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Abstract

Background: Multi-label classification of data remains to be a challenging problem. Because of the complexity of
the data, it is sometimes difficult to infer information about classes that are not mutually exclusive. For medical data,
patients could have symptoms of multiple different diseases at the same time and it is important to develop tools that
help to identify problems early. Intelligent health risk prediction models built with deep learning architectures offer a
powerful tool for physicians to identify patterns in patient data that indicate risks associated with certain types of chronic
diseases.

Results: Physical examination records of 110,300 anonymous patients were used to predict diabetes, hypertension, fatty
liver, a combination of these three chronic diseases, and the absence of disease (8 classes in total). The dataset was split
into training (90%) and testing (10%) sub-datasets. Ten-fold cross validation was used to evaluate prediction accuracy with
metrics such as precision, recall, and F-score. Deep Learning (DL) architectures were compared with standard and state-of-
the-art multi-label classification methods. Preliminary results suggest that Deep Neural Networks (DNN), a DL architecture,
when applied to multi-label classification of chronic diseases, produced accuracy that was comparable to that of common
methods such as Support Vector Machines. We have implemented DNNs to handle both problem transformation and
algorithm adaption type multi-label methods and compare both to see which is preferable.

Conclusions: Deep Learning architectures have the potential of inferring more information about the patterns of physical
examination data than common classification methods. The advanced techniques of Deep Learning can be used
to identify the significance of different features from physical examination data as well as to learn the contributions of
each feature that impact a patient’s risk for chronic diseases. However, accurate prediction of chronic disease risks remains
a challenging problem that warrants further studies.

Keywords: Deep neural networks, Deep learning, Intelligent health risk prediction, Multi-label classification, Medical health
records
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Background

Chronic diseases are responsible for the majority of
healthcare costs worldwide [1, 2]. An early diagnosis
from an expert can help save a patient in terms of
healthcare costs and extend the lifespan and quality
of life for a patient. Early diagnosis of a chronic dis-
ease is often difficult due to the complexity and vari-
ability of the factors that lead to the disease. In an
effort to help physicians diagnose these types of dis-
eases early, computational models are being utilized
to predict if a patient shows signs of one or more
types of chronic diseases. The advantage of modern
big data analysis allows physicians to infer informa-
tion from patient data with less computational time
and cost. This will allow physicians to build powerful
tools for the purposes of intelligent health risk
prediction.

Recently, deep learning techniques are being used
for all different purposes with great success and are
becoming more popular within various disciplines.
Because of its generality, similar architectures put
together through deep learning can be applied to
many classification problems. Particularly within the
medical field they are increasingly being used as a
tool for multi-label classification. For example, Mayr
et al. use a Deep Neural Network as a way to identify
different sets of chemical compounds for toxicity pre-
diction for humans [3], Lipton et al. use Recurrent
Neural Networks to analyze time-series clinical data
to classify 128 different diagnoses [4], and Esteva et
al. use Convolutional Neural Networks to identify
skin-cancer [5].

In this study, hypertension, diabetes, and fatty liver
are three chronic diseases that are analyzed to predict
types of chronic diseases for a patient. The diagnosis
that is given for a certain patient can be one of the
three, some combination of the diseases, or can be
diagnosed as showing no signs of any of the diseases.
This means that overall there are eight different diag-
noses that can be given.

The layout of the paper is as follows: Methods will
describe the two Deep Learning architectures that
were used as a predictor for the multi-label classifica-
tion dataset, the different types of algorithms that
serve as a benchmark for comparison purposes, and
explain evaluation methods that show how Deep
Learning architectures perform when compared
against traditional and other similar multi-label classi-
fication type methods; Results will describe the data
and report the differences of performance between
the methods chosen; Finally, discussion and conclu-
sions are made about the performance of deep learn-
ing architectures for the purposes of predicting
chronic diseases in physical examination records.
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Methods

Several different machine learning methods are brought
together to compare the performance of Deep Learning
architectures on the physical examination data. In this
section, combinations of traditional machine learning
methods are used, plus there are a few methods that
were specifically developed to solve multi-label classifi-
cation problems. The other traditional methods can be
used to solve multi-label problems, but generally in-
volves some manipulation of the dataset in order for
the algorithm to interpret targets of a dataset cor-
rectly. In other words, it transforms a multi-label
dataset into a single-label dataset with multiple clas-
ses. There are many different techniques that have been
used to handle this type of conversion. There are generally
two categories for multi-label classification problems:
problem transformation or algorithm adaption methods.
One of the more popular problem transformation tech-
niques is called the Label Powerset (LP) [6], where each
unique set of labels for a multi-label dataset is considered
a single label. This unique set of labels is considered a
powerset. A classifier is trained on these powersets in
order to make a prediction. Some of the following
methods make use of this particular technique in order to
handle multi-label classification. However, there are some
drawbacks when manipulating the data to suit this format.
It is common for LP datasets to end up with a large
amount of represented classes and few samples of each
class to train on. An advantage that Deep Learning
methods have over similar problem transformation tech-
niques is that it can train on the original data without
needing to resort to some type of conversion of the data.
These Deep Learning methods fall more into the
algorithm adaptation category.

