
RESEARCH ARTICLE Open Access

Modeling, validation and verification of
three-dimensional cell-scaffold contacts
from terabyte-sized images
Peter Bajcsy1*† , Soweon Yoon1,6†, Stephen J. Florczyk2,4†, Nathan A. Hotaling5*†, Mylene Simon1,
Piotr M. Szczypinski3, Nicholas J. Schaub2, Carl G. Simon Jr2, Mary Brady1 and Ram D. Sriram1

Abstract

Background: Cell-scaffold contact measurements are derived from pairs of co-registered volumetric fluorescent
confocal laser scanning microscopy (CLSM) images (z-stacks) of stained cells and three types of scaffolds (i.e., spun
coat, large microfiber, and medium microfiber). Our analysis of the acquired terabyte-sized collection is motivated
by the need to understand the nature of the shape dimensionality (1D vs 2D vs 3D) of cell-scaffold interactions
relevant to tissue engineers that grow cells on biomaterial scaffolds.

Results: We designed five statistical and three geometrical contact models, and then down-selected them to one
from each category using a validation approach based on physically orthogonal measurements to CLSM. The two
selected models were applied to 414 z-stacks with three scaffold types and all contact results were visually verified.
A planar geometrical model for the spun coat scaffold type was validated from atomic force microscopy images by
computing surface roughness of 52.35 nm ±31.76 nm which was 2 to 8 times smaller than the CLSM resolution. A
cylindrical model for fiber scaffolds was validated from multi-view 2D scanning electron microscopy (SEM) images.
The fiber scaffold segmentation error was assessed by comparing fiber diameters from SEM and CLSM to be
between 0.46% to 3.8% of the SEM reference values. For contact verification, we constructed a web-based visual
verification system with 414 pairs of images with cells and their segmentation results, and with 4968 movies with
animated cell, scaffold, and contact overlays. Based on visual verification by three experts, we report the accuracy of
cell segmentation to be 96.4% with 94.3% precision, and the accuracy of cell-scaffold contact for a statistical model
to be 62.6% with 76.7% precision and for a geometrical model to be 93.5% with 87.6% precision.

Conclusions: The novelty of our approach lies in (1) representing cell-scaffold contact sites with statistical intensity
and geometrical shape models, (2) designing a methodology for validating 3D geometrical contact models and (3)
devising a mechanism for visual verification of hundreds of 3D measurements. The raw and processed data are
publicly available from https://isg.nist.gov/deepzoomweb/data/ together with the web -based verification system.
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Background
The problem of 3D contact measurements between a cell
and its surrounding scaffold is related to co-localization of
two objects from dual-color fluorescent microscopy z-
stacks [1–4] where each channel is imaged to excite either
cell or scaffold stain. The z-stacks are 3D images formed
by a set of uniformly-spaced cross-sectional 2D images
along a z-axis. In general, co-localization refers to the
spatial overlap of at least two fluorescent labels (staining
dyes) emitting distinct wavelengths. The mathematical
definition of the spatial overlap in volumetric data (z-
stacks) can be viewed as a co-occurrence of two labels at
the same or neighboring locations, or as a correlation of
intensities at the co-occurring locations. In this work, we
use the term 3D contact to refer to the co-occurrence of
fluorescent labels because of our interest in measuring the
shape of cell-scaffold spatial interactions.
The shape measurements of cell-scaffold contacts are

important for tissue engineers that grow cells on a var-
iety of biomaterial scaffolds. One of the many challenges
in growing cells is to discover how cellular processes
(for instance, differentiation and proliferation) and cell
shape changes are coordinated during morphogenesis
[5]. In the past, it has been reported that (1) a type of
scaffold drives the cell shape [6, 7], and (2) scaffold sub-
strate effects on the shape of human bone marrow stro-
mal cells (hBMSCs) can influence their behavior and
differentiation [8–11]. However, there is a lack of under-
standing of the relationship between cell shape and cell-
scaffold contact shape, and how these measurements
may serve as predictors of cell differentiation fate. The
biological motivation is illustrated in Fig. 1.

Current approaches to designing 3D scaffold niches
focus on assessing the effect of a design for a desirable
cell function, such as proliferation, expansion, or differ-
entiation towards a target lineage. Although this
approach is very useful, it does not enable a reasoned
approach to scaffold design where the scaffold is con-
structed to drive the cells into a particular morphology
that will preferentially guide the cells towards the
desired function. Although there is extensive evidence
linking cell shape and function [10, 12–14], there is a lack
of quantitative data regarding the 3D morphology of cell-
material interactions in biomaterial scaffolds. In order to
address these issues, the 3D shape of contacts between
scaffolds and primary human bone marrow stromal cells
(hBMSCs) was quantitatively evaluated in three biomate-
rial substrates made from poly(lactic-co-glycolic acid)
(PLGA): Spun Coat (SC), Medium Microfibers (MMF)
and Large Microfibers (MF). hBMSCs were used for this
study because of their clinical relevance to tissue
engineering and regenerative medicine [15] and due to the
intense interest in guiding their behavior through environ-
mental cues [12, 16–22]. The three chosen substrates
make an interesting system to study because fibrous
scaffolds (MF and MMF) have been observed to drive
osteogenic differentiation of hBMSCs while the flat
substrates did not [9, 11, 22]. By constructing all three
substrates from the same material (PLGA), the effect of
substrate structure could be studied in the absence of
changes in composition. A 24 h cell culture time point
was selected for imaging to give the cells enough time to
achieve a stable morphology but not so much time that
the cells had proliferated or differentiated.

Fig. 1 Biological motivation behind the cell-scaffold contact measurements

Bajcsy et al. BMC Bioinformatics  (2017) 18:526 Page 2 of 23



Although tissue engineers aim to improve scaffold
design in order to guide cell behavior, the role of the
geometry of cell-scaffold contacts has not been
adequately considered. Cell shape is dictated by the
geometry of cell matrix contacts as the cell can only
spread and adhere to the matrix which surrounds it. In
addition, cell-adhesion sites, often described as focal
adhesions, may trigger signaling events that guide gene
expression and cell behavior. Thus, the geometry and
spacing of cell adhesion sites will influence gradients
and timing of these signaling events. For these reasons,
tissue engineers can benefit from 3D mapping of cell-
scaffold contact sites in order to generate new insights
for designing scaffolds that guide cell function. For ex-
ample, cell shape alone might not convey information
about cell-scaffold contact surface for cells residing on
hydrophobic versus hydrophilic scaffolds with the same
geometry. Nevertheless, such contact measurements
have not been acquired due to the complexity of these
measurements as they require information about both
the cell and the scaffold. Our motivation for the work
comes from the need to design a measurement method-
ology for cell-scaffold contact sites so that cell differenti-
ation fate can be reliably predicted.
Several challenges of measuring cell-scaffold contact

shapes can be summarized as follows:

(1)Our insufficient knowledge about the spatial and
intensity statistics as well as geometry of foreground
objects (cell membrane, scaffold) limits our ability to
detect foreground reliably (see Fig. 2a).

(2)The difficulties in acquiring orthogonal cell-scaffold
contact measurements and validating automated
analytical algorithms constrain our measurement
confidence (i.e., orthogonal measurements refer to
those physics-based methods that are based on other
than fluorescent imaging modality).

(3)Large RAM (random access memory) requirements
(≈3 GB just to load the pair of input z-stacks) and
large data volume (>1 TB) impose computational
and execution time burden on the analyses.

(4)Fluorescent staining dyes emit light at overlapping
wavelength ranges which introduces intensity
bleed-through across cell and scaffold co-registered
z-stacks (see Fig. 2b). This leads to a bias in co-loca-
lization (i.e., locations of a stained cell have higher
intensity values in a scaffold channel than back-
ground and vice versa).

(5)Design of an efficient and geographically accessible
visual verification system of complicated 3D contact
shapes over several hundreds of z-stacks is difficult.

The specific problem addressed in this work can be
formulated as a design of a measurement methodology
for cell-scaffold contacts over terabyte-sized collections
of dual-color fluorescent confocal microscopy z-stacks.
Following the past work [7], the measurement method-
ology consists of three components:

(1)Modeling of (a) an object of interest (cell or scaffold)
in each z-stack for foreground segmentation and (b)
a cell-scaffold contact based on the relative spatial
positions of the segmented objects.

(2)Validation of the accuracy of segmentation and
contact models.

(3)Verification of several hundreds of automatically
detected cell-scaffold contacts through visual
inspection.

