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Abstract

Background: Gene expression connectivity mapping has gained much popularity in recent years with a number of
successful applications in biomedical research testifying its utility and promise. A major application of connectivity
mapping is the identification of small molecule compounds capable of inhibiting a disease state. In this study, we are
additionally interested in small molecule compounds that may enhance a disease state or increase the risk of
developing that disease. Using breast cancer as a case study, we aim to develop and test a methodology for identifying
commonly prescribed drugs that may have a suppressing or inducing effect on the target disease (breast cancer).

Results: We obtained from public data repositories a collection of breast cancer gene expression datasets with over
7000 patients. An integrated meta-analysis approach to gene expression connectivity mapping was developed, which
involved unified processing and normalization of raw gene expression data, systematic removal of batch effects, and
multiple runs of balanced sampling for differential expression analysis. Differentially expressed genes stringently
selected were used to construct multiple non-joint gene signatures representing the same biological state. Remarkably
these non-joint gene signatures retrieved from connectivity mapping separate lists of candidate drugs with significant
overlaps, providing high confidence in their predicted effects on breast cancers. Of particular note, among the top 26
compounds identified as inversely connected to the breast cancer gene signatures, 14 of them are known anti-cancer
drugs.

Conclusions: A few candidate drugs with potential to enhance breast cancer or increase the risk of the disease were
also identified; further investigation on a large population is required to firmly establish their effects on breast cancer
risks. This work thus provides a novel approach and an applicable example for identifying medications with potential
to alter cancer risks through gene expression connectivity mapping.
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Background
Breast cancer is the most common cancer in England
with over 46,000 women diagnosed each year [1]. It has
a marked impact on mortality with relative survival rates
of 80% at 5 years and 70% at 10 years [2]. These inci-
dence andmortality rates highlight the need for additional
prevention and treatment strategies for this disease.
In the UK the population is increasingly exposed to

prescribed medications [3] which may have unrecognized
beneficial or harmful pleiotropic effects [4]. Recently there
has been much interest in exploring new therapeutic uses
for existing drugs [5]. Aspirin, for example, has been
shown to prevent colorectal cancer in high risk patients
[6] and trials of aspirin to treat colorectal cancer are
underway [7]. Similar opportunities remain to be iden-
tified for breast cancer. The potential adverse effects of
common medications on breast cancer risk and progres-
sion are also worthy of investigation.
Given the health care burden/need in relation to breast

cancer as described above and similarly for many other
types of cancers and chronical diseases, it would be highly
desirable to be able to screen systematically the commonly
prescribed medications for their potential effects on alter-
ing the risk of certain disease. Furthermore, modern high
throughput omics technologies and the vast volume of
data generated from these technologies have provided
invaluable resources for data-rich research. In this work,
we aim to develop a systematic approach to utilizing the
massive gene expression profiling data available for a par-
ticular disease, employing and developing gene expression
connectivity mapping procedures to screen commonly
prescribedmedications for their potentials to alter the dis-
ease risk. By altering the disease risk, we broadly mean
that the medication is able to inhibit/enhance the disease
state or to decrease/increase the chance of an individual
developing the disease as compared to without taking the
medication. In principal, candidate medications predicted
to affect disease risk could be further investigated in large
population-based studies.
Connectivity mapping [8–11] is an advanced bioin-

formatics technique that establishes connections among
different biological states via their gene expression pro-
files/signatures. The underlying premise of connectivity
mapping is that different biological states can be ade-
quately described or characterized using a molecular sig-
nature, such as a transcriptome, and that connections
between different biological states can be established
based on gene-expression similarity or dissimilarity. Con-
nections between biological states may have different
implications, for example, if a connection is seen between
two states because the key set of genes are similarly up-
or down-regulated, often referred to as a “positive con-
nection”, this indicates that the two states have the same
activated biological processes or pathways. On the other

hand if the connection occurs because the key set of genes
are oppositely regulated, referred to as a “‘reverse con-
nection”, it may indicate that the two states negate each
other. If one is an undesirable state such as disease and the
other is a drug-induced state, in the former case of “posi-
tive connection” the drug might be reasonably considered
to potentially induce/enhance the disease, and in the lat-
ter case of “reverse connection”, the drug may be useful to
treat that particular disease.
The connectivity mapping process involves three key

components: (i) A gene expression signature for a par-
ticular biological state of interest; (ii) A large reference
database of differential gene-expression profiles, e.g. for a
collection of small molecule compounds; (iii) A computa-
tional and statistical algorithm for matching up the gene
signature and the reference profiles.
An important aim of connectivity mapping is the identi-

fication of small molecule compounds capable of inhibit-
ing a disease state in drug discovery or repurposing
research [8, 12, 13]. Connectivity mapping has been
used to successfully identify medications with anti-cancer
properties. For instance, cimetidine has been identified
as a potential treatment for lung cancer and pre-clinically
validated using mouse models [14] and rapamycin has
been shown to overcome dexamethasone resistance in
acute lymphoblastic leukemia (ALL) [8]. Furthermore, our
research team has used the connectivity map approach to
predict and subsequently validate, in a mouse model, enti-
nostat as a potential inhibitor of acute myeloid leukaemia
(AML) [15]; and recently to successfully identify and
validate bromocriptine, a dopamine agonist, as a novel
therapy for high-risk myelodysplastic syndromes and sec-
ondary acute myeloid leukemia [16].
In this work, we choose breast cancer as the disease of

interest for our case study. This was primarily because the
availability of gene expression profiling data for this dis-
ease. On the Gene Expression Omnibus (GEO) database,
for example, the number of samples returned with the
search term “breast cancer” far exceeds that for any other
types of cancers or any other diseases. Our plan was
to assemble as broad as possible many breast cancer
datasets in order to derive high-quality, highly represen-
tative gene expression signatures for this disease. How-
ever, most breast cancer datasets do not contain normal
controls. Therefore, the multiple dataset meta-analysis
method we developed previously [17] would not be appli-
cable, because it conducts differential expression analysis
(requiring both normal and disease samples) within each
dataset, and then combines lists of differentially expressed
genes (DEGs) using normalized and signed ranks. Here we
need to pool all the normal control samples together. Con-
sequently comes the need to remove batch effects from
the datasets and to deal with overall imbalanced sample
sizes. In this work, we aim to develop a novel systematic
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procedure to address all these data processing and analysis
challenges presented. Also we present novel connectiv-
ity mapping process using non-joint sub-gene signatures
for the same disease state. This enhances the robust-
ness of any candidate drugs returned. Such an integrated
approach would also enable us to deal with similar situa-
tions arising in other studies and to facilitate the screening
of medications through connectivity mapping.
It should be noted that breast cancer like many other

diseases is itself a heterogeneous disease with different
subtypes. In recent years there have been a lot of research
efforts to classify breast cancer patients into different sub-
types based on their gene expression patterns [18–20].
In this study, however, while recognizing the heterogene-
ity of the disease we are treating all breast cancers as
a whole and focusing on the commonality rather than
the finer difference between different subtypes, based
on the following rationales: Firstly, there is still great
value in studying the common gene expression signa-
ture of a disease, even though it consists of different
subtypes. Secondly, if any of the predicted medications
were to be validated, the number of patients eligible to
include in future population-based studies is often a lim-
iting factor, due to health care data availability, acces-
sibility, and ethics etc. Focusing on individual subtypes
of a disease is going to limit the sample size even fur-
ther. Thirdly, even if we had focused on specific subtypes
of breast cancer, and obtained candidate drugs for the
subtypes. The information on the subtype of a patient’s
breast cancer is often not readily available in their health
care records.

