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Abstract

Background: Synthetic biology and related techniques enable genome scale high-throughput investigation of the
effect on organism fitness of different gene knock-downs/outs and of other modifications of genomic sequence.

Results: We develop statistical and computational pipelines and frameworks for analyzing high throughput fitness
data over a genome scale set of sequence variants. Analyzing data from a high-throughput knock-down/knock-out
bacterial study, we investigate differences and determinants of the effect on fitness in different conditions. Comparing
fitness vectors of genes, across tens of conditions, we observe that fitness consequences strongly depend on genomic
location and more weakly depend on gene sequence similarity and on functional relationships. In analyzing promoter
sequences, we identified motifs associated with conditions studied in bacterial media such as Casaminos, D-glucose,
Sucrose, and other sugars and amino-acid sources.

We also use fitness data to infer genes associated with orphan metabolic reactions in the iJO1366 E. coli metabolic model.
To do this, we developed a new computational method that integrates gene fitness and gene expression profiles within
a given reaction network neighborhood to associate this reaction with a set of genes that potentially encode
the catalyzing proteins. We then apply this approach to predict candidate genes for 107 orphan reactions in
iJO1366. Furthermore - we validate our methodology with known reactions using a leave-one-out approach.
Specifically, using top-20 candidates selected based on combined fitness and expression datasets, we correctly
reconstruct 39.7% of the reactions, as compared to 33% based on fitness and to 26% based on expression
separately, and to 4.02% as a random baseline. Our model improvement results include a novel association

of a gene to an orphan cytosine nucleosidation reaction.

Conclusion: Our pipeline for metabolic modeling shows a clear benefit of using fitness data for predicting
genes of orphan reactions. Along with the analysis pipelines we developed, it can be used to analyze similar
high-throughput data.
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Background

Progress in sequencing techniques has greatly improved
our understanding of bacterial genomes [1, 2]. In paral-
lel, technologies that support modifying the genomic
sequences of living organisms, including bacteria [3-5],
enable targeting of known loci in the genome. The com-
bination of these developments facilitates studying of
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bacterial gene function by physically modifying related
sequences in living genomes and measuring the pheno-
typic effects triggered by such modifications. An import-
ant example of this emerging technique is organism
fitness profiles [5, 6], where organism growth rates in
different conditions and under different genomic modifi-
cations are measured. Progress in the quality and scope
of synthetic DNA libraries and in applying them to
studying regulation in living cells [7-10], as well as more
affordable sequencing methods, support higher through-
put approaches to phenotypic analysis of synthetically
modified genomes.
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In this study, we develop statistical and computational
pipelines and analysis techniques that are useful in the
context of analyzing high-throughput fitness data over a
genome scale set of sequence variants. We demonstrate
the use of the approach and the pipelines developed by
analyzing TnSeq E. coli data from Wetmore et al. [5]. In
TnSeq, long interfering sequences are inserted in recov-
erable positions of the genome [5, 6]. We analyze the
differences, in terms of fitness effects, between insertions
in different functional parts of the genome: promoter re-
gions, coding sequences (CDS) and un-translated regions
(UTR). Analyzing fitness data and promoter sequences,
we find promoter enriched motifs for 88% of the condi-
tions. For example, this approach yields two enriched
motifs that are associated with amino-acid biosynthesis.
We also analyze the correlation of the insertions resulted
effects (co-fitness) that modify related regions, gene
paralogs, genes which are in close proximity in the
genome, similar protein domains, and genes on the same
operon. On the phenotype level, we compare the
observed co-fitness to co-expression, inferred from
expression profiling studies [11, 12], and interestingly
find only very minimal agreement.

The understanding of bacterial genomes enables the
use of metabolic models for designing bacterial produc-
tion systems and other synthetic biology devices.
Genome-scale metabolic network models leverage the
existing knowledge of organism biochemistry and genet-
ics to construct a framework for simulating processes.
The core of the metabolic model is the information
about the stoichiometry of the metabolic reactions and
the associations between protein coding genes, and the
reactions that they catalyze [13]. iJO1366 [14], which is
the latest model of Escherichia coli K-12 MGI1655,
contains information about 1366 genes, 1136 unique
metabolites and 2251 metabolic reactions, out of which
128 reactions are orphan (70 metabolic and 58
transport), meaning that they are not associated with
any gene.

An important part of the methodology developed in
this paper is the use of high throughput fitness data
to infer genes that potentially encode for proteins
catalyzing orphan reactions. Current approaches rely
on the idea that genes and reactions in the local
neighborhood have similar behavioral profiles. The
exact definition of these profiles is deduced from the
nature of the available biological data, such as
sequence similarity (phylogenetic profile), sequence
genomic context, gene-metabolome associations, gene
expression data and others. For the best of our know-
ledge, none of the recent metabolic modeling studies
proposes a method to improve the assignment of
genes to reactions using fitness assays alone or incor-
porated with additional data sources [15-21].
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The proposed mathematical framework is developed and
tested over the iJO1366 E. coli model. We report top-20
predicted candidate genes for each orphan reaction and fur-
ther substantiate some of the findings based on existing lit-
erature. For example — we identify a gene that codes to a
cytosine nucleosidation reaction (CMPN), that is an orphan
reaction in the current model.