The experimental design includes three types of
scaffolds (SCMFMMF), eight cell-scaffold contact
methods, and three human experts performing verifi-
cation. Figure 3 shows one example of a pair of cell
and scaffold z-stacks. These three scaffolds represent
geometries that cause cells to have contacts with
scaffolds at one or multiple z-planes (SP – one con-
tact plane, MF and medium MMF – larger than 3
contact planes).
We approach the design problem for the three-

component measurement methodology by addressing chal-
lenges specific to each component as summarized in
Table 1. The modeling challenges related to our insufficient

(a) (b)
Fig. 2 Examples of one field of view with (a) multiple cells in proximity and (b) bleed-through from cell channel to microfiber channel
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knowledge about statistics and geometry of foreground ob-
jects are approached as an optimization problem over a set
of statistical and geometrical models. The modeling chal-
lenges also include large RAM and execution time require-
ments due to the terabyte-sized data collection. To alleviate
these challenges, the regions of interests (ROIs) are cropped
from each image z-stack such that all cells and their sur-
rounding scaffold are included. The validation challenges
related to the difficulties in acquiring physics-based orthog-
onal cell-scaffold contact measurements are addressed by
using Scanning Electron Microscopy (SEM) and Atomic
Force Microscopy (AFM). Finally, the verification chal-
lenges related to raw and processed data quality due to
complicated 3D contact shapes are handled by designing a

web-based visual inspection system that accommodates
verification time and accuracy tradeoffs.
Our work on modeling, validation and verification can

be related to the published methods that focus on the
problems of co-localization, foreground modeling, 3D
segmentation validation, and verification of 3D contacts
at large scale. The past work is summarized in Table 2
together with the relationship to our presented work.
Detailed descriptions of related work can be found in
Additional file 1.
Based on the reviewed related work, the novelty and

contributions of our work come from:

(1)creating and optimizing cell-scaffold contact repre-
sentations that incorporate five statistical and three
geometrical models,

(2)designing a methodology for validating fiber
segmentation using reference SEM and fluorescent
confocal measurements of single fibers, and

(3)devising a mechanism for rapid visual verification of
hundreds of 3D measurements.

An additional contribution comes from the fact that
we created the largest collection of 3D cell-scaffold mea-
surements in the bio-manufacturing community. The
data are available at https://isg.nist.gov/deepzoomweb/
data and the web-based verification system for cell seg-
mentation and cell-scaffold contacts is available at
https://isg.nist.gov/CellScaffoldContact/app/index.html.
The main manuscript presents materials and methods,

experimental results, discussion of quantitative and quali-
tative results, and conclusions. The appendices contain
the detailed description of related work (Additional file 1),
cell segmentation algorithm (Additional file 2), model for
cropping contact regions of interest (Additional file 3),
statistical model of background (Additional file 4),
statistical models for segmenting all scaffold types
(Additional file 5), algorithms based on statistical models
for segmenting all scaffold types (Additional file 6), algo-
rithm based on planar geometrical model for segmenting
spun coat scaffolds (Additional file 7), algorithms based

Fig. 3 A pair of cell and scaffold z-stacks for the microfiber scaffold type

Table 1 Summary of problems in cell-scaffold contact
measurements and our approaches

Challenges Approach

How to model cell,
scaffold, and cell-scaffold
contact from two-channel
z-stacks?

Design statistical and geometrical models
for segmentation

Use the law of total probability in
statistical models, and geometrical
intersections in geometrical
models for cell-scaffold contact detection

How to validate
geometrical cell-scaffold
contact models and assess
the accuracy of all contact
models?

Validate cylindrical and planar
geometrical models using multi-view
SEM and AFM measurements

Assess the accuracy of all models
applied to CLSM z-stacks by comparing
single fiber radius measurements derived
from CLSM z-stacks against the reference
values extracted from SEM images

How to handle RAM and
processing time
requirements for
TB-sized z-stack collection?

Reduce the amount of data to be
processed by cropping ROIs defined
by cell bounding boxes and reduce
the processing time by utilizing
parallel processing

How to verify quality of 3D
contact measurements
over several hundreds of
[cell, scaffold] pairs of z-
stacks?

Design a web system for visual verification
using three orthogonal max 2D projections
of cell and its segmentation, and six
movies combining dynamic rotations of
contacts and information layers of 3D
cell-scaffold-contact per [cell, scaffold] pair
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on cylindrical geometrical models for segmenting fiber
scaffolds (Additional file 8), evaluations of goodness-to-fit
for planar model used for modeling spun-coat scaffolds
(Additional file 9), and validation steps based on 2D SEM
and 3D CLSM data of single fibers (Additional file 10).

Methods
Although we focus on shape metrology, one could
view the materials and methods as a foundation for
answering a question: “How would cell, scaffold, and
cell-scaffold interaction shape characteristics affect
cell fate (differentiation and proliferation)?” Answering
this and other related questions is the driving factor
behind the next sections.

Materials
The materials and digital data are divided into a set sup-
porting cell-scaffold contact measurements and a set ac-
quired for algorithmic validation purposes.

Cell-scaffold contact measurements
In this paper, the data acquisition focuses on the mea-
surements establishing the effect of scaffold types on cell
morphology and on cell behavior. The data sets are ac-
quired by CLSM as images (z-stacks) of cells cultured
on three different scaffolds. The three scaffolds are de-
scribed in Table 3.

Cell preparation Primary human bone marrow stromal
cells (hBMSCs, Tulane Center for Gene Therapy, donor
#8004 L, 22 yr. male, iliac crest) were cultured in medium

(α-MEM containing 16.5% by vol. fetal bovine serum,
4 mmol/L L-glutamine, and 100 units/mL penicillin and
100 μg/mL streptomycin) in a humidified incubator (37 °C
with 5% CO2 by vol.) to 70% confluency, trypsinized
(0.25% trypsin by mass containing 1 mmol/L ethylenedi-
aminetetraacetate (EDTA), Invitrogen) and seeded
onto substrates (scaffolds) at passage 4. SC, MF and
MMF substrates (see Table 3) were placed in multi-
well plates and cells suspended in medium were
seeded onto them at a density of 1250 cells/cm2.
hBMSCs were cultured for 1 day for all treatments
prior to imaging. After 1 day, culture, cells on
scaffolds were fixed with 3.7% (vol./vol.) formaldehyde
and stained for cell membrane (5 μmol/L Oregon-
Green maleimide, Life Technologies) and nucleus
(0.03 mmol/L 4′,6-diamidino-2-phenylindole, DAPI,
Life Technologies). More than 100 cells were imaged
per scaffold type to provide statistically meaningful
results.

Table 2 Relationship of past work to our approach. The abbreviations of imaging modalities refer to scanning electron microscopy
(SEM), confocal laser scanning microscopy (CLSM), X-ray micro-computed tomography (μCT), and selective plane illumination
microscopy (mSPIM)

Past Work Relationship to our approach

Co-localization detection Co-localization detection

• Spatial image cross-correlation spectroscopy (ICCS) [1–4] - Pearson,
Spearman’s rank.

• ICCS is not applicable since it does not capture spatial information.

• Replaced manual segmentation with automated object-based analysis.
• Object-based analysis [35] with manual segmentation.

Foreground modeling Foreground modeling

• Statistical: scatterplot of two channel intensities [4] with a single
model.

• Statistical: used scatterplot with optimization over multiple statistical
models.

• Geometrical: fiber segmentation based on many software packages
including IvanTK, NeuronJ, Simple Neurite Tracer, Vaa3D, and Vascular
Modelling Toolkit (VMTK).

• Geometrical: could not use existing software designed for vascular or
brain structures (not fiber scaffolds), and some software worked only
in 2D and required manual identification of end points.

Validation of 3D Segmentation Validation of 3D Segmentation

• Manual reference [36–41]. • Manual reference is hard to create for 3D objects.

• Orthogonal measurements using μCT, SEM and CLSM [42], and
mSPIM [43].

• Used orthogonal measurements of a single fiber imaged via
multi-view 2D SEM and 3D CLSM.

Visual verification of 3D contacts at large scale Visual verification of 3D contacts at large scale

• Not aware of any previous work. • We designed a web system with three orthogonal max projections
and 6 animated movies per contact.