Methods
To apply gene expression connectivity mapping to breast
cancer, we need gene signature(s) representing the breast
cancer disease state as input. In this context, a gene sig-
nature is a selected list of genes that are differentially
expressed in the breast cancer state with reference to
normal condition. Breast cancer gene expression datasets
were retrieved from public databases; the dataset and
sample selection process is described as follows.

Selection of datasets and samples
Gene Expression Omnibus (GEO) and ArrayExpress are
public repositories of gene expression datasets that are
in compliance with the Minimum Information About
Microarray Experiment (MIAME) community standard
[21]. GEO currently contains data on over 1 million indi-
vidual samples from over 41,000 series/studies.
An explicit search through GEO and Array express

using the search term ’breast cancer’ resulted in 467 data
sets and the relevance of the samples were confirmed
through amanual examination. The selected datasets con-
tained samples with the following properties.

• Search Term : Breast Cancer
• Array Platform : GPL96 (Human Genome U133A

Array) or GPL570 (Human Genome U133 Plus 2.0
Array)

• Population : All
• Subtypes : All
• Tissue type : Primary
• Sample size : > 20

The GEO DataSets was searched using “Breast Cancer”
as the primary search term and the results were further
filtered for platforms GPL96 (Affymetrix HumanGenome
U133A Array) and GPL570 (Affymetrix Human Genome
U133 Plus 2.0 Array), as these two platforms are compat-
ible with the reference profile databases in connectivity
mapping. The reference profiles in the CMap02 (Con-
nectivity Map Build 02) and LINCS (Library of Network-
Based Cellular Signatures) databases use the same set of
gene probe identifiers as the GPL96 and GPL570 array
platforms, therefore there would be no need to convert
gene IDs. In total 467 datasets were retrieved, consist-
ing of 115 individual data series from GPL96 platform
and 352 from GPL570 platform. As another filtering crite-
rion, data series with < 20 samples were excluded, which
resulted in 50 datasets of GPL96 platform and 54 datasets
of GPL570 platform remaining for further detailed review.
For each of the 104 individual data series, their exper-
imental design and sample description were manually
examined. Finally 68 datasets in total including 33 data
series from GPL96 and 35 data series from GPL570 were
selected for the current study. The chosen datasets com-
prised gene expression data regardless of the type of
breast cancer they developed and from various popula-
tions around the world. Eligible samples were categorised
into three distinct groups. Tumor: Pre-treatment primary
breast tumor samples. Normal: Breast tissue samples from
healthy individuals with no history of breast cancer. Adja-
cent: Healthy breast tissue samples adjacent to tumor
from breast cancer patients The number of samples cat-
egorised under three distinct groups Tumor, Normal and
Adjacent are 7318, 212 and 309 respectively. Figure 1
shows a flowchart of the process involved in this study and
the comparisons made among the sample groups. Table 1
summarises the total numbers of samples belonging to dif-
ferent groups and platforms. More detailed descriptions
of selected datasets are provided as supplementary data
(Additional file 1).

The processing of gene expression data
The raw data CEL files of all 68 selected data sets
were downloaded and a unified pre-processing and nor-
malization method was applied. The Affymetrix MAS5
(Microarray Suite 5.0) algorithm, as implemented in
the Bioconductor package affy, was applied to these
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Fig. 1 The flowchart of the process involved in this study

microarray raw data CEL files to generate an expression
data matrix for each of the 68 datasets individually. The
MAS5 expression values were then transformed to a log-
arithmic scale of base 2, and all subsequent analyses
were performed on the log2 transformed MAS5 data.
The GPL96 platform contains 22283 unique Affymetrix

probesIDs, while the GPL570 platform contains 54675;
the number of common probeIDs between the two
platforms is 22277. The 68 data matrices were finally
merged into a single expression data matrix using the
common probeIDs. While this increases the statisti-
cal power for subsequent differential gene expression
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Table 1 Summary of the selected samples used in this studies
from two microarray platforms and three sample groups

Tumor Normal Adjacent Total

GPL96 3990 33 112 4135

GPL570 3328 179 197 3704

Total 7318 212 309 7839

analysis, combining datasets from different studies does
present the issue of data heterogeneity and possible batch
effects, which, if not properly addressed, will adversely
affect all subsequent analysis and results. Figure 2 is a
PCA (Principal Component Analysis) plot of the three
types of samples: Normal, Tumor, Adjacent Normal, from
four different datasets GSE15852, GSE20437, GSE5327,
and GSE10810. As can been seen from this figure, the dif-
ferences between different datasets are more pronounced
than the differences between different types of samples.
As we are primarily interested in the differential gene
expression between sample types, this obvious “batch
effect” must be removed in order to obtain meaningful
results. For data integration, we employed a widely used
batch effect correction method Combat [22] as imple-
mented in the R package sva [23] to remove these batch
effects. It allows user to specify for each sample its type
and batch, then systematically partition the variations into
two parts and remove the effects associated with batches,
but retain the variation due to sample types. Figure 3 is
a PCA plot of the same set of samples after the ComBat
batch removal procedure has been applied. In our analy-
sis, we applied ComBat batch removal procedure to the
merged single expression data matrix described above.
As a result of the data processing procedures described
above, we have a MAS5 normalised, log2 transformed,
and batch effect corrected gene expression matrix of
22277 genes by 7839 samples of three groups: 7318 tumor
samples, 212 Normal samples, and 309 Adjacent normal
samples. This gene expression matrix serves as input to
our subsequent differential gene expression analysis.

