doi.org/10.1186/s12859-018-2367-z
https://doi.org/10.1186/s12859-018-2367-z
https://doi.org/10.1186/s12859-018-2367-z
https://doi.org/10.1186/s12859-018-2367-z
https://doi.org/10.1186/s12859-018-2367-z
https://doi.org/10.1186/s12859-018-2367-z

Kunzmann and Hamacher BMC Bioinformatics (2018) 19:346

Abbreviations

API: Application programming interface; CDS: Coding DNA sequence; NMR:
Nuclear magnetic resonance; RMSD: Root-mean-square deviation; RMSF:
Root-mean-square fluctuation; SASA: Solvent accessible surface area

Acknowledgements
Daniel Bauer accompanied the Biotite development.

Availability of data and materials

The Biotite source code is hosted at https://github.com/biotite-dev/biotite
and its official documentation at https://www.biotite-python.org/. The version
0.7.0, that was used in this study, is available as archive [31] (Additional file 6).

Authors’ contributions

PK developed the Biotite package and wrote its documentation. KH
guided the development process. PK and KH wrote the manuscript. Both
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 6 April 2018 Accepted: 10 September 2018
Published online: 01 October 2018

References

1. McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM,
Herndndez CX, Schwantes CR, Wang LP, Lane TJ, Pande VS. MDTraj: A
Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
Biophys J. 2015;109(8):1528-32. https://doi.org/10.1016/j.bp}.2015.08.015.

2. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A
toolkit for the analysis of molecular dynamics simulations. J Comput
Chem. 2011;32(10):2319-27. https://doi.org/10.1002/jcc.21787.

3. Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC,
Eaton M, Hamady M, Lindsay H, Liu Z, Lozupone C, McDonald D,
Robeson M, Sammut R, Smit S, Wakefield MJ, Widmann J, Wikman S,
Wilson S, Ying H, Huttley GA. PyCogent: A toolkit for making sense from
sequence. Genome Biol. 2007;8 https://doi.org/10.1186/gb-2007-8-8-r171.

4. CockPJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg |,
Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ. Biopython: freely
available Python tools for computational molecular biology and
bioinformatics. Bioinformatics. 2009;25(11):1422-3. https://doi.org/10.
1093/bioinformatics/btp163.

5. Van DerWaltS, Colbert SC, Varoquaux G. The NumPy array: A structure
for efficient numerical computation. Comput Sci Eng. 2011;13(2):22-30.
https://doi.org/10.1109/MCSE.2011.37.

6. BehnelS, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython:
The best of both worlds. Comput Sci Eng. 2011;13(2):31-9. https://doi.
org/10.1109/MCSE.2010.118.

7. BowieJ, Luthy R, Eisenberg D. A method to identify protein sequences
that fold into a known three-dimensional structure. Science.
1991,253(5016):164-70. https://doi.org/10.1126/science.1853201.

8. Joseph AP, Agarwal G, Mahajan S, Gelly JC, Swapna LS, Offmann B,
Cadet F, Bornot A, Tyagi M, Valadié H, Schneider B, Etchebest C,
Srinivasan N, de Brevern AG. A short survey on protein blocks. Biophys
Rev. 2010;2(3):137-45. https://doi.org/10.1007/512551-010-0036-1.

9. Kolodny R, Koehl P, Guibas L, Levitt M. Small libraries of protein
fragments model native protein structures accurately. J Mol Biol.
2002;323(2):297-307. https://doi.org/10.1016/S0022-2836(02)00942-7.

10. Héhnke V, Hofmann B, Grgat T, Proschak E, Steinhilber D, Schneider G.
PhAST: Pharmacophore alignment search tool. J Comput Chem.
2009;30(5):761-71. https://doi.org/10.1002/jcc.21095.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Page 8 of 8

Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48(3):443-53. https://doi.org/10.1016/0022-2836(70)90057-4.
Smith TF, Waterman MS. Identification of common molecular
subsequences. J Mol Biol. 1981;147(1):195-7. https://doi.org/10.1016/
0022-2836(81)90087-5.

Gotoh O. An improved algorithm for matching biological sequences.

J Mol Biol. 1982;162(3):705-8. https://doi.org/10.1016/0022-
2836(82)90398-9.

Hirschberg DS. A linear space algorithm for computing maximal common
subsequences. Commun ACM. 1975;18(6):341-3. https://doi.org/10.1145/
360825.360861.

Hess M, Keul F, Goesele M, Hamacher K. Addressing inaccuracies in
BLOSUM computation improves homology search performance. BMC
Bioinforma. 2016;17(1) https://doi.org/10.1186/512859-016-1060-3.
Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng.
2007;9(3) https://doi.org/10.1109/MCSE.2007.55. 0402594v3.