In summary, the contribution of this paper consists of:

e A methodology and a pipeline for analyzing high-
throughput bacterial fitness data, including specific
statistical approaches.

e Novel analysis of non-coding insertions in TnSeq
data.

e A new framework for improving metabolic models
based on high-throughput fitness data only, as well
as in combination with expression data.

o Freely available software implementation of some of
the methods is provided along with this manuscript
(see Additional file 3).

e Biological findings, including motifs associated with
the tested conditions, characterization of the
relationship between co-expression and co-fitness,
and genes that potentially encode proteins that
catalyze E. coli orphan reactions.

Results

An analysis pipeline for high throughput fitness data,
including metabolic model improvement

In the current study we present statistical analysis methods
for fitness data to explore bacterial gene regulation and to
improve metabolic modeling. The complete pipeline we de-
veloped is outlined in Fig. la (with further details in
Methods). In brief, we first incorporate fitness data such as,
for example, data from Wetmore et al. [5]' and assign fit-
ness scores for any genomic element under investigation
(including non-coding regions that were not analyzed in
the original publication). We construct fitness vectors,
across conditions, for genes and their promoters. At the
end of this stage we have a matrix of genes and/or genomic
locations, across conditions, with fitness scores as entries.
We use the fitness vectors to compare the effects of inser-
tions in different genomic regions, search for common mo-
tifs in promoter regions and compare fitness profiles to
gene transcription profiles. Finally, we use the same fitness
vectors to improve metabolic models and to predict genes
that regulate orphan reactions (Fig. 1b), as explained in
detail in the Methods.

Genome-wide analysis of fitness data - Genomic and
functional context

Assessment of fitness effects for different gene parts

We characterized the effect of insertions in different
gene parts by comparing the distributions of fitness
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measurements in each of the investigated conditions of
Wetmore et al. [5] (Methods). Namely, we investigated
whether insertions in coding regions, UTRs and
promoters have different overall effect magnitudes. To
this aim, we used the raw strain fitness scores as re-
ported within. We did so using raw supplementary data
without the further normalization steps reported in Wet-
more et al., and considered distributions obtained for
promoters, UTRs and coding regions. A heatmap repre-
sentation of the results (Additional file 1: Figure S1A)
shows that different regions have distributions of fitness

scores centered around different averages. Interestingly,
it seems that UTRs have more negative scores than CDS
in most of the conditions (Additional file 1: Figure S1A).

Indeed, when testing 3'UTRs, we found that in 30 out of
48 conditions (62.5%), the insertions in 3'UTRs have stron-
ger, average negative fitness effect compared to the inser-
tions in other gene parts (Additional file 1: Figure S1A).
Under a uniform null model this observation has a p-value
of 441 x 10”8 (tail of Binom(48,0.25) at 30, as we consid-
ered here 4 types of regions: promoter, CDS and 5UTR
and 3'UTR). However, when using percentiles, 10%, 25%
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and 50% (median) of the fitness values, the p-values were
not significant (binomial test p-value > 0.25).

When examining the low 10% of the fitness values
(Additional file 1: Figure S1B), representing insertions
with the greatest effect on fitness, we see stronger effect
of promoter regions in 23 out of 48 conditions (47.9%).
Under a uniform null model this observation has a
p-value of 4.9 x 10™* (tail of Binom(48,0.25) at 23).

In stratifying promoters according to the regulation of
sigma factors, we found that in 36 out of 48 conditions
(75%) insertions in sigma28 dependent promoters have
stronger negative average fitness effect than insertions in
other promoters. Sigma28 is responsible for the initi-
ation of transcription of genes related to motility and
flagella synthesis [22]. Under a uniform null model this
has a p-value of 4.37 x 10! (tail of Binom(48,0.143) at
36, as we considered 7 types of promoters). When using
percentiles, 10%, 25% and 50% (median) of the fitness
values, we found a similar trend with 16 out of 48, 23
out of 48, and 28 out of 48, respectively (binomial test
p-value =0.0007, 2.89 x 10" %, and 1.88 x 10”2, respect-
ively under the Binom(48,0.143) null).

Promoter motif analysis

High-throughput fitness data can be useful in the context
of discovering or understanding regulatory sequence motifs.
To further asses motifs related to fitness in the measured
conditions, promoter regions of E. coli (genome assembly:
NC_000913.2) were intersected with insertions from Wet-
more et al. [5]. To infer fitness effect of insertions in
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promoters these were further analyzed as described in
Methods and in Additional file 1: Figure S2.

In 994 of out of 1128 (88.1%) pairs of conditions we
found at least one enriched PSSM with corrected mmHG
p-value< 0.01 using DRIMust [23] (Methods). Motifs with
strong statistical significance hypothetically represent
binding sites that are used by factors involved in growth
under the analyzed conditions as exemplified below.