Differential expression analysis and filtering
Differential expression analysis comparing designated
groups was performed to identify differentially expressed
genes between these different biological states. Selecting
an appropriate method to assess the extent of differen-
tial expression and the correction for multiple testing
are the main issues in differential expression analysis.
The differential gene expression between two given states
was assessed both statistically and biologically. First, the
statistical significance of any differential expression was
assessed using the non-parametric two-sample Wilcoxon
test. A stringent p-value threshold taking into account
multiple testing was used to declare statistically significant

findings. In this study, the p-value threshold is gener-
ally set as 1/N , where N is the number of genes under
consideration, which is also the number of hypotheses
being simultaneously tested in an analysis. This setting
of threshold will control the expected number of false
positive findings to be 1 in such an analysis, meaning
that among the genes declared as statistically significant,
on average 1 of them is expected to be a false discov-
ery. We note here that in the classical Bonferoni method
for multiple testing, the threshold p-value is set at α/N ,
to control the family-wise error rate (FWER), to be no
greater than α, where FWER is the probability that at least
one false positive error is made, and the value α = 0.05
is often used to follow historical convention. However, the
Bonferroni method is too conservative and leads to high
rate of false negatives. In recent years, the FDR (false dis-
covery rate) associated approaches have become popular
in addressing the multiple testing problems encountered
in the high throughput omics era. Instead of controlling
FWER, the FDR approaches aim to control the rate of
false discoveries, or directly the expected number of false
discoveries. Our previous work carefully examined the
relationships among different variants of FDRs and the
advantages of eFDR (empirical FDR) over other variant
FDRs were also explained [24]. From the prospective of
the Bonferoni method, our p-value threshold of 1/N con-
trols the Family-wise error rate to be no greater than 1.
This simply means that among the genes that we declared
as significant, it is almost certain that at least one gene
will be false positive discoveries. On the other hand, the
Bonferoni method with the threshold of α/N controls

Fig. 2 The PCA plot before batch effect removal. Three types of
samples from 4 different datasets are shown on this figure; different
colors indicate different datsets, while different symbols represent
sample types (Normal, Tumor, or Adjacent Normal)
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Fig. 3 The PCA plot after ComBat batch effect removal. The same set
of samples as in the previous figure, but after the ComBat batch effect
removal procedure has been applied. Color and symbol schemes
remain the same

the expected number of false discoveries to be α. There-
fore, one can view the same method from different angles,
hence emphasizing different aspects of the same outcome.
Following statistical significance tests, genes that passed

the statistical significance filter are then further exam-
ined on their magnitude of differential expression to make
sure they are also biologically significant. This is achieved
by calculating the gene expression fold change (log2 fold
change in this study) between the two groups being com-
pared, and with two further filters applied: 1) a gene must
have a differential expression of log2 fold-change no less
than 2; 2) the mean expression value of a gene must be
greater than 6 (on the log2MAS5 scale) in at least one
group. This means if a gene’s mean expression values
are below 6 in both groups being compared, this gene
will not be considered further, because of its overall low
expression level. This minimum value 6 for log2MAS5,
although somewhat arbitrary, was based on our extensive
experience dealing with microarray gene expression data.
The rationale of this filtering was that for genes with low
expression levels in both conditions, we were less con-
fident about their differential expression status, and also
because of their low expression levels, their biological sig-
nificance was considered less important than those with
higher expression.

Gene signature creation and connectivity mapping
All the significant genes qualified through the stringent
filtering criteria described above were then sorted by com-
bining their p value and fold change rankings. Briefly, the
genes were initially ranked by p-value and by absolute
log2 fold change separately, so each gene was assigned

two ranks, and then the average of the two is the single
combined rank for that gene. After that, the genes were
then ordered by this combined rank. Ordered list of genes
identified as statistically and biologically significant then
served as input to connectivity mapping analysis to iden-
tify drugs that can potentially alter the expressions of the
signature genes and therefore increase/reduce the risk of
developing breast cancer.
Gene expression connectivity mapping analyses were

performed using our recently developed QUADrATiC
system [13], which is a scalable gene expression connec-
tivity mapping framework for repurposing Food and Drug
Administration (FDA) approved drugs. QUADrATiC
takes advantage of the multiple processor cores available
in most modern desktop computers to achieve a high per-
formance and scalable solution to computing loads in con-
nectivity mapping. The database of reference profiles used
in QUADrATiC were built from the LINCS data, with
over 83,000 reference profiles for over 1300 FDA approved
drugs. Each of the gene signatures compiled in the pre-
vious steps was used as an input to query QUADrATiC,
which returns the connection scores and p-values for 1349
FDA drugs. These connection scores and p-values indi-
cate how strong and significant the corresponding drugs
were connected to the input gene signature. Here too,
a stringent threshold p-value of 1/1349 ≈ 7.4 × 10−4

was used to declare significant drug-signature connection.
While the p-value determines the statistical significance
of the drug’s connection to the gene signature, the sign of
the connection score informs whether the drug can poten-
tially enhance or suppress the gene signature representing
the breast cancer disease state.

Results
Gene expression data from all 68 datasets which passed
the selection criteria were used in this study. Table 1
summarises the information on datasets used and the
numbers of samples belonging to three groups: Tumor,
Adjacent and Normal. As a result of combining all 68
data sets, batch effect corrected log2 gene expression val-
ues were generated comprising three groups of samples:
tumor (7318 samples), normal (212 samples) and adjacent
(309 samples).

Filtering and selection of significant genes
Three distinctive pair-wise comparisons were performed
in differential gene expression analyses: Tumor Vs Nor-
mal, Tumor Vs Adjacent and Normal Vs Adjacent.
Because of the imbalance of the numbers of samples
for the three groups, a sampling procedure was adopted
for the differential expression analysis. This sampling
procedure results in more balanced sample sizes when
comparing two groups. Based on our preliminary power
calculations (see Additional files 2 and 3 for more detailed
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description and results of our power calculations), 100
samples per group would give sufficient power to detect
differentially expressed genes. In our analyses, for each
of the pair-wise comparisons, two-sample Wilcoxon test
was performed on 100 randomly selected samples from
each groups, and applied to each gene individually. The
results of this simultaneous multiple hypothesis testing
include 22277 p-values indicating the level of statisti-
cal significance for each gene. Any gene with a p-value
less that the threshold 1/N = 1/22277 ≈ 4.5 ×
10−5 is declared as statistically significant. Following
through the procedure, a list of significant genes can
be obtained for each run of such two-group 100-vs-100
comparison.
For the Tumor vs Normal comparison, we repeated the

sampling and testing procedure 50 times. Each time the
samples were selected randomly from the chosen groups.
As a result 50 sets of p values were produced and the genes
that were significant across all these 50 runs were selected
for further analysis because of their consistency. The num-
bers of statistically differentially expressed genes for the
three types of comparisons are:

• Tumor Vs Normal : 3934
• Tumor Vs Adjacent: 2140
• Adjacent Vs Normal: 598

After the statistical testing, the two further filters
described in the “Methods” section were applied, namely
(a) the differential expression of log2 fold-change is no
less than 2; and (b) the mean expression value in at least
one groups is above 6. The three step filtering of signif-
icant genes resulted in the following number of genes as
statistically and biologically significant.

• Tumor Vs Normal : 415
• Tumor Vs Adjacent: 164
• Adjacent Vs Normal: 4

Figure 4 shows the results of differential gene expression
analysis of the Tumor vs Normal comparison, with the 415
selected gene probes plotted as green dots. The full list of
these 415 gene probes can be found in Additional file 4.
Figure 5 shows the results of differential gene expression
analysis of the Tumor vs Adjacent Normal comparison,
with the 164 selected gene probes plotted as green dots.
The full list of these 164 gene probes can be found in
Additional file 5. Comparing the results above, there is
a big overlap between the Tumor-vs-Normal 415 probes
and the Tumor-vs-Adjacent 164 probes. In particular 145
out of the 164 probes (88%) are part of the 415 probes.
This suggests that the adjacent normal tissue is actually
very close to the normal tissue, consistent with the fact
that there are only 4 probes selected in the Adjacent-vs-
Normal differential expression analysis above.