Table 3 Scaffold type abbreviations and descriptions

Scaffold Name and
Abbreviation

Scaffold Material Description

Spun Coat (SC) Flat films of spun-coat Poly lactic-co-glycolic
acid (PLGA)

Large Microfibers (MF) Electrospun PLGA microfibers (diameter
equal to 2.6 μm)

Medium Microfibers
(MMF)

Electrospun PLGA microfibers (diameter
equal to 1.1 μm)
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Scaffold preparation The MMF and MF scaffolds for
cell culture were created by electrospinning a blend of
two types of poly(lactic-co-glycolic acid) (PLGA): using
the same polymer mixture for the MMF and MF treat-
ments. The polymer mixture was 90% mass fraction PLGA
Poly lactic-co-glycolic acid (PLGA 50:50 M ratio of L to G,
relative molecular mass ≈110,000 g/mol, Lactel Absorbable
Polymers) and 10% mass fraction PLGA-Flamma Fluor
FKR648 (PLGA 50:50 M ratio of L to G, relative molecular
mass ≈25,000 g/mol, Flamma Fluor FKR648 ester- linked
to the PLGA, Akina Inc., Polyscitech). Flamma Fluor
FKR648 was covalently bound to the PLGA via an ester
linkage to prevent leaching into the cell culture medium.
For MF scaffolds, the PLGA/PLGA-FKR648 blend was dis-
solved in 3:1 acetone: ethyl acetate and electrospun
(18 gauge steel needle, 2.3 ml/h, tip to collector dis-
tance of 15 cm, aluminum foil target) at 14 kV (high
voltage generator, ES30P-5 W, Gamma High Voltage
Research) to yield monodisperse PLGA nanofibers.
For MMF scaffolds, the PLGA/PLGA-FKR648 blend
was dissolved in acetone and electrospun (22 ga. steel
needle, 1.25 mL/h, tip to collector distance of 15 cm,
aluminum foil target) at 12 kV (high voltage gener-
ator, ES30P-5 W, Gamma High Voltage Research) to
yield monodisperse PLGA nanofibers. For scanning
electron microscope (SEM) imaging the PLGA mats
were removed from the foil and cut into 5 mm ×
5 mm squares.

Imaging The samples were imaged with CLSM (Leica
SP5 II, Leica Microsystems) using a 63× water-
immersion objective (numerical aperture 0.9, 1 Airy
unit). Prior to imaging, cell culture medium was
removed and replaced with phosphate buffered saline
(PBS) to reduce the background fluorescent signal. A
z-stack with two channels was collected for each of
711 cells. The two channels corresponded to cell
membrane (Oregon-Green - excitation 488 nm,
emission 501 nm to 570 nm) and fiber scaffold
(Flammafluor648 - excitation 633 nm, emission
652 nm to 708 nm). We also collected a single image
of nucleus (DAPI - excitation 405 nm, emission
413 nm to 467 nm) to confirm that measured objects
were cells (objects without a nucleus were discarded).
Based on the manufacturer’s defined resolution for
the 63× objective (XY = 217 nm and Z = 626 nm for
488 nm wavelength), we defined our acquisition fluor-
escent voxel dimensions in X, Y and Z respectively at
0.12 μm × 0.12 μm× 0.462 μm [2048 pixels × 2048
pixels in X and Y, up to 175 frames in Z]. Each
z-frame in the z-stacks was exported as an 8 MB tif
image with a resolution of 2048 pixels × 2048 pixels
(246 μm× 246 μm) and 16 bits per pixel. Examples of
z-frame tif images are shown in Fig. 4.

Data summary and quality assurance The data collec-
tion initially generated z-stacks of 711 z-stacks of [cell,
scaffold] pairs that were visually inspected. We kept only
z-stacks with individual hBMSCs that were not touching
other cells so that the contact measurements are per
cell. Out of the initial 711 pairs, we eliminated 259 pairs
due to out-of-stack cells (automated cell localization and
focus failed) and 41 pairs due to very low background
offset that would not allow us to estimate background
intensity distribution model. After eliminating the total
of 297 pairs, the remaining 411 [cell, scaffold] pairs were
summarized in Table 4. Each z-stack was between
922.75 MB and 1468 MB [2048 pixels (X) × 2048 pixels
(Y) × 110 to 175 pixels (Z)] which mapped to about
3 GB of RAM when a pair of [cell, scaffold] z-stacks was
loaded.

Algorithmic model validation measurements

Surface roughness reference measurements of a spun
coat scaffold to validate a planar geometrical contact
model Surface roughness of the SC films was measured
using atomic force microscopy (AFM, Dimension Icon,
Bruker, Billerica, MA). Six uniformly-distributed spots
on a SC film sample were analyzed with each spot size
of 50 μm× 50 μm (256 samples per scan line, 0.195 μm
spatial resolution). The images were analyzed with
Nanoscope Analysis (Bruker) and the root mean square
(RMS) roughness was reported for each analyzed spot
and averaged to produce a single value for the SC film.

Single fiber radius reference measurements to
validate a cylindrical geometrical contact model and
to assess accuracy of fiber scaffold segmentation
SEM was chosen to verify results from confocal epifluor-
escence mode (CLSM) because SEM is higher resolution
than CLSM. However, SEM is conducted in the dry
state, the CLSM was conducted under water immersion
and PLGA fibers can swell when hydrated. To address
this issue, the fibers that were imaged by SEM in the dry
state were imaged by confocal via water immersion
within 2 h of being immersed in PBS. Thus, swelling of
the PLGA buffer should be minimal since it takes several
days for PLGA to swell in buffer [23].
We used the same polymer and spinning conditions

(as indicated before) for the large microfiber (MF) sam-
ple. However, rather than spin the fibers onto an
aluminum foil target, fibers were spun onto aluminum
mounts. Aluminum mounts were 25 mm × 75 mm ×
0.5 mm and were made from folded aluminum foil. The
mounts had five 1.5 mm-diameter holes punched into
them using 1.5 mm biopsy punches (Miltex) and were
distributed across its surface as shown in Fig. 5. The
mounts where then covered in carbon tape (except over
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holes) and mounted to a grounded spinning metal drum
that was 62.5 mm in diameter using carbon tape. The
drum was spun at 60 RPM and allowed to collect fibers
for 60 s. Mounts were then detached from the drum and
were imaged with SEM.
Single fiber measurements were acquired using an SEM

(Hitachi S4700 SEM, 5 kV, 10 mA, ≈13 mm working dis-
tance) and CLSM (Leica SP5 II, Leica Microsystems) with
similar settings as during the acquisition of [cell, scaffold]
contact data. The single electrospun PLGA microfibers
were placed flat on a surface and imaged by SEM at
31.25 nm resolution in X and Y dimensions [1280
pixels × 960 pixels in X and Y] from two viewpoints
at 90° and 65° from the flat surface. The two
viewpoints allow us to verify that the fibers are
cylindrical. After SEM, samples were immersed in
PBS and imaged via water immersion CLSM within
2 h of being hydrated (to minimize swelling) since
PLGA can swell in buffer. The CLSM z-stacks were
acquired at the resolution of 120 nm × 120 nm ×
419 nm [2048 pixels × 2048 pixels in X and Y] with
approximately 10% spatial area overlap of z-stacks
and were manually stitched in a similar method to
the SEM 2D images. Figure 5 shows a single fiber
sample collector and the SEM and CLSM images ac-
quired along one fiber.
Based on these single fiber measurements, we could

validate the segmentation accuracy of fiber scaffolds
from CLSM z-stacks against the reference measure-
ments obtained from SEM images. Furthermore, we
could use the reference measurements for selecting
two of the best models from the eight segmentation

models to minimize the time-consuming contact veri-
fication effort.

Methodology
Following our approach to address the multiple chal-
lenges of 3D contact measurements, we designed a
methodology as shown in Fig. 6. The validation of a cell
model refers to our previous work [7].
In comparison to previous work on co-localization

(see Additional file 1), our definition of cell-scaffold
contact is aligned with the object-based analysis as
opposed to spatial image cross-correlation spectros-
copy. While we model objects (cell, scaffold, and
background) in two CLSM z-stacks using continuous
statistical and geometrical models, the cell-scaffold
contact sites are defined based on the spatial proxim-
ity of categorical cell and scaffold labels as illustrated
Fig. 7. In order to obtain categorical labels, the
probability values are adaptively thresholded using
maximum entropy criterion [24]:

Topt ¼ argmax HFRG Tð Þ þ HBKG Tð Þf g ð1Þ

where HFRG(T) is the entropy of foreground, HBKG(T) is
the entropy of background, and the optimization is over
all values of T. The same adaptive thresholding method
is used for the geometrical methods after cell masking of
the z-stacks processed based on a geometrical model.

Modeling
Modeling is divided into cell, scaffold, and contact mod-
eling as illustrated in the overview of the methodology
in Fig. 6. Cells are segmented using a statistical approach
while scaffolds are segmented using multiple statistical
and geometrical approaches. Cell-scaffold contacts are
obtained based on the law of total probability for statis-
tical models and surface intersection for geometrical
models.