Figure 2 depicts two examples. Figure 2a depicts a
motif enriched in D-Glucose C vs. Casaminos C. Each
point is a promoter; in red — all promoters with suffi-
ciently high PSSM values with respect to the given motif.
The corrected mmHG p-values are 0.0042 and 0.0094,
for Fig. 2a and Additional file 1: Figure S3A, respectively
(Methods). We can see that a relatively high number of
red points, representing the presence of the muotifs, are
aligned to the x = 0 line where there is no effect in Casa-
minos, but for many cases a strong effect in D-Glucose
C. Analyzing Sucrose C vs. Casaminos C (Fig. 2b), we
observed a corrected mmHG p-value =9.61 x 10”° and a
motif which is similar to met] (methionine repressor)
binding site (according to both Tomtom [24] and Stamp
[25], Additional file 1: Figure S3B), a repressor of Met
biosynthesis [26]. This result points to the importance of
the regulation of Met biosynthesis under Sucrose, and to
the fact that it is likely regulated by met] binding to its
transcription factor binding site (TFBS). Interestingly,
the two lowest (with respect to y-axis) red points in
Fig. 2b are from uncharacterized promoters that res-
ide in ilvC (b3774) and serA (b2913) coding se-
quence. Both ilvC and serA have correlated fitness

D-Glucose C

Casaminos C

Fig. 2 a First enriched motif in D-Glucose C. vs. Casaminos C. (the second enriched motif is found in Figure S3A).b Enriched motif detected for
Sucrose C vs. Casaminos C. A comparison of this motif to the known metJ motif is found in Additional file 1: Figure S3B. Red points are promoters with
high PSSM values with respect to the given motif. Corrected mmHG p-value <0.01 for both panels. Shaded black points are all the promoters analyzed
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values (Spearman R =0.66, p-value=3.38x 10" ") and
regulate amino acid synthesis.

Analysis of co-fitness

We calculated the gene-gene fitness Spearman correl-
ation, hereinafter co-fitness, to look for similarities in
fitness profiles, across all conditions, in different func-
tional classes (Methods). We compared the distributions
of gene pair co-fitness values in each of standard class to
the total co-fitness distribution (Fig. 3a). We found that
operon co-fitness is significantly high relative to the total
co-fitness (one-tail Wilcoxon p-value =2.7 x 10™ 2%,
Gene paralogs and genes with similar functional do-
mains (at least one common domain, as in Pfam DB)
also have significantly higher co-fitness values (one-tail
Wilcoxon p-values of 10~ '* and 1.4 x 10~ %, respectively).

Interestingly, grouping genes according to their gen-
ome position results in high co-fitness even after remov-
ing gene pairs located within the same operon. This
signal becomes weaker as the distance increases, how-
ever stays significant even in long distances (Fig. 3b,
one-tail Wilcoxon p-value <102 for 5 kb, 10 kb and
20 kb bins; for 50 kb p-value< 10™'* and for 100 kb
p-value =0.004). This finding may suggest that even
distant regulatory regions influence the gene functional-
ity. This trend could also reflect the functional clustering
of nearby genes that extends beyond operons [27]. Interest-
ingly, gene pairs that reside close in the genome show
higher co-fitness than genes with similar sequence or genes
that share similar functional domains (Fig. 3c and Fig. 4).

In order to avoid GC content bias that may result with
high co-fitness for proximal genes with similar GC con-
tent (Wetmore et al. [5]), we also restricted our analysis
to genes pairs with different GC content (Methods). In-
deed, after using this additional filter, the co-fitness of
proximal genes that are not in the same operon is still
found to be enriched, with distances of 5 kb, 10 kb,
20 kb and 50 kb, yielding Wilcoxon test p-value< 10~
and for 100 kb, Wilcoxon test p-value =0.003 (only in
200 kb the result is not significant anymore).

Annotating the gene pairs according to similar Sigma
factors or genes that reside in 3D spatial proximity (data
from Xie et al. [28]) showed no statistically significant
increase in co-fitness signal as compared to the total
co-fitness distribution — the null model (note, in con-
trast to gene co-expression as described below).

Comparison of co-fitness and co-expression profiles

The results described in the gene-reaction assignment sec-
tion (Section “Gene-to-Reaction assignment”) show an
advantage for using fitness over expression in the context
of metabolic model improvement. In this section, we com-
pare the characteristics of gene co-expression and gene
co-fitness in E. coli. Using gene expression data from [11]
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(GEO id: GSE32561) we calculated co-expression for gene
pairs. We used the same functional classes as above to
explore co-expression profiles and for comparing co-ex-
pression profiles with co-fitness profiles.

When comparing co-fitness and co-expression in the
context of the functional classes used above, co-expression
yields more significantly enriched results (lower p-values,
when compared to its background co-expression distribu-
tion. See Fig. 4 and Additional file 1: Figure S4). Interest-
ingly, gene pairs that are spatially proximal (Xie et al. [28])
show higher than expected co-expression, while their
co-fitness was not significantly different from the back-
ground co-fitness distribution. To investigate co-fitness and
co-expression within targets of different Sigma factors, we
considered gene pairs that are regulated by sigma70 and
gene pairs that are regulated by other Sigma factors. We
found that gene pairs regulated by sigma70 show lower
co-fitness and co-expression than the total gene pairs
(Fig. 4). We observe enrichment for gene pairs aggregated
by the rest of the sigma factors where higher co-fitness and
co-expression scores were observed (Fig. 4). This result re-
flects the fact that most of E. coli genes are regulated by
sigma?70, therefore show close to background correlations.
On the other hand, specific Sigma factors like sigma54 [29]
are related to specific pathways in the bacteria and there-
fore their regulated genes are correlated.