Fig. 4 The Volcano plot of differential gene expression tumor vs
normal comparison. Genes are plotted in different colors depending
their passes of the following filters. Filter 1: the differential expression
of gene is statistically significant, ie. p-valve <1/22277, across all 50
runs; Filter 2: The absolute value of the average log2 fold change
across the 50 runs is greater than 2; Filter 3: The average expression
level of tumor group or normal group is greater than 6. Green spots
represent genes that have passed all the 3 filters and been selected
into the gene signature; Black spots represent genes that did not pass
filter 1; Red: genes that passed filter 1 but not filter 2; Orange spots are
genes that passed filter 1 and 2, but not filter 3. Additionally, a
number of top up-regulated genes and down-regulated genes are
plotted in darker green with their gene symbol as textual label. These
probes are primarily selected by their magnitude of differential gene
expression while avoiding label overlaps on the plot

In the two figures above, a number of top up-regulated
and down-regulated probes are also plotted in darker
green with their gene symbol shown as textual labels.
These genes are highlighted (labeled) primarily based
on their magnitude of differential gene expression, while
avoiding label overlaps on the plots where possible. It
appears that a number of the these genes are well known
for their involvement in cancer. For example, BIRC5 is a
member of the inhibitor of apoptosis (IAP) gene family
encoding negative regulatory proteins that prevent apop-
totic cell death. Its gene expression is high during fetal
development and in most tumors, but low in adult tis-
sues. This is consistent with our results here that BIRC5 as
one of the most up-regulated genes in breast cancers. The
top up-regulated gene with the highest magnitude of dif-
ferential expression in both figures, COL11A1, has been
reported to be over-expressed in recurrent non-small cell
lung cancer [25] and in gastric cancer tissues [26] and to
promote cell proliferation, migration, invasion and drug
resistance. The over-expression of this gene has also been
implicated in breast cancer progression in facilitating the
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Fig. 5 The Volcano plot of differential gene expression tumor vs
adjacent normal comparison. Genes are plotted in different colors
depending their passes of the following filters. Filter 1: the differential
expression of gene is statistically significant, ie. p-valve < 1/22277,
across all 50 runs; Filter 2: The absolute value of the average log2 fold
change across the 50 runs is greater than 2; Filter 3: The average
expression level of tumor group or normal group is greater than 6.
Green spots represent genes that have passed all the 3 filters and
been selected into the gene signature; Black spots represent genes
that did not pass filter 1; Red: genes that passed filter 1 but not filter 2;
Orange spots are genes that passed filter 1 and 2, but not filter 3

transition from ductal carcinoma in situ to invasive ductal
carcinoma [27]. On the other side of the volcanos, PLIN1
is one of top down-regulated genes in both our Tumor-vs-
Normal and Tumor-vs-Adjacent DEGs lists. This seems
to confirm the finding in an independent study using
TCGA RNA-Seq data, where perilipin-1 (PLIN1) mRNA
expression is found to be significantly downregulated in
human breast cancers [28]. LEP, another downregulated
genes among both DEGs lists, is an important regulator
of adipose tissue mass. Leptin, the protein product the
LEP gene, binds to leptin receptor to activate downstream
pathways to inhibit feeding and promote energy expen-
diture. The disruption on (or resistance to) the action of
leptin is a hallmark of obesity, which in turn is a strong risk
factor for several diseases including diabetes, cardiovas-
cular disease, and certain types of cancers [29]. Recently,
two independent studies reported that LEPwas among the
most down-regulated genes in breast cancers of Lebanese
[30] and Saudi Arabian cohorts [31].
We also performed KEGG human pathway enrichment

analysis on the set of genes (probes) from the differen-
tial expression analysis. Additional files 6 and 7 list all
the KEGG pathways examined and their statistical signif-
icance, for the Tumor-vs-Normal 415-probe gene signa-
ture and the Tumor-vs-Adjacent 164-probe gene signature
respectively. Commonly enriched KEGGhuman pathways

include PPAR signaling pathway, Adipocytokine signal-
ing pathway, AMPK signaling pathway, ECM-receptor
interaction, Tyrosine metabolism, Drug metabolism -
cytochrome P450, Malaria, Fatty acid biosynthesis, and
Histidine metabolism. It is interesting to note that the
roles of PPAR signalling in cancer has been well docu-
mented in the literature [32, 33], and recently there is evi-
dence to suggest that PPAR signaling pathway may be an
important predictor of breast cancer response to neoad-
juvant chemotherapy [34], and the activation of PPAR
beta can inhibit human breast cancer cell line tumori-
genicity. Similarly the AMPK signaling pathway has also
been implicated in cancers [35–37], and there has been
significant research interest to target AMPK for cancer
prevention and treatment [38].

Gene signatures and connectivity mapping
From the Tumor-vs-Normal differential gene expression
analysis, 415 gene probes were selected as both statisti-
cally and biological significant. While theoretically it was
possible to include all these 415 genes into a single gene
signature to perform connectivity mapping, a gene sig-
nature of this length would return a very long list of
candidate drugs all connected to the gene signature some-
way or another. While the connections to these drugs
would be real reflection of some aspects of the biology
contained in the gene signature, the danger is that with a
large number of drugs returned, the key biological mes-
sage could be well buried into much fine details and thus
dilute the prominence of the key biological processes. On
a technical side, a gene signature with 415 genes is too
long to be handled efficiently by the QUADrATiC system
because of the computational demands. To achieve a feasi-
ble connectivity mapping analysis and also to increase the
robustness of the results obtained, we adopted a different
strategy tackling this problem. The idea is that our con-
fidence in the connectivity mapping results is increased
when non-overlapping gene signatures of the same bio-
logical states can return significant overlaps among the
candidate drugs. This is possible, because these non-
overlapping gene signatures capture different aspects of
the same biological states. In our analysis we divided the
415 genes into 5 non-joint sets of genes, 83 genes per
set, as determined by the following process. First these
415 gene were ordered by combined ranking based on
their p-values and fold changes. Then the genes at posi-
tions 1,6,11,16, · · · ,411 form the first set; similarly the
genes at positions 2,7,12,17, · · · , and 412 form the sec-
ond set; and so on and so that the last set of genes include
those at position 5,10,15,20, · · · , and 415. In this way,
we constructed 5 separate gene signatures for the Tumor
vs Normal comparison, and each consisting of a set of
equal distanced genes on the ordered list of 415 signifi-
cant genes. The distance between two consecutive genes
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is simply the number of distinct gene signatures to be con-
structed, which in the case of Tumor vs Normal is 5. In
general, gene signature i consists of genes at the positions
i, i+k, i+2k, i+3k, · · · i+(n-1)k, where k is the number of
distinctive gene signatures to compile, and n is the num-
ber of genes to be included in each gene signature. For
the Tumor vs Normal analysis, k = 5, n = 83. The full
list of these 415 genes can be found in Additional file 4;
and in Additional file 8 the 5 separate lists of 83 genes
are included, with each list consisting of genes equally dis-
tanced in their ranks. We then used each gene list as a
signature to query the core drug reference database, and
returned FDA drugs that were significantly connected to
the signature. If a drug turned out to be significantly con-
nected to all (or most) of those separate breast cancer
gene signatures, we would have much increased confi-
dence in this drug. We observed that non-overlapping
gene signatures returned overlapping drugs, which were
then further examined on their directions of association
with breast cancer risk (increase or reduce), and their
overall connection scores.
Connectivity mapping using these five gene signatures