Shrake A, Rupley JA. Environment and exposure to solvent of protein
atoms. Lysozyme and insulin. J Mol Biol. 1973;79(2):351-64. https://doi.
0rg/10.1016/0022-2836(73)90011-9.

Kabsch W. A solution for the best rotation to relate two sets of vectors.
Acta Crystallogr Sect A. 1976;32(5):922-3. https://doi.org/10.1107/
S0567739476001873.

Labesse G, Colloc’h N, Pothier J, Mornon JP. P-SEA: a new efficient
assignment of secondary structure from C alpha trace of proteins.
Comput Appl Biosci. 1997;13(3):291-5. https://doi.org/10.1093/
bioinformatics/13.3.291.

Bradley AR, Rose AS, Pavelka A, Valasatava Y, Duarte JM, Prli¢ A, Rose
PW. MMTF—An efficient file format for the transmission, visualization,
and analysis of macromolecular structures. PLoS Comput Biol. 2017;13(6)
https://doi.org/10.1371/journal.pcbi.1005575.

Abraham MJ, Murtola T, Schulz R, Pall' S, Smith JC, Hess B, Lindah E.
Gromacs: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25.
https://doi.org/10.1016/j.50ftx.2015.06.001.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403-10. https://doi.org/10.
1016/50022-2836(05)80360-2.

Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 2004,32(5):1792-7. https://doi.org/
10.1093/nar/gkh340.

Katoh K. MAFFT: a novel method for rapid multiple sequence alignment
based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-66.
https://doi.org/10.1093/nar/gkf436.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, LopezR,
McWilliam H, Remmert M, Séding J, Thompson JD, Higgins DG. Fast,
scalable generation of high-quality protein multiple sequence
alignments using Clustal Omega. Mol Syst Biol. 2011;7 https://doi.org/10.
1038/msb.2011.75.

Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers.
1983;22(12):2577-637. https://doi.org/10.1002/bip.360221211.

Artymiuk PJ, Blake CCF, Rice DW, Wilson KS. The structures of the
monoclinic and orthorhombic forms of hen egg-white lysozyme at 6
Angstroms resolution. Acta Crystallogr Sect B. 1982,38:778-83. https://
doi.org/10.1107/50567740882004075.

Tsai J, Taylor R, Chothia C, Gerstein M. The packing density in proteins:
Standard radii and volumes. J Mol Biol. 1999,290(1):253-66. https://doi.
0rg/10.1006/jmbi.1999.2829.

Lee B, Richards FM. The interpretation of protein structures: Estimation of
static accessibility. J Mol Biol. 1971;55(3).. https://doi.org/10.1016/0022-
2836(71)90324-X.

Livnah O, Bayer EA, Wilchek M, Sussman JL. Three-dimensional
structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci.
1993;90(11):5076-80. https://doi.org/10.1073/pnas.90.11.5076.
Kunzmann P. Biotite 0.7.0 repository. 2018. Zenodo. https://doi.org/10.
5281/zenodo.1310668.

https://github.com/biotite-dev/biotite
https://github.com/biotite-dev/biotite
https://www.biotite-python.org/
http://www.biotite-python.org/
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1186/gb-2007-8-8-r171
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1126/science.1853201
https://doi.org/10.1007/s12551-010-0036-1
https://doi.org/10.1016/S0022-2836(02)00942-7
https://doi.org/10.1002/jcc.21095
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1145/360825.360861
https://doi.org/10.1145/360825.360861
https://doi.org/10.1186/s12859-016-1060-3
https://doi.org/10.1109/MCSE.2007.55
http://arxiv.org/abs/0402594v3
https://doi.org/10.1016/0022-2836(73)90011-9
https://doi.org/10.1016/0022-2836(73)90011-9
https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1093/bioinformatics/13.3.291
https://doi.org/10.1093/bioinformatics/13.3.291
https://doi.org/10.1371/journal.pcbi.1005575
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1107/S0567740882004075
https://doi.org/10.1107/S0567740882004075
https://doi.org/10.1006/jmbi.1999.2829
https://doi.org/10.1006/jmbi.1999.2829
https://doi.org/10.1016/0022-2836(71)90324-X
https://doi.org/10.1016/0022-2836(71)90324-X
https://doi.org/10.1073/pnas.90.11.5076
https://doi.org/10.5281/zenodo.1310668
https://doi.org/10.5281/zenodo.1310668

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related Work

	Implementation
	The sequence subpackage
	Nucleotide and protein sequences
	Alignments
	Sequence features
	Visualizations

	The structure subpackage
	Implemented algorithms
	Reading and writing structure files

	The database subpackage
	The application subpackage
	Software engineering considerations

	Results and discussion
	Performance of implemented analysis algorithms
	Performance of structure file input and output
	Benchmark details

	Conclusion
	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6

	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