Common function and other functional associated prop-
erties can be affected in (and therefore possibly inferred
from) co-fitness as well as in co-expression - similar gene
expression patterns across conditions. In a more detailed
representation of co-expression against co-fitness, none
of the classes showed strong signal (Additional file 1:
Figure S5). Examples for two pairs of genes that are
correlated in their fitness but not in their expression, or
vice versa, are available in Additional file 1: Figure S6.
As shown in Table 1, we observed very low correlation
between co-expression and co-fitness (all Spearman R
values are < 0.2). This trend is in agreement with previ-
ous fitness studies [6, 30]. However, assessing the
mmHG scores for some of the analyzed classes [31, 32],
we see that the top parts of both lists (of ranked
co-expression and co-fitness pairs) have significant
overlap (Table 1). In conclusion, co-expression and co-
fitness are minimally correlated, mostly in the high
values, and may add information to each other.

Gene-to-reaction assignment

High throughput fitness data can act as a basis for validat-
ing, iterating and improving genome-scale metabolic net-
works. We developed a novel approach for utilizing fitness
data to predict genes associated to orphan reactions, which
we then tested on iJO1366 metabolic model of E. coli [14]
using fitness data from Wetmore et al. [5] (Methods). To
the best of our knowledge there are no recent metabolic
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modeling studies that used fitness data for this purpose. In
this section, we demonstrate the potential of leveraging fit-
ness data alone as well as integrated gene expression pro-
files. Also, we present some of our novel findings that map
genes to E. coli orphan reactions.

Performance evaluation based on non-orphan reaction data
To assess the quality of assigning genes to reactions using
our approach (Methods) we cast non-orphan reactions as

orphans, one reaction at a time, and test our ability to re-
construct the known hidden assignment of at least one
original gene. For each such reaction, we calculate the
rank of the true known gene or genes out of all candidate
genes. Figure 5 and Additional file 1: Table S1 depict the
performance of this validation test for predicting a reac-
tion gene for 1556 non-orphan reactions.

Additional file 1: Table S1 clearly shows that all the scor-
ing approaches perform significantly better than random
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reaction assignments. More importantly, assignments based
on fitness data were significantly better than those based on
expression data — 503 vs 404 (24.5% improvement) cor-
rectly identified gene-reaction pairs in top-20 candidates.
Considering both types of data produced even better results
of 614 correct predictions in top-20 candidates for 1556
validation reactions (52% increase). Finally, incorporation of
promoter data boosts the performance on average by 0.5—
2%. The combined prediction accuracy based on fitness
data together with promoter and expression data is 39.7%,
when considering the top-20 candidates, and 19.7% accur-
acy at predicting at the top candidate, which is respectively
52.7% and 66.3% better than accuracy based solely on ex-
pression data. Analysis of accuracy for the prediction of a

second reaction gene for 565 validation reactions with at
least two genes is further addressed in Figure S12 and
Additional file 1: Table S2.

Predicting genes for orphan reactions
Assignment of genes to orphan reactions was performed
using the combined fitness and expression scores with
incorporation of promoter fitness data. We identified
107 (Methods) adequate orphan reactions and assigned
them genes (the prediction results can be found in
Additional file 2).

We verified the predictions with EcoCyc data [33] and
further substantiated some of our findings based on this
cross comparison. For example, for the orphan transporter

Table 1 Correlation and mmHG results for comparing co-fitness to co-expression. Empirical p-values for the mmHG tests were
calculated based on shuffled data, where each list, used as functional class for the gene pairs, was shuffled (100 instances),

preserving the original partition structure

Spearman’s R Corrected mmHG statistics # of pairs (N) B n* b* Empirical p-value from
shuffled data

All pairs 0.007 0.1 6,485,401 43 368 2 N/A

Same operons 0.186 118x 107" 2453 251 966 165 0

Paralog genes 0.048 1 4584 5 46 2 032

Same Pfam 0.051 1 10,626 948 155 31 047

domain

Within 5 kb 0.058 253x107* 7443 221 991 61 0

Within 10 kb 0.046 249%x107* 14,202 57 481 14 0
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reaction ALAt2rpp (L-alanine reversible transport via pro-
ton symport cytoplasm-periplasm) the first predicted
candidate (with Bayesian confidence of ~ 4% and unbiased
confidence of ~98.97%, see Methods) is cycA (b4208),
which can act as an L-alanine transporter [34, 35].
Another example is the internal reaction CMPN (CMP
nucleosidase: “CMP + H20—Cytosine + aD-Ribose-5P”),
for which the first predicted candidate (with Bayesian con-
fidence of 23% and unbiased confidence of ~99.85%), is
rihC (b0030), which is known as “ribonucleoside hydrolase
3” catalyzing, among others, the “Cytidine+H20—D-ribo-
furanose + Cytosine” reaction [36]. This knowledge is not
captured in the model and is revealed by our analysis.