resulted in five separate lists of drugs with their con-
nection scores and p-values obtained. These five lists of
drugs were combined and only the drugs that were sig-
nificant for at least 3 out the 5 signatures were selected
for further analysis. Furthermore, the connection scores
for any selected drugs must have the same sign across all
5 gene signatures. This ensured that the selected drugs
all have consistent directions of actions. Table 2 includes
the drugs with significant connections in all these five
input gene signatures. Additional file 9 provides a longer
list of top drugs, including significant drugs in at least
three out of five input gene signatures. Drugs which
appeared significant multiple times from different gene
signatures were considered to be very strong candidates
representing strong association with the disease state.
Z-scores indicate the direction of effects that the drug
could exert on the gene signature (hence the breast cancer
disease state). A positive z-score indicates the increased
risk of the drug on developing breast cancer whereas a
negative z-score indicates the treatment path. We were
looking for drugs that may alter the risk of breast can-
cer development, in this instance we found that a few
top drugs with negative z-scores are known to be used
for treating cancers. In particular, among the 26 com-
pounds listed in Table 2 with negative z-score, 14 of
them are known anti-cancer drugs. These are: cytarabine
(mean z score = -7.09), gemcitabine (-6.55), methotrexate
(-6.81), topotecan (-5.85), etoposide (-5.99), doxorubicin
(-4.76), amethopterin (-6.24), S1025 (-5.97), teniposide
(-5.01), 2-chloro-2’-deoxyadenosine (-4.43), azacitidine
(-5.16), aminolevulinic acid (-4.98), chlorambucil (-4.46),
and S1222 (-3.82). This increases the confidence on the

results obtained and moreover confirms the study has
been in the right direction. In the other direction of action,
7 out of 33 compounds listed in Table 2 have positive
z-scores, and therefore, they are candidate drugs pre-
dicted to increase breast cancer risk. These 7 drugs
are: sulfafurazole (mean z score = 6.26), dihomo-
gamma-linolenic acid (6.03) , minoxidil (5.75), cefotiam
hydrochloride (5.33), sulfacetamide (5.11), 9-cis retinoic
acid (5.11), and doxylamine succinate (4.59). The number
in the parenthesis following the drug name is the mean
connectivity z score as obtained from the QUADrATiC
connectivity mapping analysis. We searched these 7 drugs
against the list of Known and Probable Human Car-
cinogens [39] developed by the International Agency for
Research on Cancer (IARC) and the US National Toxicol-
ogy Program (NTP), but they were not found among the
carcinogens list. Their absence from the list of known car-
cinogens however does not mean that our predictions are
wrong. It may simply reflect the fact that these drugs are
approved medications still in use and their potential car-
cinogenesis property (as suggested by our study) is not
known yet. Further discussions on a few of these drugs
are provided in the Discussion section to suggest possible
mechanistic explanations why they could increase breast
cancer risk.
From the Tumor-vs-Adjacent differential gene expres-

sion analysis, 164 gene probes were selected as both sta-
tistically and biologically significant. Following a similar
procedure as described above, we divided these 164 sig-
nificant genes into 4 distinctive gene signatures, with the
parameters k = 4 and n = 41. The full list of these 164
significant genes and their split into 4 non-joint gene sig-
natures are provided in Additional file 5 and Additional
file 10, respectively. These gene signatures were then used
as input to the connectivity mapping process separately
and the results were combined to obtain the final list of
drugs. Additional file 11 provides a list of the top drugs
from this batch of connectivity mapping analysis, which
includes significant drugs in at least three out of four input
gene signatures.
Comparing the significant drugs obtained using the

Tumor-vs-Normal gene signatures and those using
Tumor-vs-Adjacent gene signatures, again there is a big
overlap between the two sets of significant drugs, 146
drugs for Tumor-vs-Normal, and 39 drugs for Tumor-
vs-Adjacent, which are listed in Additional files 9 and
11 respectively. In particular, 35/39 = 90% of drugs
returned using the Tumor-vs-Adjacent gene signatures
are included in the results obtained using the Tumor-
vs-Normal gene signatures. This probably reflects the
fact that there is a big overlap of genes between
the Tumor-vs-Normal 415-probe and Tumor-vs-Adjacent
164-probe gene signatures, as described in previous
sections.
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Table 2 Combined results of the significant drugs returned from sscMap using the 5 Tumor-vs-Normal gene signatures as queries

Compound Replicates Mean z p1 z1 p2 z2 p3 z3 p4 z4 p5 z5

budesonide 85 -7.78 2.00E-09 -6 1.20E-13 -7.41 1.70E-20 -9.28 9.60E-12 -6.81 6.00E-21 -9.39

menadione 364 -7.26 4.50E-12 -6.92 8.20E-18 -8.6 2.60E-10 -6.32 1.20E-12 -7.1 1.90E-13 -7.35

cytarabine 48 -7.09 8.70E-16 -8.04 2.00E-20 -9.26 5.90E-11 -6.55 3.30E-06 -4.65 3.80E-12 -6.95

methotrexate 10 -6.81 4.20E-11 -6.6 1.30E-18 -8.8 2.40E-09 -5.97 2.80E-09 -5.94 1.80E-11 -6.72

gemcitabine hydrochloride 107 -6.55 7.30E-12 -6.85 8.10E-20 -9.11 1.30E-10 -6.43 3.60E-06 -4.63 1.00E-08 -5.72

milnacipran 37 -6.39 1.40E-07 -5.26 5.10E-13 -7.22 7.90E-15 -7.77 2.20E-05 -4.24 1.00E-13 -7.44

sulfafurazole 34 6.26 2.60E-10 6.32 1.20E-08 5.7 6.50E-11 6.53 8.10E-05 3.94 1.60E-18 8.78

amethopterin 36 -6.24 2.20E-07 -5.19 7.10E-19 -8.87 8.00E-12 -6.84 2.20E-04 -3.69 4.30E-11 -6.59

dihomo-gamma-linolenic acid 52 6.03 3.50E-10 6.28 1.10E-06 4.88 8.80E-10 6.13 1.60E-05 4.32 1.10E-17 8.57

etoposide 35 -5.99 6.20E-08 -5.41 1.60E-20 -9.28 5.30E-07 -5.02 8.00E-07 -4.93 1.10E-07 -5.31

s1025 65 -5.97 5.80E-07 -5 1.60E-11 -6.74 1.70E-05 -4.3 3.00E-08 -5.54 1.50E-16 -8.25

auranofin 3 -5.92 2.90E-09 -5.94 2.00E-11 -6.7 1.20E-06 -4.85 1.10E-09 -6.1 1.70E-09 -6.02