Cell model for segmentation and ROI model for cropping
We started with cell segmentation by leveraging the
previous work [7] and using the permutation-based
design of an optimized algorithm selected based on
analyses of thousands of cell z-stacks. The algorithm

Fig. 4 Cell and scaffold z-stack pairs for the three types of scaffolds (spun coat, microfibers, medium microfibers)

Table 4 Summary of input z-stacks after initial quality control of
711 [cell, scaffold] pairs

Sample group [cell, scaffold] pairs
(z-stacks)

Image files
(z-frames)

Size (GB)

SC 165 37,127 306

MF 135 47,927 400

MMF 114 40,176 337

Total 414 125,230 1043
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is provided in Additional file 2. All cell segmentation
results were visually inspected for quality assurance
using the web-based verification system. Out of 414
cell z-stacks, 15 cell z-stacks were manually seg-
mented using ImageJ since the experts rated the re-
sults from the automated segmentation as poor or
missed. In order to handle large volumetric data, we
cropped regions of interest (ROIs) from cell and scaf-
fold z-stacks according to bounding boxes of visually-
verified cell segmentation results. Our assumption
was that the cell-scaffold contact points occur only in
one-voxel neighborhood of the cell surface, and there-
fore the rest of z-stacks could be discarded. In order
to preserve enough voxels around cells, we added

10% margins on each side of x and y boundaries to
the cell bounding box enclosing the verified cell seg-
ment. For the z boundary, we analyzed the z-axis in-
tensity profile of a scaffold z-stack and selected the
frames with high intensity values. The cropping
method is described in Additional file 3.

Scaffold models
Our modeling approaches to segmenting scaffolds were di-
vided into statistical and geometrical based on the modeling
assumptions incorporated by the algorithms. Scaffold
z-stacks can be modeled using similar statistical assump-
tions to the ones used for segmenting cells. However, the
scaffold z-stacks typically have smaller amplitude signals

(a) (b) (c)
Fig. 5 Single fiber data. (a) Single fibers mounted on a sample, (b) 2D SEM images stitched along one fiber, and (c) 2D max projections of 3D
CLSM z-stacks that are roughly stitched along one fiber

Fig. 6 Overview of the measurement methodology for characterization of cell-scaffold contacts. The three components, modeling, validation and
verification, are color-coded. The abbreviations “Stats” refers to statistical, “Geom” to geometrical, and “ROI” to region of interest
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than cell z-stacks and hence are more affected by bleed-
through and noise. We designed eight specific models as
representative samples of a larger body of image processing
models. Our goal was to include a model that was optimal
in the context of cell-scaffold contact point estimation.
Furthermore, the two types of models allowed us to com-
pare segmentation accuracies derived based on general
(statistical models) and scaffold-specific (geometrical
model) assumptions. These assumptions reflected the
amount of prior knowledge embedded into measurement
algorithms and the level of effort required to customize
models for each type of scaffold. Table 5 provides a short
summary of all models. We describe each statistical method
in Additional file 5 and provide the algorithmic details in
Additional file 6. The geometrical methods are described in
Additional file 7 (Algorithm based on planar geometrical
model for segmenting spun coat scaffolds) and in

Additional file 8 (Algorithms based on cylindrical geomet-
rical models for segmenting fiber scaffolds).

Cell-scaffold contact model
For the statistical models, the contact probability is com-
puted according to the law of total probability by:

P Contactð Þ ¼ P ContactjCellð ÞP Cellð Þ
þ P ContactjScaffoldð ÞP Scaffoldð Þ:

ð2Þ

The aforementioned five statistical models yield two
conditional probabilities: P(Contact|Cell) from cell
channel and P(Contact| Scaffold) from scaffold channel.
In order to estimate the probabilities of P(Cell) and
P(Scaffold), we use K-means clustering to partition 2D
data points formed by intensity values from cell and
scaffold channels at each voxel location (i.e., the cell-s-
caffold intensity scatterplot). Figure 8 illustrates 3 clus-
ters corresponding to cell, scaffold, and background. The
probabilities at each voxel point are defined as relative
distances to the cluster centroids, constrained by the
sum of probabilities equal to 1 (i.e., P(Cell) + P(Scaffold)
+ P(BKG) = 1). Figure 9 shows examples of cluster as-
signments of voxel points for each of the scaffold types
where the scatterplot points are color-coded as cell
(red), scaffold (blue), and background (black) according
to the K-means clustering assignment.
For the geometrical models, contact surfaces are the ul-

timate objective of the measurement. We define the contact
model for any geometrical method as the intersection of a
binary cell segment with a binary scaffold segment (denoted
as geometrical intersection model). Due to the discrete
nature of z-stacks, the intersection is defined as a co-
occurrence or one voxel adjacency of cell-scaffold binary
labels at the same voxel location as illustrated in Fig. 7.

(a) (b)
Fig. 7 Definition of cell-scaffold contact. Cell and scaffold labels are assigned either (a) at the same location or (b) at the neighboring locations

Table 5 Summary of statistical and geometrical models for
segmenting scaffolds. Note: The geometrical algorithms A6 and
A7 with an asterisk are based on modified Frangi vesselness applied
to microfiber and medium microfiber scaffolds, and combined with
the plane least squares fitting to spun coat scaffolds

Channel treatment Statistical Models Geometrical Models
of Spun Coat & Fiber
Scaffolds

Independent single
channel
segmentation/
labeling

• A1: Single-pixel model • A6*: Plane &
Vesselness (σ=1.0)

• A2: Mixed-pixel spatial
model • A7*: Plane &

Vesselness (σ=1.5)
• A4: Additive noise
model

• A5: Markov Random
Field model

Joint two channel
segmentation/
labeling

• A3: Mixed-pixel channel
model (scaffold stain
bleed-through or cell
stain bleed-through)

• A8: Ad-Hoc
Thresholding
+ Filtering
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While a plane as a contact surface for spun coat is
clearly defined, a contact surface for fibers (MF and
MMF) can be defined in multiple ways. A piece-wise lin-
ear cylinder can be strictly defined by its skeleton points
and a set of radii at those points. It can also be defined in
a relaxed sense as a set of voxels obtained by thresholding
z-stacks after a vesselness/tubeness filter has been applied.
The vesselness filter is based on eigenvalue decomposition
of Hessian matrix. This filter computes Hessian at every
pixel (voxel) of the input image by convolving the image
with second and cross derivatives of the Gaussian function
[25]. The sigma parameter (the standard deviation of the
Gaussian function) has an impact on the enhanced image
appearance. The vesselness filter enhances intensities of
tubular structures with radii corresponding to the sigma
value. This enhancement is important for selecting a set
of tubular voxel candidates in a z-stack by thresholding.

Given the uncertainty of contact measurements due to
spatial resolution and contact representation (i.e., a cylin-
der represented with a sequence of spheres at each skel-
eton point), we opted for a simpler relaxed cylindrical
model. To identify the surface points, we computed a 3D
gradient for the cell-masked and thresholded scaffold z-
stacks and then reported those contact surface points that
have non-zero gradient values.

Validation
Validation of geometrical models
The validation of a planar geometrical model for SC
scaffold is performed directly by comparing the surface
roughness reference measurements from AFM images
with the voxel dimensions of each CLSM z-stack. If the
surface roughness is smaller than voxel dimensions, then
the planar model is suitable. Similarly, the validation of a
cylindrical geometrical model for fiber scaffolds (MF and
MMF) is achieved by comparing diameters of a single
fiber from multi-view 2D SEM images.

Assessing accuracy of fiber scaffold segmentation
Given five statistical models and three geometrical
models, we compare their accuracy and select one model
for each category to minimize the contact verification
effort. The accuracy assessment is achieved by measur-
ing the accuracy of algorithms on the single fiber data
acquired in SEM and CLSM imaging modalities (see
section "Algorithmic model validation measurements".
The validation is performed by extracting radius mea-
surements along a single fiber (multiple fields of view)
and comparing the radius histogram obtained from the
eight algorithms applied to CLSM z-stacks to the radius
histogram obtained from 2D SEM images.

Fig. 8 Illustration of probability assignments of cell, scaffold and
background (BKG) for a voxel point in the 2D space of intensity
values from cell and scaffold channels

Fig. 9 K-means clustering (K = 3) results of voxels in cell and scaffold z-stacks based on their intensities (horizontal axis – intensity of cell or channel 00,
vertical axis – intensity of scaffold or channel 01). The three graphs show the distribution of clustering labels for one example from each of the three
scaffold types. For the visualization purpose, we randomly sampled 0.1% of the points (27 K points) out of about 27 million points
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The validation methodology consists of the follow-
ing steps:

(1)acquire multiple spatially overlapping fields of view
(FOVs) from a sample with single fibers in SEM and
fluorescent modalities described in section
"Algorithmic model validation measurements".