Discussion
In this study, we describe novel approaches and compu-
tational pipelines to analyzing high-throughput fitness
data and their application in improving metabolic mod-
eling. Certain biological insights have been gained along
with the pipelines explained above. Interestingly, non-
coding regions were shown to be more sensitive to
TnSeq insertions than coding regions, in contrast to the
common belief that CDS insertions carry the most
significant consequences. Indeed, some important regu-
lators of gene expression bind to non-coding regions
and modification of these sequences would interrupt
their binding. A caveat on this statement relates to an-
notation inaccuracy, what looks like a non-coding part
can be an unknown coding part of some gene.
Comparing co-fitness to co-expression using different
functional classes, we found that some classes lead to
more coordinated expression than to coordinated growth
differences (fitness). Interestingly, gene pairs that reside in
spatial proximity [28] have higher co-expression than

expected at random. This trend was not observed for
co-fitness. This finding may be due to the fact that tran-
scription is coordinated in space, while fitness, which is af-
fected by more regulatory steps, is more difficult to
spatially coordinate. Xie et al. [28] already suggested the
existence of transcription factories in bacteria and these
were also pointed out in other organisms [37-41]. For
other classes, we also observe co-expression to be more
enriched than co-fitness (comparing correlations within the
class to total background. See Fig. 4). Again — the higher
complexity of co-fitness as well as factors related to the
measurement may explain these differences. Deutschbauer
et al. [6] have previously shown very minimal agreement
between differential gene expression and fitness differences.
The identified differences/commonalities may also be influ-
enced by the technical heterogeneity of the data used. Using
non-parametric statistics, we can avoid some of these biases
(Additional file 1: Figure S5 and Table 1). Still, additional
work is needed to better assess this link.

Our statistical and computational approaches provide
pipelines for the first data analysis steps toward under-
standing and interpreting data from fitness screens. We
also take a step further in the context of metabolic mod-
elling. High throughput fitness data can act as a basis for
validating, iterating and improving models by directly
comparing results to predictions in knock-down and
knock-out approaches. We directly demonstrate one po-
tential utility - the prediction of genes that encode for
proteins catalyzing model orphan reactions. In this con-
text, we show the value of knock-down or knock-out
high-throughput fitness studies. Indeed, incorporating
fitness data into our metabolic modeling was shown here
to clearly improve over the random baselines. We also
analyze the dependence of the performance of this
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approach on the number of conditions measured, and
observe a clear benefit gained by increasing the number
of measured conditions (Fig. 6). Moreover, we demon-
strate that integration of fitness data with expression
data significantly outperforms the usage of each dataset
separately. The latter suggests that incorporation of add-
itional types of data, such as protein-protein interaction
(PPI) or phylogeny, might further improve the prediction
results for metabolic modeling.

Conclusions

Our proposed methodology, both for genome-wide ana-
lysis of fitness data and for its use in the context of
metabolic model inference, sets the stage to developing
more computational methods and tools and to applica-
tions in new datasets [42]. The availability of fitness
screens in organisms or systems that are less well char-
acterized, combined with the use of methods presented
here, can drive model development for these contexts.

Methods
The current study and the methods we used are outlined
in Fig. 1.

Obtaining the fitness data

In the current study, we used Wetmore et al. [5] data as a
comprehensive dataset for fitness in E. coli in 48 different
media conditions. We analyzed both coding and
non-coding regions. For coding sequence regions (CDS)
we used fitness scores directly reported in Wetmore et al
(http://genomics.Ibl.gov/supplemental/rbarseq/html/Keio/
fit_logratios_good.tab). For non-coding insertions (inser-
tions in non-coding regions of the genome, i.e. promoters
and un-translated regions, UTRs), which were not ana-
lyzed in the original paper, we calculated average fitness
scores as explained below. Annotations of non-coding re-
gions in E. coli were taken from RegulonDB and EcoCyc

30 - (467 rxns)

F (389 ntns)

=48 fitness conditions

= 24 fitness conditions

== 12 fitness conditions

%5 4+ s 8 7 & s w0
# of selected genes

n
T
=
@
=
=
2

% of correctly identified reactions

Fig. 6 Prediction performance depends on the number of
conditions measured
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[33, 43]. We denote an insertion in a genomic region
position p by Ins(p). Considering a non-coding region nc
and media condition y, we compute:

1
tness_score (nc,y) = ———— itness_score(Ins(p),
fi (ne)) = vy |”(Zm)f (Ins(p), )
(1)

Where 7 (nc) ={Ins(p):p e nc}, ie. all insertions in
genomic positions within the considered non-coding re-
gion. In other words, all the fitness scores related to gen-
omic positions within a non-coding region are averaged
in order to score this region. The value fitness _scor-
e(Ins(p), y) is taken from the raw insertion results table
provided by Wetmore et al.

While comparing between non-coding and coding fit-
ness values (as in Additional file 1: Figure S1 and related
Results section), we used for both coding and
non-coding the same normalization scheme, namely
averaging the scores (as in Eq. 1). This in order to not
bias this analysis, as in the original paper by Wetmore et
al. [5], where they further normalized the coding fitness
values by using a weighted average of strain fitness
values and removing lowly abundant samples.

For each genomic element of interest (either coding or
non-coding) we define its fitness vector as a vector com-
bining its fitness_score over all available conditions y in
the dataset.

Promoters motif analysis

For each condition y and for all promoters, we rank the
promoter sequences, seq(prom), where prom is a given
promoter, according to the values of fitness_score(prom,
7). The ranked sequence lists were input into DRIMust
[23, 44], setting detection of motif to double stranded
DNA, with minimum and maximum motif lengths 6 and
20, respectively. The output PSSMs were further
assessed using the mmHG statistics [31, 32]. Similar
steps, summarized in Additional file 1: Figure S2, were
also used for analyzing pairs of conditions. Here for each
pair of conditions yl, yk we compute:

fitness_score (prom, yl, yk) = fitness_score (prom,yl) (2)
—fitness_score (prom, yk)

Perl and Java code that automate motif analysis on
multiple conditions can be found in the supplementary
information of this manuscript (Additional file 3).