topotecan hcl 23 -5.85 1.20E-09 -6.08 8.40E-11 -6.49 1.40E-06 -4.82 6.80E-07 -4.97 6.20E-12 -6.87

minoxidil 88 5.75 1.90E-09 6.01 2.40E-04 3.67 1.10E-11 6.79 1.20E-05 4.38 2.50E-15 7.92

dlotrimazole 47 -5.6 5.50E-09 -5.83 5.20E-11 -6.57 8.80E-07 -4.92 2.60E-06 -4.7 2.10E-09 -5.99

metaraminol bitartrate 10 -5.53 2.50E-09 -5.96 6.30E-06 -4.52 8.10E-16 -8.05 2.60E-05 -4.2 9.60E-07 -4.9

cefotiam hydrochloride 33 5.33 3.00E-10 6.3 7.30E-08 5.38 1.10E-06 4.88 1.90E-04 3.74 2.20E-10 6.34

azacitidine 12 -5.16 5.00E-05 -4.05 6.80E-11 -6.52 2.90E-07 -5.13 2.30E-07 -5.18 8.70E-07 -4.92

sulfacetamide 90 5.11 3.70E-06 4.63 3.50E-08 5.52 1.90E-07 5.21 2.10E-04 3.71 8.10E-11 6.5

9-cis retinoic acid 22 5.11 9.80E-07 4.9 7.80E-09 5.77 6.80E-08 5.4 1.60E-04 3.77 1.00E-08 5.73

teniposide 347 -5.01 8.30E-06 -4.46 2.50E-15 -7.91 1.60E-04 -3.77 4.70E-06 -4.58 1.30E-05 -4.36

aminolevulinic acid 44 -4.98 5.40E-05 -4.04 2.60E-10 -6.32 5.00E-05 -4.05 7.30E-04 -3.38 1.10E-12 -7.12

fluvastatin 107 -4.93 1.30E-04 -3.82 1.20E-10 -6.44 1.40E-06 -4.82 1.10E-05 -4.4 2.70E-07 -5.14

doxorubicin 159 -4.76 7.10E-08 -5.39 2.50E-09 -5.96 4.80E-04 -3.49 7.70E-05 -3.95 5.90E-07 -4.99

mometasone furoate 29 -4.74 1.40E-05 -4.35 3.00E-07 -5.12 4.80E-05 -4.06 1.90E-05 -4.27 4.00E-09 -5.88

desipramine hydrochloride 57 -4.61 1.60E-05 -4.32 3.00E-05 -4.17 8.30E-06 -4.46 9.30E-06 -4.43 1.60E-08 -5.65

doxylamine succinate 57 4.59 9.10E-07 4.91 1.30E-04 3.83 1.50E-05 4.33 2.30E-05 4.24 1.50E-08 5.66

sertraline hydrochloride 46 -4.55 9.60E-05 -3.9 2.00E-05 -4.27 1.70E-07 -5.23 2.20E-04 -3.69 1.60E-08 -5.65

diloxanide furoate 58 -4.52 4.80E-07 -5.03 3.50E-05 -4.14 9.80E-07 -4.9 3.80E-05 -4.12 1.00E-05 -4.41

chlorambucil 166 -4.46 8.60E-05 -3.93 4.50E-09 -5.87 1.80E-06 -4.77 1.50E-05 -4.33 7.10E-04 -3.39

2-chloro-2’-deoxyadenosine 49 -4.43 1.50E-05 -4.32 7.70E-08 -5.37 9.40E-06 -4.43 5.60E-04 -3.45 4.60E-06 -4.58

bacitracin 11 -4.11 8.10E-05 -3.94 9.30E-08 -5.34 4.00E-04 -3.54 1.30E-04 -3.82 8.70E-05 -3.92

s1222 66 -3.82 3.80E-04 -3.55 2.20E-06 -4.73 2.80E-04 -3.63 4.60E-04 -3.51 2.40E-04 -3.68

This table lists only those drugs that are significant for all these 5 signatures

From the Adjacent-vs-Normal differential expression
analysis, only 4 genes qualified through the filtering
criteria and were selected as both statistically and bio-
logical significant. This result suggests that the difference
between the two groups are not significant enough and the
two states could be considered as one. No further analysis
was performed based on this result.

Comparison to standard CMap02
The standard CMap approach does not deal with how
a query gene signature is created, but simply accepts

a list of selected gene probes (with their up or down
regulation status) as the input, however the probes were
selected. For comparison, we also carried out an anal-
ysis using the standard CMap approach, ie, Querying
the CMap02 [40] with the 415 gene probes as a sin-
gle input signature. The results are present in Table 3.
Figure 6 provides a Venn diagram comparing the sets
of compounds in the CMap and QUADrATiC systems,
and also the sets of significant drugs returned using the
5 disjoint 83-gene signatures with QUADrATiC and that
using a single 415-gene signature with CMap. As can be
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Table 3 The results of the significant drugs returned from querying the original CMap02 (https://portals.broadinstitute.org/cmap/)
using the Tumor-vs-Normal 415-gene signature as input

Rank Compound name Mean n Enrichment p p*N (= 929) FDR

1 adiphenine 0.813 5 0.958 0 0 0

2 resveratrol -0.752 9 -0.857 0 0 0

3 genistein 0.331 17 0.57 0 0 0

4 trichostatin A -0.388 182 -0.264 0 0 0

5 aciclovir 0.65 6 0.853 0.00002 0.019 0.004

6 0175029-0000 -0.67 6 -0.819 0.0001 0.093 0.015

7 etiocholanolone 0.598 6 0.794 0.00018 0.167 0.024

8 guanabenz 0.63 5 0.841 0.00024 0.223 0.028

9 phenoxybenzamine -0.816 4 -0.892 0.00026 0.242 0.027

10 nadolol 0.715 4 0.881 0.00028 0.260 0.026

11 podophyllotoxin 0.741 4 0.881 0.00028 0.260 0.024

12 pHA-00745360 0.504 8 0.682 0.00038 0.353 0.029

13 felbinac 0.711 4 0.869 0.0004 0.372 0.029

14 meticrane -0.663 5 -0.822 0.00042 0.390 0.028

15 levonorgestrel -0.638 6 -0.746 0.00052 0.483 0.032

16 prestwick-1103 0.691 4 0.857 0.00056 0.520 0.033

17 8-azaguanine -0.765 4 -0.865 0.00062 0.576 0.034

18 dL-thiorphan -0.821 2 -0.983 0.00068 0.632 0.035

19 tranexamic acid 0.616 5 0.802 0.0007 0.650 0.034

20 medrysone -0.658 6 -0.726 0.00085 0.790 0.039

21 chlorpromazine -0.494 19 -0.429 0.001 0.929 0.044

ascertained from this figure, between the CMap collection
of reference profiles (for 1309 small molecule compounds)
and the QUADrATiC collection of reference profiles (for
1349 FDA approved drugs), there are 464 common com-
pounds. Out of these 464 common drugs, the standard
CMap approach returned 8 significant drugs. These are:
phenoxybenzamine (CMap mean score = -0.816), gua-
nabenz (0.63), podophyllotoxin (0.741), tranexamic-acid
(0.616), levonorgestrel (-0.638), nadolol (0.715), chlor-
promazine (-0.494), and medrysone(-0.658). The number
in the parenthesis following the compound name is the
mean connectivity score as obtained from the CMap02
web server. Note that the mean scores from CMap02 are
not to be compared with the connectivity z scores from
QUADrATiC; the signs of both types of scores neverthe-
less are comparable. For those 4 compounds with negative
CMap mean scores, phenoxybenzamine, levonorgestrel,
chlorpromazine, and medrysone, there is currently no
literature evidence to suggest they have anti-cancer
properties.
Out of the same set of 464 common drugs, the new