(2)process 2D SEM images to extract radius
measurements,

(3)process 3D CLSM z-stacks to extract radius
measurements,

(4)rank-order the designed algorithms applied to the
CLSM z-stacks based on the comparison of their
radius histograms with the radius histogram derived
from the SEM images.

The above processing steps involve stitching multiple
FOVs, fiber segmentation, skeletonization of fiber
segments, identification of the main reference fiber, and
selection of fiber skeleton points that correspond to the
main reference fiber. Figure 10 illustrates the sequence
of steps to extract radii from CLSM z-stacks (i.e., step 3
of the validation). The entire validation sequence is de-
tailed in Additional file 10.

Verification of cell segmentation and cell-scaffold
contacts
Due to the large volume of [cell, scaffold] image data,
we employed automated software-based contact point
measurements. As a performance evaluation of the
software, an efficient mechanism for visually verifying all
contact results was devised since it is very difficult to
create ground truth for 3D contact points. The chal-
lenges of designing such a verification system include:

(1)3D inspection from multiple view angles,

(2)simultaneous presentation of co-registered 3D chan-
nels and contacts,

(3)access to the verification system from multiple remote
locations due to geographically distributed experts, and

(4)definition of verification labels to assure consistency
of label assignment.

These verification challenges must be resolved under
the constraints of minimum verification time and max-
imum accuracy.
To address the first challenge, we designed a web-based

verification system for cell segmentation and cell-scaffold
contact. For cell segmentation, the multiple view challenge
is addressed by presenting side-by-side three orthogonal
max projections of raw cell and cell segment z-stacks per
cell. The max projections are sufficient to verify the shape
accuracy of cell segments because the cell processing steps
are designed to report a compact cell shape. For contacts,
the same challenge is tackled by creating six web-page
embedded movies per [cell, scaffold] pair. However, due to
the 3D complexity of contact shapes, max projections are
insufficient for contact verification. We opted for creating
animations to convey multiple views and to accommodate
the time vs. accuracy constraints. Animations are accom-
panied by controls that allow the movies to play, pause,
and rewind, as well as to synchronize any subset of them.
Figure 11 displays examples of the web-based verification
of cell segmentation and cell-scaffold contacts.
The second challenge of simultaneous presentation of

co-registered channels is only relevant to contact verifica-
tion. It is addressed by forming pseudo-color video frames
that contain information about cell, scaffold and their con-
tact. The semantic meaning of [red, green, blue] pseudo-
colors is overlaid in yellow text on the videos in Fig. 11.
Furthermore, the cell and scaffold channels have different
dynamic ranges which affect the rendering. To determine
the optimal value for gamma correction, we performed a

Fig. 10 The processing steps applied to CLSM z-stacks of single fiber measurements to estimate radius values
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small user study using a set of z-stacks enhanced by a range
of gamma values and presented as movies.1 Based on the
user study, the gamma value for correcting scaffold inten-
sities was set to 1.4 in all movies presented for contact
verification.
The third challenge of accessing the verification sys-

tem is approached by designing a web solution. The de-
sign uses the AngularJS JavaScript library [26] that
supports declaring dynamic views in web-applications
(transitions between any two data sets for verification).
The web solution also leverages the current support of
movie formats in HTML5 web technology.
To address the fourth challenge and establish consistent

verification of labels across multiple viewers, it is important
to define quantitative metrics for all labels. Although the
verification labels are assigned subjectively, they are defined
as percentages or ratios of voxels that are accurately
assigned to a cell or a contact based on a visual inspection.
The labels for cell segmentation are created by thresholding
the percentage of correctly labeled cell pixels at [90%,
100%] (“good”), [75%, 90%) (“correct”), and [0%, 75%) (“in-
correct”), and by recognizing missed cells with a label
“missed.” The case of “missed” occurs when multiple cells
are in one FOV and the segment of interest is not selected
by the algorithm. The labels for contacts are expressed in
terms of error ratios with respect to the total volume (stat-
istical model) or surface (geometrical model) of a cell as [0,
1/12] (“excellent”), [1/12, 1/3] (“acceptable”) and [1/3, 1]
(“bad”).

Results
The experimental results are presented in the order of
steps that the cell-scaffold contact methodology is

executed. The steps are denoted to map to the method-
ology overview shown in Fig. 6.

Model and segment cell
The cell segmentation algorithm was executed on all
414 cell channel z-stacks (see Additional file 2 and [7]).
The segmentation computation took 84.5 h (24 h for
165 SC cells, 33 h for 135 MF cells, and 27.5 h for 114
MMF cells). The time was benchmarked using a single
threaded Java program, Mac OS X, Mac Pro desktop
computer (CPU: 3.2 GHz Quad-Core Intel Xeon, RAM:
16 GB 1066 MHz DDR3, and data residing on a network
server with 1 Gbit/s bandwidth).

Verify cell segmentation results
To verify the quality of cell segmentation [7], we de-
ployed a web-based system on a public NIST server at
https://isg.nist.gov/CellScaffoldContact/app/index.html.
The web-based system contains 414 cells that have been
labeled by three cell biologists for this study. We sum-
marized the ratios of the assigned label agreement by
any two experts in Table 6.

(a) (b)
Fig. 11 Examples of visual verification in the web system. a - cell segmentation (projections of raw and segmented cell z-stacks). b - cell-scaffold
contact (6 animations showing various combinations of information and rotating around X and Y axes)

Table 6 Summary of cell segmentation verification in terms of
the ratio that two experts assign the same label where the label is
from (a) initial label set {good, correct, inaccurate, missed} or (b)
combined label set {label1 = {Good or correct}, label 2 = {incorrect
or missed}}

Ratio
of Matching
labels

Expert 2 Expert 3

Initial label set Combined
label set

Initial
label set

Combined
label set

Expert 1 0.86 0.94 0.82 0.95

Expert 2 1 1 0.87 0.94
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Following the precision computation in [7] and based on
the values in Table 6 the cell segmentation precision per
initial label set is (0.86 + 0.82 + 0.87)/3 = 0.85. Similarly, the
cell segmentation precision per combined label is (0.94 +
0.95 + 0.94)/3 = 0.943. Out of 414 cell z-stacks, we identified
15 pairs for which all experts assigned the label {incorrect
or missed}. Thus, cell segmentation error is estimated as
(414–15)/414 = 0.964. These 15 cells were manually seg-
mented using ImageJ/Fiji (plugin crop3D) [27].

Model and crop region of interest (ROI)
Cell and scaffold z-stacks are cropped according to bound-
ing boxes of visually verified cell segmentation results to re-
duce the computational time on further processing. The
cropping step leads to a significant data size reduction as
summarized in Table 7. The cropping also reduces RAM
requirements since the dimensions of z-stacks are cut down
from 2048 × 2048 pixels in X and Y to (200 to 1906) x (153
to 2045) pixels, and from up to 175 frames in Z to (25 to
114) frames. The number of voxels in one z-stack ranges
from 1,827,705 to 188,095,516 voxels.
Since we assumed that contact points only exist

around cells, we derived the cropping box by adding
10% margins to the cell segment dimensions on each of
X and Y sides. To derive the Z dimension of a cropping
box, we looked at the intensity distributions across
frames in scaffold z-stacks. The start and end frames in
a z-stack for cropping are determined to be the
inflection points in the second derivative of the z-profile
closest to the maximum intensity point along z-axis.
The z-profile is obtained by computing [X, Z] max pro-
jection of scaffold z-stack, integrating intensities hori-
zontally (along the X axis) by taking maximum intensity
value at each X, and smoothing the signal by Gaussian
filter of size 21 with standard deviation of 5 (empirically
determined). The analysis is illustrated in Fig. 12.