To find similarity of the found motifs to known bind-
ing sites in bacteria, we used both Tomtom [24] and
Stamp [25] webservers with their default parameters (or-
ganism: E. coli, database: dpinteract).
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Co-fitness and co-expression

We define the co-fitness of two genomic elements
(genes, promoters, etc.) as Spearman correlation of cor-
responding fitness vectors. Similarly, the co-expression is
defined as Spearman correlation of corresponding ex-
pression vectors.

To investigate co-fitness profiles and their relationship
to other properties of gene regulation, functional classes
of E. coli were collected from different sources. Operons
information was collected from RegulonDB and EcoCyc
[33, 43]. The Cluster of Orthologous Groups of proteins
(COQ) [45] was used as the source for E. coli gene para-
logs. Annotations for genes located in spatial proximity
in the E. coli genome (3D space) were taken from Xie et
al. [28], considering the 75th percentile as the proximity
threshold. Information regarding operons and the sigma
factors regulating them was taken from RegulonDB [43].
We also culled the E. coli genes according to common
Pfam domains (from Pfam DB [46]). In addition, we
used 5 kb, 10 kb, 20 kb, 50 kb and 100 kb bin sizes to
group the genes according to their genomic position.

To compute relative co-fitness for different classes as
in Fig. 3c we proceeded as follows: For - 0.5<x<1 and
for a class of pairs C, we compute:

#of pairs in C with CF>X
plx, C) =TL2

- #of pairs in C ? where  CF

is the

co-fitness value.

__ Total#of pairs with CF>X
p(x’ T) o Total#of pairs

where T is the total gene-gene pairs in the analysis. The
log; fold ratio for C and x is: logwﬁ%

The same classes also guided our comparison between
co-fitness and co-expression profiles (as in Fig. 4). As
the signal from operons is relatively strong (Results) we
removed same operon genes pairs from the analyses of
the other functional classes.

To avoid biases that related to similar GC content of
proximal genes (while analyzing co-fitness of proximal
genes that are not part of the same operon), we calcu-
lated genes CDS GC content from the E. coli genome
(NC_000913.2) using GeneBank E. coli gene annotation.
According to the genes’ GC content, we divided them
into GC content bins. Gene pairs that both genes are in-
cluded in the same bin (same GC content 10% percent-
ile) were filtered out.

We also compute:

Metabolic models

Commonly used computational approaches for predict-
ing biological organism behavior using metabolic models
are based on Flux Balance Analysis (FBA). FBA analyzes
internal reaction fluxes under the assumption that the
modelled organism metabolic network is regulated to
maximize some cellular objective under a predefined set
of constraints. FBA-based approaches have a wide range
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of applications including phenotype analysis, bioengineer-
ing and metabolic model reconstruction [13, 20, 47-52].
The reaction stoichiometry in a metabolic model is
represented by stoichiometric matrix S, wherein S,,,, cor-
responds to stoichiometric coefficient of metabolite » in
the reaction r. The vector of metabolic fluxes that are
carried by the model reactions, normally denoted as v,
is constrained both by mass-balance (Eq. 3a) and by
maximal/minimal feasible fluxes v*# and v** (Eq. 3b). In
addition, the addressed analysis question may impose
additional context-specific constraints [20, 51, 52].

S- V=0

B UB
Vf V<V,

(3a)
(3b)

VreReactions

Reactions in the model are called orphan reactions if
no corresponding catalyzing gene is known for them.
Other reactions are called non-orphan. Each non-orphan
reaction r; may be associated with one or several genes
(up to 17 in the iJO1366 [14] model of E.coli as shown
in Additional file 1: Figure S7). Each such gene g is re-
sponsible (alone or by cooperation with other genes) for
coding and/or activating a protein (enzyme) that cata-
lyzes r;. Mathematically, we represent a set of genes
working together to construct a protein by an A (AND)
clause of binary indicators representing gene activity (ex-
istence, functionality, expression). If certain reaction can
be activated by one of several alternative proteins, then
the activity status of this reaction is represented herein
by an V (OR) clause of binary indicators of activities of
each protein (Eq. 4a). For example, the regular expres-
sion for the reaction rx catalyzed either by protein
pl, encoded by single gene gI, or by protein p2,
encoded by a combination of genes g2 and g3, is rep-
resented in (Eq. 4b).

#Proteins(r;) ( #Genes(p(i)) .
activity(r)) = V A {g’j @ }
pli)=1 g’;(”:l

i _ [1 - iff &V is active
gJ; {0 — otherwise (4a)

activity(rx) = activity(p,) V activity(p,)
= (g1) V (824¢5)

When a gene gets knocked out for a given strain, such
as in fitness screens, then the corresponding term in the
above reaction regular expression becomes FALSE.