approach developed here returned 13 significant drugs.
These are: minoxidil (mean z = 5.75), bacitracin (-4.11),

methotrexate (-6.81), fluvastatin (-4.93), azacitidine
(-5.16), chlorambucil (-4.46), doxorubicin (-4.76),
etoposide (-5.99), sulfafurazole (6.26), clotrimazole (-5.6),
sulfacetamide (5.11), budesonide (-7.78), and menadione
(-7.26). There are no overlap between these 13 drugs
and those 8 drugs from CMap02 above, but the new
approach picked up some drugs already known to be
anti-cancer drugs (methotrexate, azacitidine, chloram-
bucil, doxorubicin, and etoposide, which are briefly
discussed in the “Discussion” section), and importantly
their connection scores were all negative. This demon-
strates that the new approach picked up compounds
that are confirmed relevant to the current study. On the
other hand, the standard CMap approach picked a few
drugs that are known to have anti-cancer effects or have
been investigated for such properties, eg, resveratrol
(-0.752) and trichostatin A (-0.388). But these drugs
are not represented in the QUADrATiC because they
are not already FDA approved. This indicates that both
approaches can be used complementarily to each other.
For the purpose of screening medications (which have to
be approved drugs), the approach developed here is more
appropriate.

https://portals.broadinstitute.org/cmap/
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Fig. 6 Comparison of the numbers of compounds in the CMap and
QUADrATiC systems, and the numbers of significant drugs returned
using the 5 disjoint signatures with QUADrATiC and that using a
single 415-gene signature with CMap. Blue ellipse: The set of small
molecule compounds that were used to generate the CMap
reference gene expression profiles. Red ellipse: The set of CMap
compounds that are significantly connected to the single 415-gene
signature as obtained from CMap; Yellow ellipse: The set of FDA
approved drugs that are included in the reference gene expression
profiles of QUADrATiC; Green ellipse: The top ranked FDA approved
drugs that are significantly connected to all 5 sub-signatures used to
query QUADrATiC. This is a set of drugs listed in Table 2

Comparison to random division of sub-signatures
With regard to the creation of non-overlapping gene sig-
natures from the combined list of ranked DEGs, here
we adopted the method of an equal-distanced partition
of these ranked candidate genes. There could be other
ways of partitioning the candidate DEGs, for example,
by random division of the DEGs into k sub-signatures.
Of course, the equal-distance partition method is only a
special realization of the more general random partition
method. In principal, when the random division method
is repeated many times, the overall results would be more
sytematic and less dependent on any one specific division
of the DEGs. However, for each random division of the
DEGs, the connectivity mapping analyses still need to be
conducted using our QUADrATiC system. The amount
of manual input involved and the computational loads in
each run prohibited us from adopting this fully systematic
approach. Nevertheless, we did perform a small number
of runs of the random partition of DEGs followed by con-
nectivity mapping. With the same procedure as for the
equal-distance partitioned sub-signatures, each run with
a random division of sub-signatures provided list of drugs
that are significantly connected to at least 3 out 5 sub-
signatures. The drugs are then ranked according to their
percentage of times they are significant in those individ-
ual runs. The top drugs returned this way had a significant

overlap with the ones from the equal-distance division
method. As can be seen from Fig. 7, the equal distance
division method returned 146 significant drugs (repre-
sented by the blue ellipse labeled as TN3of5sigs in the
figure); while random division of sub-signatures method
with 20 repeats (TN-20x5CVsigs) returned 82; and with
40 repeats (TN-40x5CVsigs) the number of significant
drugs returned is 87. First of all, the overlap between
the two series of random division runs is 74/82 = 90%
of the TN-20x5CVsigs results or 74/87 = 85% of TN-
40x5CVsigs results, suggesting that these results are quite
stable although they were different realizations of ran-
dom division runs. Secondly, except for a small number
of drugs (3 in the case of TN-20x5CVsigs, or 4 in the
case of TN-40x5CVsigs), almost all those 82 (or 87) sig-
nificant drugs returned from the random-divisionmethod
TN-20x5CVsigs (TN-40x5CVsigs) were part of the 146
significant drugs returned by the equal-distance division
method TN3of5sigs. This suggests that the equal-distance
partition method gives results that are highly consistent
with that from the more systematic but more expen-
sive random division methods. So on balance, the equal-
distance division methods seems to provide a feasible and
reliable solution. Furthermore, those top ranked drugs
from the equal distance-division method (TN5of5sigs,

Fig. 7 Comparison of significant drugs obtained from the
equal-distance division sub-signatures versus those from systematic
5-fold random division sub-gene signatures. Blue ellipse: The set of
drugs that are significantly connected to 3 out of 5 of equal-distance
division sub-signatures in the connectivity mapping analysis. Red
ellipse: The top 33 drugs from the equal-distance division method of
sub-signatures. This is a set of drugs reported in Table 2; Green ellipse:
Result obtained from 20 repeats of the random division of sub-
signatures. Enclosed in this ellipse are drugs that are significant in 19
out of the 20 runs (95%); Yellow ellipse: Result obtained from another
40 repeats of the random division of sub-signatures. Enclosed in this
ellipse are drugs that are significant in 38 out of the 40 runs (95%)
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33 drugs) are all identified by both series of the TN-
20x5CVsigs and TN-40x5CVsigs runs with no exception,
therefore corroborating their high ranks among the 146
drugs from TN3of5sigs. Taken together, the various novel
procedures developed in this study greatly enhanced our
confidence in the final significant drugs obtained.