Statistical modeling: Cell-scaffold contact probabilities
from 5 methods
While the algorithms based on geometrical models use
implicit shape assumptions, the algorithms based on stat-
istical models use assumptions about intensity models for
background. To estimate parameters of a background in-
tensity model, we performed a set of experiments de-
scribed in Additional file 4 and then derived the average

and standard deviation of background from either the first
or the last frame of a z-stack (see the algorithms in
Additional file 6). Examples of probability results of the
five statistical methods are shown in Fig. 13. The figure il-
lustrates that all five algorithms produce visually similar
results with a single view, indicating the need for multiple
viewing angles for visual verification.
To compare the results quantitatively, we computed Eu-

clidean distance dij between contact point probability estima-
tions from algorithms i and j using the following equation:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PZ
z¼1

PY
y¼1

PX
x¼1 pi x; y; zð Þ−pj x; y; zð Þ� �2

XYZ

s

ð3Þ

where pi(x, y, z) is the contact point probability estimated
by algorithm i. Fig. 14 and Table 8 summarize the
Euclidean distances of the results from the five
statistical-model based algorithms. The Euclidean dis-
tance results correspond to an integral in Table 8 and
histogram distribution in Fig. 14 computed from 414
cropped z-stacks (around 11 × 1011 voxels) and all pair-
wise combinations of algorithms A1 to A5. Based on the
integral value for A2-compared-to-A3 (A2-A3) equal to
0.53 in Table 8, we concluded that A2 and A3
algorithms have very similar probability assignments.
The methods were implemented in Matlab 2015a and

their computational times are documented in Table 9.
The benchmarks were acquired on a desktop computer
running Ubuntu 14.04 operating system with Intel Xeon
E5–269 2.4 GHz (8 processors), 32 GB of RAM, and all
z-stacks stored on an external drive connected via USB3.
Note from the second plot in Fig. 14 that the A2-A3
(red) trace is on the x-axis. This allows us to eliminate
the A3 statistical algorithm since the accuracy is similar
to A2 while its computational time is on average 22.1%
higher than the execution time of A2.

Geometrical modeling: Cell-scaffold contact from 3 methods
Following the plane model and its corresponding algorith-
mic implementation in Additional file 7, we computed the
plane coefficients for the upper and lower surfaces of each
spun coat z-stack. To quantify the goodness-of-fit for
weighted least squares, we computed Residual Standard
Deviation STDRES

k per spun coat z-stack and Pooled Stand-
ard Deviation STDPOOLED for all SC scaffolds as follows:

STDRES
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pnk
i¼1 wkifk xi; yi; zið Þ2
Pnk

i¼1 wki−wkp

s

ð4Þ

STDPOOLED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PK
k¼1 nk−1ð Þ STDRES

k

� �2

PK
k¼1 nk−K

v

u

u

u

t ð5Þ

where wki is the weight at position (xi, yi, zi) in the k-th

Table 7 Summary of data size reduction after cropping

Dataset Original Z-Stacks (GB) Cropped Z-stacks (GB)

SC 304.56 16.23 (5.3% of
the original)

MF 396.42 18.46 (4.7%)

MMF 334.84 9.37 (2.8%)

Total 1035.83 44.06 (4.3%)

Bajcsy et al. BMC Bioinformatics  (2017) 18:526 Page 13 of 23



z-stack, wk is the average weight of all voxels in the k-th
z-stack, fk(xi, yi, zi) = axi + byi + czi + d is the estimated
point in a plane, p = 3 is the number of independent pa-
rameters in the plane model, fk(xi, yi, zi), K = 165 is the
number of SC scaffold type z-stacks, and nk is the num-
ber of voxels in the k-th z-stack. The minimum and
maximum residual standard deviations STDRES

k are
54.1 nm and 188.2 nm respectively. The pooled standard
deviation STDPOOLED is 105.1 nm. The distribution of re-
sidual standard deviations, as well as alignment of planar
surface with the data, are included in Additional file 8.
Figure 15 shows intermediate results of the geometrical

model-based algorithm A6. They include a z-stack after

modified Frangi’s vessel enhancement filtering, cell mask-
ing, and thresholding and 3D gradient computation. Due
to the 3D nature of the contact surfaces and the large
number of fibers intersecting the cell segment, it is hard
to visually assess the contact quality from a single frame.
To facilitate visual inspection of scaffold segmentation
and cell-scaffold contacts, we applied post-processing
(skeletonization, radius estimation) and represented the
fibers as a sequence of spheres extruded along the skeletal
points. However, the additional post-processing steps
introduce several sources of uncertainties in contact
detection and therefore we used the results shown in
Fig. 15 for further processing. During the experimentation,
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Fig. 12 Determination of crop boundary along Z-axis. (a) Max projection of scaffold z-stack to [X, Z] plane, (b) integrated intensities horizontally
along X to obtain a Z-profile, and (c) selection of Z frames at the inflection points (red) as the lower and upper boundaries. Note that the aspect
ratio of a vertical slice above was changed for better display

Fig. 13 Top row – XZ max projection of pseudo-color coded cell (red) and scaffold (green) intensities for one z-stack from each scaffold type (columns).
Five lower rows - [X, Z] max projections of probability values obtained by the five statistical algorithms (rows) where the gray intensity values are mapped
between contact probabilities of 0 (black) and 1 (white)
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we visually compared the performance and parameter
choices of the vesselness methods by Frangi [28], by Sato
[29] and by Erdt et al. [30] before choosing the Frangi’s
method. We have also considered 2D steerable filters [31]
and their 3D extensions [32]. While the 3D steerable filters
are theoretically related to the vesselness filters, their on-
line available implementation requires much more CPU
and RAM resources than the vesselness filter implementa-
tion (according to the on-line available implementation of
[32], minimum RAM must be at least 17 times the original
volume size). Based on our visual comparison of the
steerable filters and vesselness filters, the steerable filters
underperformed vesselness filters in detecting cylindrical
fiber surfaces.

Validation of planar and cylindrical geometrical models
From the AFM measurements described in section "Algo-
rithmic model validation measurements", we computed the
average RMS and its standard deviation for spun coat films
to be 52.35 nm ±31.76 nm. These statistics are calculated

from six spatially distributed spots (RMS: 109, 59, 43.2,
50.6, 39, 13.3). For the voxel resolution of z-stacks as
120 nm×120 nm×462 nm, the voxel dimensions are 2 to 8
times larger than the average RMS and its standard devi-
ation. This is supporting our conclusion that the use of a pla-
nar geometrical model for spun coat scaffolds is appropriate.
The single fiber SEM measurements from two imaging

angles described before allowed comparison of fiber di-
ameters extracted using DiameterJ (plugin to ImageJ/Fiji
[33]). The differences in fiber diameters were within 3%
error introduced by SEM image processing needed to
extract diameters. Thus, the assumption of a cylindrical
fiber model is appropriate.

Assessing fiber scaffold segmentation accuracy using
single fibers
We followed the processing workflow shown in Fig. 10.
The 2D SEM image analyses are based on ImageJ/Fiji
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Fig. 14 Histogram of Euclidean distances between the probability values generated by any two statistical algorithms (probability density versus
Euclidean distance). Alg2 and Alg3 (red line in the second row) exhibit the most similar results

Table 8 Euclidean distance between the probability of contact
point estimations generated by any two statistical algorithms

Euclidean distance [pixels] A2 A3 A4 A5

A1 24.71 24.86 30.78 33.14

A2 ― 0.53 13.69 32.70

A3 ― ― 13.77 32.60

A4 ― ― ― 32.69

Table 9 Computational times of the five statistical algorithms
for processing all pairs of cells and scaffold z-stacks

Algorithm Min.
Time (s)

Avg.
Time (s)

Max.
Time (s)

A1 (Single-pixel model) 1.76 21.98 103.31

A2 (Mixed-pixel spatial model) 1.78 24.60 117.85

A3 (Mixed-pixel channel model) 2.09 31.58 143.29

A4 (Additive Gaussian noise model) 2.65 30.82 162.77

A5 (MRF) 3.98 56.24 491.07
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library [27] and DiameterJ (plugin to ImageJ/Fiji [33])
while the 3D CLSM z-stack analyses are based on in-
house implementations. The stitching vector is con-
strained to translation and has been estimated using (a)
automated stitching (max projection and pair-wise stitch-
ing, max projection and grid stitching, 3D z-stack pair-
wise correlation on 4× down-sampled data), (b) semi-
automated stitching by defining pairs of corresponding
points, and (c) manual stitching using max projection and
visual alignment of tiles. The skeletonization is based on
3-D medial axis thinning algorithms [34]. The radius esti-
mation is computed as the smallest eigenvalue of a covari-
ance matrix from all point coordinates selected using an
equal angular spacing in 2D or 3D.
Due to the challenges related to stitching FOVs contain-

ing straight lines (i.e., stitching offset uncertainty), we eval-
uated statistics of radius histograms from two sets of
detected fiber skeleton points. The two sets contain skel-
eton points from either all z-stack FOVs (denoted as ALL)
or non-overlapping parts of z-stack FOVs determined
based on estimated stage position and approximate stitch-
ing vectors (denoted as Internal). Following the validation
steps presented in section "Validation" and Add-
itional file 10, the histograms of radii for the set denoted
as ALL is shown in Fig. 16 and the comparative summary
of histogram statistics is presented in Table 10.
Based on the single fiber experiments, we concluded

that the mixed-pixel statistical model A2 and the ves-
selness geometrical model A6 (with σ= 1.0) applied to
fluorescence CLSM z-stacks resulted in the closest
average radius estimates to the SEM based average ra-
dius. The SEM radius estimate is obtained from
104,341 skeleton points while the CLSM radius esti-
mates come from 20,000 to 36,000 skeleton points.
Given the ratio of SEM to CLSM spatial resolutions
0.12/0.0312 = 3.84, the one-to-one match between SEM
and CLSM skeleton points would be 104,341/3.84 ≈
27,000 CLSM points. The standard deviation of the SEM
radius is 0.075 while the standard deviation for the
method A2 is 0.31 and 0.35, and for the method A6 is