(4b)

Fitness vectors for non-orphan reactions

A major challenge in constructing metabolic models is
an assignment of genes to orphan reactions. The major-
ity of automatic approaches addressing this issue [20,
53-55] operate under the reasonable assumption that
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the behavior of each reaction (both orphan and
non-orphan) is highly correlated with the behavior of
the reaction neighborhood (Section “Reaction neighbor-
hood”). Here, we also use this logic while addressing the
reaction behavior in the context of the gene fitness data.
To do so we need a definition of the fitness of non-or-
phan reactions based on the fitness measurements of its
genes. We define the organism fitness after the knockout
of a certain reaction to be the maximum over the fitness
values of the disjunctive clauses, which, in turn, are the
minimum over individual gene fitness values under the
conjunction sign (Eq. 5a). To continue the specific ex-
ample described above in the context of Eq. 4b, the fitness
of rx in the condition vy is described in (Eq. 5b).

max min
i)=1 (i) _
pi) =1

{ﬁtness_score (gf ® , y) } }

fitness_score(g,,y)
fitness_score(rx,y) = max . { fitness_score(g,,y)

™\ itness_score (g3, y )
(5b)

fitness_score(r;,y) =

#Proteins(r;) { #Genes(p(i)) (53)

Once created, reaction fitness values are Z-normalized
per each condition as in Eq. 6, where RXN denotes the
set of all considered reactions and ZFS(r;, y) denotes
Z-normalized fitness score of reaction r; in condition y.

__ fitness_score(r;, y)— MEAN yepxn { fitness_score(r,y) }

ZFS(ri,
(ri-) STD {fitness_score(r,y)}
reRXN

(6)

A fitness vector for a given reaction r;, denoted as
ZFV(r;), is now constructed using ZFS(r; y), for all con-
ditions y in the dataset.

Fitness vectors for genes and promoters

A fitness vector for a gene g is directly taken from all
measurements reported for g in Wetmore et al. [5], run-
ning across all conditions y in the dataset and using
Z-normalized values (similar to Eq. 6). We denote this
vector by ZFV(g).

Assignment of genes to orphan reactions may also
benefit from the information available for the gene pro-
moters. Clearly, if a candidate gene for some orphan
reaction is highly correlated with the reaction neighbor-
hood, but its known promoter does not support such
correlation — this information should be incorporated in
the total ranking of this gene with respect to other can-
didates. Thus, we adapt the Eqgs. 1-6 to construct
ZFV(p), the vector of Z-normalized fitness scores for the
promotor p, running across all conditions.
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Reaction neighborhood

Metabolic reactions connected to each other by
shared metabolites are called neighboring reactions.
Such neighboring reactions may have very similar ac-
tivity patterns, i.e. there is a high chance that a reac-
tion is active when its neighbor is active. Such
activity similarities are most evident on linear meta-
bolic pathways, when products of one reaction are
transferred as input substrates to another. However,
that’s not the case for all shared metabolites. Metabo-
lites like H20, H+ and others appear in extremely
high numbers of reactions, thus taking them into ac-
count for neighborhood calculations is almost always
noisy. We call them high-frequency metabolites.

To correctly assess the neighborhood of a given reaction
r, we greedily (from high to low frequencies) remove from
its equation all high-frequency (frequency higher than 11)
metabolites unless such removal leads to less than two
non-orphan neighbors remaining for r or for some other
reaction (Additional file 1: Figure S8). The constraint of
two non-orphan neighbors is required to support linear
fluxes. The high-frequency cutoff 11 was selected accord-
ing to the distribution of metabolite frequencies in
iJO1366 E. coli model (Additional file 1: Figure S9).

We define a reaction to be adequate for neighborhood
analysis (in short — adequate) if after deletion process as
above, it has two or more non-orphan neighbors with
assigned fitness vectors. Out of 1787 non-orphan reac-
tions we found 1556 to be adequate, which were used
for validation purposes (Results). Out of 128 orphan re-
actions we found 107 to be adequate, meaning that we
can propose candidate genes for 83.6% of orphan
reactions.

Fitness vectors for orphan reactions. Gene-to-reaction
assignment based on reaction neighborhoods

For the orphan reactions, i.e. reactions without any known
associated gene, the method described above (Section
“Fitness vectors for non-orphan reactions”) for construction
of fitness vectors is obviously not appropriate. However, we
can guess that certain candidate gene candG is an encoding
gene for the given orphan reaction Ro. If this guess is cor-
rect, it is reasonable to expect high similarity of the fitness
behavior of candG with the fitness behavior of the genes on
the non-orphan reactions in its neighborhood. We
measure this similarity using a Spearman correlation
test. For each adequate orphan reaction Ro we define
the Association Likelihood Score (ALS) of assigning
the candidate gene candG to Ro as the mean Spear-
man correlation of the fitness vector of candG to the
2 most-correlated fitness vectors of non-orphan
neighbors of Ro (Eq. 7). The number “2” was selected
as the minimal value, which allows solving single or-
phan reaction gap in a linear pathway.
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1 [ Spearman [ZFV (candG), ZFV (neighb, (Ro))]
ALS(Ro, candG) = = +
Spearman|ZFV (candG), ZFV (neighb,(Ro))]

(7)

Here neighb;(Ro) and neigb,(Ro) are the two neighbor
reactions of Ro with fitness vectors most correlated to
ZFV(candG) (Spearman correlation). Once each candi-
date gene is scored, the genes are ranked, and the top 20
candidates are reported (Additional file 2).