Discussion
Previously in our research effort on gene expression con-
nectivity mapping and its application, we developed sev-
eral techniques to enhance the robustness of the results
of the drugs returned, for example, the gene signature
perturbation approach developed in [41] and the gene sig-
nature progression approach developed in [42]. As com-
pared to the gene signature perturbation approach, the
procedure implemented in this work represents very dif-
ferent strategy to increase the robustness of the results.
The input gene signatures in the perturbation approach
were mostly similar; in fact, any two input gene signatures
in that approach only differed by one single gene probe,
hence the term “perturbation” (only minor/small change;
and keeping the overall original shape). The approach in
this paper, however, is dramatically different. There is no
single gene overlaps between any input gene signatures
used in the current approach. Yet they can still return
a significant number of common drugs. This is possible
because of the underlying biology, and these input gene
signatures simply reflect different aspects of the same
biological state or process.
The top significant drugs listed in Table 2 includes 26

with negative connectivity z scores, suggesting they have
potential to suppress the breast cancer disease state. Reas-
suringly, 14 out of these 26 are already known to be anti-
cancer drugs, providing strong evidence to support the
validity of the findings here. It is interesting to note that
5 of these 14 anti-cancer drugs: methotrexate, azacitidine,
chlorambucil, doxorubicin, and etoposide are actually
present in the CMap02 collection of reference profiles, but
they were not picked up by the standard CMap approach
as significant drugs. This shows the unique value provided
by the new approach developed in this paper. Here we
briefly discuss a few of these significant drugs returned.
Methotrexate is one of the most widely studied ther-

apeutics agents, an antineoplastic antimetabolite with
immunosuppressant properties. It is effective to treat
autoimmune diseases such as rheumatoid arthritis and
many types of cancers [43]. Methotrexate is known to
interferes with folate metabolism, mainly through inhibit-
ing folic acid reductase, leading to inhibition of DNA
synthesis and cellular replication, to exert its anti-tumor
activity [44]. There is also evidence to suggest that
methotrexate may additionally exert its anti-cancer activ-
ities through other molecular targets, such as the inhi-
bition of histone deacetylase (HDAC) [45]. Methotrexate

is widely used in chemotherapy, either alone or in com-
bination with other agents for the treatment of a num-
ber of cancers including breast cancer, lung cancer and
leukemia.
Azacitidine is a chemical analog of cytidine, a pyrimi-

dine nucleoside in DNA and RNA. This drug is approved
in the USA for the treatment of all subtypes of myelodys-
plastic syndrome (MDS) [46] and is approved in many
other countries (eg the European Union and Australia)
for AML (Acute Myeloid Leukaemia) patients not eligi-
ble for a stem cell transplant [47]. Azacitidine inhibits
DNA methyltransferase, causing DNA hypomethylation,
which in turn may restore normal function of aber-
rantly silenced tumor suppressor genes, underlying azac-
itidine’s antileukemic activity [48]. Azacitidine may also
exert its antileukemic effects by causing direct cytotoxic-
ity on abnormal hematopoietic cells in the bone marrow,
through its incorporation into cellular nucleic acid [49],
leading to inhibition of protein synthesis, DNA damage,
and cell death.
Among the list of 33 compounds in Table 2, the

7 compounds with positive connectivity z-scores are:
sulfafurazole, cefotiam hydrochloride, sulfacetamide, 9-
cis retinoic acid, minoxidil, doxylamine succinate, and
dihomo-gamma-linolenic acid. Of these 7 compounds,
sulfafurazole, cefotiam hydrochloride, and sulfacetamide
are anti-bacterial agents that are used to treat various bac-
terial infections. Currently there is no reported studies
investigating their carcinogenic effect. 9-cis retinoic acid
(also known as alitretinoin) is an active metabolite of vita-
min A. It is approved by FDA for topical treatment of
cutaneous lesions in patients with AIDS-related Kaposi’s
sarcoma. This compound binds to and activates intracel-
lular retinoid receptors, which then act as transcription
factors, to control the process of cellular differentiation
and proliferation in both normal and neoplastic cells [50].
In recent year, 9-cis retinoic acid and its isomer all-trans
retinoic acid have been investigated mainly as therapeu-
tic agents for different types of cancers, including human
breast cancer [51–53]. Further research is needed to gain
a better understanding why this compound consistently
attained positive connectivity scores with the breast can-
cer signatures in the current study.
Minoxidil is a compound used in regrowing gradually

thinning or loss hair, especially a hair growth product
after chemotherapy. The relationship between the use of
minoxidil and the risk of developing breast cancer has
already been an active topic of discussion. Minoxidil is a
potassium channel opener or activator [54], where potas-
sium channels are known to play a key role in breast
cancer proliferation [55]. In particular there were in vitro
evidence to show that minoxidil as a potassium channel
opener stimulated growth of MCF-7 human breast can-
cer cells [56] as well as PC3 human prostate cancer cells
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[57]. Taken together, thesemight point to a possiblemech-
anistic explanation why minoxidil could be an enhancing
factor for breast cancer development as indicated by the
connectivity mapping results in the current study.
Doxylamine succinate is a first-generation antihis-

tamine used to relieve symptoms of allergy, hay fever,
and the common cold. Notably doxylamine in combina-
tion with vitamin B6 (pyridoxine) is prescribed to prevent
morning sickness in pregnant women. In recent years,
there has been some discussion on whether doxylamine-
pyridoxine should continue to be used for nausea and
vomiting of pregnancy because some conflicting evidence
links doxylamine-pyridoxine use to pyloric stenosis and
childhood malignancies [58].
Dihomo-gamma-linolenic acid (DGLA) is an uncom-

mon fatty acid used for nutritional supplementation and
for treating dietary shortage or imbalance. DGLA has
been shown to reduce the production/activity of tumor
necrosis factor alpha (TNFα) [59], while TNFα is impli-
cated in both apoptosis and cell proliferation, thus hav-
ing a paradoxical role in anti-cancer activity and tumor
promotion [60]. DGLA is made in the body by the elon-
gation of gamma-linolenic acid (GLA). Evening primrose
oil (EPO) contains high amounts of GLA, which has tra-
ditionally been used for a range of ailments, commonly
premenstrual and menopausal symptoms in women, par-
ticularly breast pain, and some skin disorders such as
eczema despite the lack of evidence for its effectiveness in
such disorders [61, 62].
The few compounds discussed here are used for vari-

ous purposes, though they are prone to uses by women at
different stages of their lives, which makes it particularly
relevant to investigate the potential impact of these drugs
in the development of breast cancer.

Conclusions
In this work, we developed an integrated meta-analysis
approach to screening medications for their potentials to
alter disease risks through connectivity mapping, using
breast cancer as a case study. This approach involved uni-
fied processing and normalization of raw gene expression
data, systematic removal of batch effects, and multiple
runs of balanced sampling for differential expression anal-
ysis, which provided high quality inputs to subsequent
connectivity mapping analysis. There, our novel idea was
that non-overlapping gene signatures returning overlap-
ping significant drugs was a confidence booster of the
connectivity mapping results and also a confirmation of
the quality and relevance of the input gene signatures.
This was underpinned by the fact that those non-joint
gene signatures actually represented different aspects of
the same biological states, and hence enabled them to
retrieve from connectivitymapping separate lists of candi-
date drugs with significant overlaps. Consequently, we can

have high confidence in the top drugs’ predicted effects on
breast cancers. Of particular note, among the top 26 com-
pounds identified as inversely connected to breast cancer,
14 of them are known anti-cancer drugs. A few candidate
drugs with potential to enhance breast cancer or increase
the risk of the disease were also identified; further investi-
gation on a large population is required to firmly establish
their effects on breast cancer risks. In conclusion, this
work presents novel ideas for the creation of gene signa-
tures and for connectivity mapping analysis, and provides
a paradigm for identifying medications with potential to
alter cancer risks through gene expression connectivity
mapping.
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