0.20 and 0.21. The ratios of radius standard deviations
CLSM/SEM (A2:[4.13, 4.67], A6:[2.67, 2.80]) should theor-
etically be close to the ratio of spatial resolutions 3.84.
The maximum difference between 3.84 and ratio values
within the ranges are larger for the method A6 than for
the method A2 (3.84–2.67 = 1.17 > 4.67–3.84 = 0.83). This
reflects the fact that the A6 model is more constrained
(selects only voxels that meet the vesselness model).
With respect to the SEM based estimates, the error of

segmenting a single fiber from fluorescent CLSM and
estimating its radius using the statistical A2 method is
between |1.1242–1.1190|/ 1.1242 = 0.46% and |1.1242–
1.1562|/1.1242 = 2.85%. The same error for the geomet-
rical A6 method is |1.1242–1.1139|/1.1242 = 0.92% and
|1.1242–1.0815|/ 1.1242 = 3.80%. These errors range be-
tween 0.46% to 3.8% of the SEM radius while our visual
estimate of SEM radius is about 3%. When the SEM-
based errors are compared to the CLSM- based radius
standard deviations of the two methods (A2:[0.31, 0.35],
A6:[0.2, 0.21]), the errors represent not more than 9.19%
and 19% of each method’s one standard deviation respect-
ively (A2: 0.0285/0.31 = 0.0919, A6: 0.0380/0.2 = 0.1900).

Verification of cell-scaffold contact sites
The web-based verification system described in section
"Verification of cell segmentation and cell-scaffold con-
tacts" was populated by six movies per [cell, scaffold] pair,
which yields 414 × 6 movies = 2484 movies. This number
of movies is generated for each of the two selected contact
methods A2 and A6. Each movie is constructed by gener-
ating 128 frames of size (640 × 640) pixels, 3 color
channels, and presented at 15 frames per second. The
movies are compressed from 157.3 MB (640 × 640 × 3
bytes × 128 frames = 157.3 MB) to 2.6 MB video in MP4
H264 codec with visually acceptable blur at 4000 bit rate.
The video viewing time is about 9 s. Total movie time is
372.6 min = 6.21 h per method. An on-line help document
is available to understand the movie content using pseudo
colors, spatial layout of movies, and movie controls.

(a) (b) (c) (d)
Fig. 15 Surface cell-scaffold contact (d) derived from the original scaffold z-stack (a) after applying modified Frangi’s vessel enhancement filtering
(b) and verified cell mask (c). The results correspond to the method A6 and medium microfiber scaffold type (illustration shows one frame of
a z-stack)
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The movie frame generation is accomplished by
data loading using ITK2 library with libNifti3 loader,
creating a window using Qt library and QtCreator4

environment, rendering the window content using
OpenGL5 and then saving frames with OpenCV6. The
generated frames are aggregated into a movie using
ffmpeg library.7 Computational benchmarks of the
movie generation are summarized in Table 11. The
benchmarks were collected on Ubuntu 16.04 64-bit
operating system with 49.5GB RAM, 16 processors;
Intel® Xeon® CPU E5620@2.4GHz, 2× GF 100GL
[Tesla C2050/C2070] NVIDIA card with 6 GB of
RAM, and 1× GeoForce GTX 760 NVIDIA card with
2 GB of RAM.
The visual verification was conducted by three ex-

perts over two contact detection methods (Statistical
A2 and geometrical A6) and three scaffold types.
The labels for each cell-scaffold contact detection
span excellent, acceptable and bad. For the statistical
model-based method, the following labels were
defined:

� Excellent: Visually, error is not exceeding 1/12th of
the total volume of cell.

� Acceptable: Visually, combined errors do not exceed
~1/3rd of the total volume of cell.

� Bad: Visually, combined errors exceed ~1/3rd of the
total volume of cell.

For the geometrical model-based method, the labels
were defined in the same way but the total volume of
cells was replaced by the total surface of cell. Figure 17
illustrates two cell-scaffold contact examples that were
unanimously labeled by all three experts as excellent
(top) and bad (bottom) for both Statistical A2 and
Geometrical A6 methods.
The total time to complete the verification by the

three experts was 6 h + 8 h + 6 h = 20 h. The results of
visual verification were reported as proportions of the
three labels (excellent, acceptable, bad) per model (A2,
A6), scaffold type (SC, MF, MMF) and expert (E1, E2,
E3) in Fig. 18. The proportional values are most distin-
guishable for SC, most compressed for MF, and most
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Fig. 16 Histograms of single fiber radius measurements extracted from fluorescent CLSM z-stacks using the statistical and geometrical algorithms
and from SEM using ImageJ/Fiji plugins

Table 10 Summary of radius results extracted from CLSM by eight algorithms and compared to the reference radius measurements
from SEM

Fluorescent Input Radius ± stdev Estimate [um] Number of points

Algorithm ALL: Average ± stdev Internal: Average ± s tdev ALL Internal

A1 (stats: single pixel) 2.2795 ± 0.6151 2.3075 ± 0.7189 32,608 22,128

A2 (stats: mixed pixel) 1.1190 ± 0.3128 1.1562 ± 0.3464 32,608 22,128

A4 (stats: noise model) 2.6851 ± 1.3196 2.7745 ± 1.5440 32,608 22,128

A5 (stats: MRF) 1.7532 ± 0.3353 1.7648 ± 0.3843 32,608 22,128

A6 (geom: σ= 1.0) 1.1139 ± 0.1960 1.0815 ± 0.2112 36,249 25,709

A7 (geom: σ= 1.5) 1.6251 ± 0.1065 1.6136 ± 0.1175 30,105 20,064

A8 (geom: thresh) 2.0404 ± 0.3567 2.0674 ± 0.4018 32,138 21,691

SEM Input Average Radius: 1.1242 ± 0.075 Number of points: 104,341
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unpredictable for MMF. For SC scaffold type and excel-
lent rating, geometrical model A6 is clearly better than
statistical model A2. For MF scaffold type, the dominant
rating is poor for statistical model while it is acceptable
for geometrical model. For MMF scaffold type, the rank-
ing of proportion values varies across experts.
Overall accuracy of contact measurement was defined

as the ratio of the contacts labeled by at least one of the
experts as excellent or acceptable over the total number of
[cell, scaffold] pairs. According to this definition, accuracy
of the statistical method A2 is (414–155)/414 = 0.626 and
accuracy of the geometrical method A6 is (414–27)/414 =
0.935. Precision of contact measurements was derived as
an average of the probabilities that two experts agreed on
a label. These pair-wise ratios of label agreement are sum-
marized in Table 12. From the results in Table 12, the con-
tact precision for the statistical method (A2) is (0.74 +
0.75 + 0.81)/3 = 0.767 and for the geometrical method
(A6) is (0.86 + 0.86 + 0.91)/3 = 0.876.

Discussion
Quantitative discussion
Verification-based accuracy and precision of cell-scaffold
contact methods
Based on section "Verify cell segmentation results", we
assessed the accuracy of the cell segmentation method
based on visual verification of three experts to be 0.964 with
precision 0.943 for the two groups of labels {accurate, good}

and {inaccurate, missed}. Based on similar assessment of
cell-scaffold contacts of labels {excellent, acceptable} and
{bad} in section "Verification of cell-scaffold contact sites",
the accuracy of a statistical method A2 is 0.626 with 0.767
precision and the accuracy of a geometrical method A6 is
0.935 with 0.876 precision. By comparing the accuracies of
cell segments and cell-scaffold contact sites based on visual
verifications, the cell segmentation algorithm is more ac-
curate and more precise than the cell-scaffold contact algo-
rithms. These differences present the tradeoffs between the
reliability and potential prediction power of cell shape ver-
sus cell-scaffold contact shape according to Fig. 1.