The performance of this method was evaluated using
leave-one-out approach with non-orphan reactions
where the goal was to predict at least one of the known
reaction genes (Results).

Promoter-to-reaction assignment based on reaction
neighborhoods

The process of assignment of promoters to reactions is
very similar to the assignment of genes. First, for each
non-orphan reaction we construct its fitness vector as
described in Section “Fitness vectors for non-orphan re-
actions”. Then, we compute the Spearman correlation
between this vector and the ZFV{(candP) for all candi-
date promoters. Finally, for an adequate orphan reaction
Ro, we compute the maximal average Spearman correl-
ation ZFV(candP) attains with pairs of non-orphan
neighbors (similar to Eq. 6).

Combination of gene and promoter fitness
Gene-to-reaction Spearman-based assignment scores
can be adjusted according to promoter-to-reaction
Spearman-based association. Indeed, this is valid for
genes with existing mapping to promoters, as acquired
from RegulonDB and EcoCyc [33, 43]. We define the ad-
justed (gene, promoter)-to-reaction assignment score as
follows (Eq. 8):

candP;
ALS | Ro, candG + | candP,

= ALS(Ro,candG) + a » | ALS(Ro, candP;)  (8)

Where {candPi} is the set of all the promoters associ-
ated with candG or an empty set if there is no such in-
formation about promoters exists. We have tested
different values of « and the best performance was ob-
tained at o = 0.21.

Uniform gene-to-reaction assignment null models
Two baselines strawman gene-to-reaction assignment
scores were used to represent uniform assignment of
genes to reactions as a basis for comparison.

First, under WEAK U-dist, we assume that random se-
lection of top G genes for R reactions will successfully
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. .. R*G / .
identi of true reaction genes. For ex-
fy TotalGenes 8

ample, random selection of top 10 out of 3646 candidate
genes for 1556 non-orphan reactions will identify true

genes for 10*1556/ ~ 4.3reactions.
3646

Second, under STRONG U-dist, we assume that the
predicted genes are sampled from the set of true
reaction genes only (i.e. each sampled gene is a true
encoding gene for some non-orphan reaction). More-
over, since some reactions are activated by several
genes, at each step average number of genes per reac-
tion will be identified. That is, selection of top G
genes will identify G*Avg(genes per rxn) of true reac-
tion genes. For example, selection of top 10 candidate
genes with average of 3.126 true genes per reaction in
iJO1366 model will identify true genes for 10*3.126 =
31.26 reactions.

Reaction expression vectors and score calculation

We also compare the methodology of the current study
with the more standard approach that uses co-
expression as a basis for gene to reaction assignment
[20, 55].

Two gene expression datasets were used to associ-
ate reactions to expression vectors. The first is
GSE32561 from Goh et al, which includes 11 gene
expression microarray measurements [11]. The second
is GSE58806 from Keating et al., which includes 36
gene expression measurements [12]. As a preprocess-
ing step, we omitted expression data for genes which
were not covered in Wetmore and colleagues’ fitness
analysis [5]. Additional file 1: Figure S10 explains the
known model genes covered by the fitness and ex-
pression data.

Expression values were first Z-normalized per each
condition separately (in the spirit of Eq. 6). Second, reac-
tion expression vectors were constructed in a manner
similar to that used for reaction fitness vectors (in the
spirit of Eq. 5a). Third, we computed the Spearman cor-
relation between this vector and the expression vectors
of every candidate gene. Finally, for an adequate orphan
reaction Ro we estimated the average Spearman correl-
ation of each candidate gene to two most-correlated
non-orphan neighbors (in the spirit of Eq. 7). The com-
bined expression score was defined as average of scores
for each dataset separately, that performed better than a
score based on vector concatenation.

Combination of fitness and expression-based scores

The combined score based on fitness and expression
data was defined as average between the score resulted
from each data source separately:
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ALS comp(Ro, candG) = 1 / 2ALSﬁt(Ro,candG)
+ 1 / 2ALSW,,(RO,cade)

©)

Confidence of gene to reaction assignment

We define confidence of each gene-to-reaction assign-
ment as probability of receiving an assignment score o
for true gene-reaction pair in both Bayesian (Eq. 10a)
and unbiased (Eq. 10b) approach. The distribution of
scores obtained for spurious pairs is compared to that
obtained for known pairs in Additional file 1: Figure S11.

Bayesian o
confidence (ALS(g,r) = 0)

_ P({ALS(g,r)=0}|{gegenes(r)}) x P(gegenes(r))
P(ALS(g,r)z0)

(10a)

Unbiased

confidence (4LS(g.r) = 0)

_ P({ALS(g,r) 20}|{gegenes(r)})
P({ALS(g, r)zo}|{gegenes(r)}) + P(ALS(g, r) 2 o|{gé¢genes(r)})

(10b)

Where P({g < genes(r)}) ~0.044% is the general prob-
ability of correct gene-reaction assignment, as calculated
on the set of non-orphan reactions and the genes mea-
sured by Wetmore et al. [5].

Endnotes
'http://genomics.lbl.gov/supplemental/rbarseq/html/
Keio/strain_fit.tab
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Additional file 1: A word file, includes the supplementary figures
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excel file, which can also be downloaded from: http://wassist.cstechnion.acil/
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