Validation, model fitting- and verification-based accuracy of
planar model for spun coat scaffolds
Based on planar model validation in section "Validation of
planar and cylindrical geometrical models", the AFM-
derived surface roughness of 52.35 nm ±31.76 nm was 2 to
8 times smaller than the CLSM resolution which supported
the use of a planar model. Based on model fitting-based ac-
curacy in section "Geometrical modeling: Cell-scaffold con-
tact from 3 methods", the planar fit of spun coat in
measured CLSM z-stacks had the pooled standard devi-
ation STDPOOLED of 105.1 nm which is smaller than any of
the three voxel dimensions (120 nm× 120 nm× 462 nm).
The visual verification of SC scaffold type confirmed the
low value of pooled standard deviation since the three ex-
perts reported only 18, 6, and 8 contacts as “bad” respect-
ively out of 165 pairs which corresponds to 10.91%, 3.64%,
and 4.85% of the number of SC scaffolds.

Validation-based accuracy of relaxed cylindrical geometrical
model for fiber scaffolds
For MF scaffolds, the fiber radius fit was evaluated
using the single fiber experiments in section

Table 11 Computational benchmarks of generating the
verification movies. Note: 3 movie creation jobs were running in
parallel

Scaffold Type SC MF MMF

Number of [cell, scaffold,
contact] triplets

165 135 114

Movie creation time 4 h:40 min 4 h:47 min 2 h:55 min

Fig. 17 Two examples of cell-scaffold contacts that were labeled by all three experts as excellent (top) and bad (bottom) for both Statistical A2
(left) and Geometrical A6 (right) methods
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"Assessing fiber scaffold segmentation accuracy using
single fibers" and the errors ranged between 0.46% to
3.8% of the SEM radius. These error values were
comparable to the 3% radius error from single fiber
SEM images based on our visual inspection. The fiber
radius in a single fiber experiments was 1.1242 μm
±0.075 μm and can be related to the results of visual
verification for MF scaffold (radius ≈ 1.3 μm). The
visual verification of MF scaffold type yielded 41, 38,
and 33 contacts labeled as “bad” out of 135 pairs
(30.37%, 28.15%, and 24.44%). By comparing the algo-
rithmic errors observed from single fiber experiment
of fiber radii and from visual verification of contacts,
we could conclude that the cell-MF scaffold contact has
about 13× worse error than a single fiber radius error (con-
tact: 30.37%, 28.15%, and 24.44% errors per expert versus
radius: 0.46% to 3.8% errors per point selection; average
contact error/average radius error = 27.65/2.13 ≈ 13). The
magnitude of this ratio illustrates the complexity of cell-MF
scaffold contact versus single fiber radius measurements
and the challenges associated with multiple touching fibers
and channel bleed-through. Interestingly, the visual verifica-
tion of MMF scaffolds (radius ≈ 0.55 μm) led to 27, 11, and
9 contacts labeled as “bad”’ respectively out of 114 pairs
(23.68%, 9.65%, and 7.89%) which were smaller errors than
those for the MF scaffolds.

Computational and human labor costs
As with many “big data” experiments, the computational
and human labor costs are not insignificant. To execute
all computational steps of the methodology, it took
approximately (a) 84.5 h to segment cells and to gener-
ate max projections for cell visual verification (data on
network drive), (b) 13.33 h to crop data (all z-stacks
stored on an external drive connected via USB3), (c) 19 h
to run all five statistical methods (A1-A5) on the 414 z-

stacks of [cell, scaffold] pairs and obtain probabilities of
contacts, (d) 3.45 h to convert statistical probabilities to
binary contacts and 17.25 h to convert vesselness filtered
values to binary contacts (data on local drive), (e) approxi-
mately 3.49 h to run the three geometrical methods (A6,
A7, A8) on all 414 pairs (data on local drive), and (f)
12.37 h to generate movies. The total computational time
was approximately 153.39 h. The computational times
have been collected on five computers and include some
input/output overhead in order to accommodate heteroge-
neous platforms of major contributors. We also
approximated the total time spent by the three experts on
verifying the cell segmentation was around 4 h + 4 h + 4 h
= 12 h and on verifying the cell-scaffold contact sites
around 6 h + 8 h + 6 h = 20 h.

Qualitative discussion
Modeling tradeoffs
The cell-scaffold contact methodology consists of mod-
eling, validation and verification with several tradeoffs.
The first tradeoff is related to choosing a model: general
statistical model versus custom geometrical model. In
other words, geometrical models can be specific to each
scaffold type (e.g., a planar model for SC and a tube
model for MF) while statistical models are more general.
Thus, statistical methods can be re-used for other
experimental scaffolds while geometrical methods would
have to be developed for each type of scaffold.
Another tradeoff is between the labor/computational

complexity and the number of plausible contact models
included in the search space of models. The word
“plausible” should be interpreted with caution because a
priori assumptions about plausible models are injected
into an algorithm. This is the reason why in order to
avoid biases, geometrical models with stronger assump-
tions about the scaffolds than the statistical models are
validated by physics-based orthogonal measurements ra-
ther than just by visual verification in our study.

Physics-based validation and visual verification tradeoffs
We obtained measurement accuracies based on visual
verification and validation using physics-based orthogonal
measurements. This poses a tradeoff between the
value and cost of the two approaches. The value of
visual verification lies in delivering confidence in ac-
curacy measurements at the cost of manual labor.
The visual inspection also allows for identifying errors
in algorithms and discovering new phenomena. The
drawback is that it is a qualitative assessment at a
coarse level and that there are differential limitations
in visualization quality based on user display. The
value of validation using orthogonal measurements
lies in removing human bias at the cost of smaller
confidence in accuracy measurements because of
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different measurement conditions. The advantage of
validation is in establishing quantitative assessment at
a fine (voxel) level.
There is an option of establishing accuracy and robust-

ness by using data-driven simulations. In our case, simu-
lations started with segmentation of existing [cell,
scaffold] pair and extracted skeletons and radii of fibers,
followed by model-based simulations of cross-channel
bleeding, optical distortions and Gaussian noise. How-
ever, we are not reporting simulations because they re-
quire validating all simulation models, estimating their
parameters, and comparing simulations against reference
cases to show that the simulations are accurate.

Quality control considerations
The quality of cell-scaffold contact measurements de-
pends highly on the quality of data and models. There is
a tradeoff between doing quality control after acquisition
and after obtaining a contact measurement. In our study,
we eliminated 297 z-stacks of [cell, scaffold] pairs from
the 711 automatically acquired z-stacks which lowered
the computational and verification efforts. The elimin-
ation of cells out-of-focus and touching cells took ap-
proximately 2 h using CLSM software (Leica LAS AF)
for browsing acquired z-stacks. If we did not eliminate
the 297 pairs then the total computational time and vis-
ual verification time would increase by a factor of 711/
414 = 1.72.
Based on our observations, the most detrimental ef-

fect on contact measurements comes from channel
bleed-through. In the case of bleed-through, we are
unable to extract reliable contact measurements as
opposed to other cases when the effects can be cor-
rected manually (e.g., cell segmentation of touching
cells) or by algorithmic design (e.g., cells extending
outside of a FOV).

Complexity and heterogeneity considerations
Finally, the complexity of cell-scaffold contact measure-
ments from a TB-sized collection of z-stacks must be ad-
dressed by a team with diverse expertise. The diversity
leads to a chain of heterogeneous contributions to the
final contact measurement in terms of software languages,
operating systems, and hardware platforms on which the
measurement is performed. Thus, multiple verification
milestones become critical to address the complexity and

data scale of contact measurement, as well as to eliminate
sources of computational errors.

Conclusions
The described object-based contact measurement meth-
odology enabled (a) optimized cell-scaffold contact
representations that incorporate a range of statistical
and geometrical models, (b) validated 3D contacts using
reference measurements, and (c) visual verification and
efficient contact measurement of 414 cell-scaffold inter-
actions with two analysis methods over three types of
scaffolds, totaling about 1 TB of data. The key contribu-
tions come from (1) the contact modeling and the valid-
ation methodology, (2) the large scale of contact
measurements with 100% visual verification, and (3) the
web mechanism for disseminating and reviewing contact
measurements from a TB-sized collection of z-stacks.
In the near future, the resulting well-characterized cell-

scaffold contact measurements will be used to extract and
classify shape dimensionality, while the methodology and
computational parts can be re-used for other co-
localization studies. We also plan to compare the accuracy
and time needed for contact verification with approaches
that utilize the state-of-the-art National Institute for Stan-
dards and Technology virtual reality metrology facility.

Endnotes
1https://isg.nist.gov/CellScaffoldContact/app/pages/

docs/gammaCorrection.html
2https://itk.org/ITK/resources/software.html
3http://niftilib.sourceforge.net/
4https://www.qt.io/download/
5https://www.opengl.org
6https://opencv.org/
7https://ffmpeg.org/
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