Ensemble methods

There are a couple of methods that were used to com-
pare against the Deep Learning techniques that make
use of, or have a variation of, the LP transformation. In
particular, the Random k-Labelsets (RAKEL) method for
multi-label classification [7, 8] is one such method that
utilizes LPs to train on groups of smaller, randomly
selected sets of labels, which are of size k, using different
classifiers on groups of LPs, then uses a majority voting
rule as the basis for selecting target values. If the average
of the predictions for a label is above a certain threshold,
then the label is chosen as true for that instance.

The ELPPJD method [9] is an ensemble multi-label
classification method that uses a technique similar to LP
and RAKEL where the data is transformed into a multi-
class problem, then performs a joint decomposition sub-
set classifier method to handle imbalanced data. This
joint decomposition creates subsets of the data based
upon the number of samples per LPs.
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Classifiers

The following section describes the classification methods
that we used for prediction. Besides the Deep Learning
methods, most of these classifiers were part of a single
label, multiclass step when used with RAKEL and
MLPJTC after the dataset transformation. These classifiers
were the “base” classifiers for the previous mentioned
multi-label classification methods.

A Multilayer Perceptron (MLP) [10] is a machine
learning method that was originally developed to try and
discover if researchers can simulate how a brain oper-
ates. As researchers added more improvements to this
method such as backpropagation [11], it became one of
the more common classification tools because of the
way that the network could infer information about the
data in the absence of a priori information. The architec-
ture of an MLP is usually described as having a network
of layers where there are at least three layers: an input
layer, hidden layer, and an output layer. Each of these
layers is built with multiple different nodes that have
edges, or weights, connecting to each successive layer in
the network. Each node in the network calculates the
synaptic weight of the connections of the previous layer
and then passes the results of this to an activation func-
tion, usually some sigmoidal type of function. Eq. 1
shows the calculation of the synaptic weight of a single
node at position j and all previous N edges connected to
the node with some additional bias b, which is generally
random Gaussian noise defined as b~N(0, 1). In Eq. 1, X;
is the input node of the previous layer node position (i)
with feature length N in the network and Wj; is the asso-
ciated weight for the link connecting node i in the previ-
ous layer and the node O; in the current layer. Eq. 2
represents the activation function of the node, where ¢
is the sigmoid function, but could easily be any number
of other activation functions such as the hyperbolic tan-
gent function.

N
0 = inwij + b, (1)
i=1
1
¢*f§35 (2)

The number of nodes for an input layer is typically the
features or attributes of a dataset, and the connections
of the input layer to the hidden layer can be different de-
pending on how many nodes are selected for the hidden
layer. The hidden layer can consist of multiple different
layers stacked together, but it is generally assumed that
the performance of an MLP does not increase past two
layers. The hidden layer is connected to the output layer,
where the output layer is the same number of classes that
are getting predicted. The calculation above happens for
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each node in the network until the output layer is reached.
At this point, called a forward pass, the network has tried
to learn about the sample passed in, and has made a pre-
diction about that data, where the nodes of the output
layer are probabilities that the sample is of a certain class.
This is at the point where backpropagation takes over.
Since this is a supervised technique, an error between the
prediction y; and the target ¢; of the sample # is calculated
as the difference between the two values (Eq. 3) and
passed to a loss function (Eq. 4) to determine a gradient,
which allows the network to adjust, or back propagate, all
of the weights between each node up or down depending
upon the gradient of the error (Eq. 5). Eq. 5 shows the
equation for a gradient descent method. In general, it is an
optimization function ming(e(n| 6)) where 6 is the vector
of parameter values. Aw;(n) represents the change in
weight for the node at position j for sample #, a is a par-
ameter called the learning rate, which determines how
much to move in the direction of the gradient, y; is the
prediction from the output layer, and “Le(n|0) is the
gradient of the loss function.

¢ = tj(n)=y;(n) (3)

N

elnl6) = =" &) (@)

j
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This process of a forward pass and backpropagation
continues until a certain number of iterations are met,
or the network converges on an answer. Another way to
look at the method is that the architecture is using the
data to find a mathematical model or function to best
describe the data. As the network is trying to learn, it is
constantly searching for a global minimum value such
that predictions can be accurate.

The C4.5 algorithm [12] is a classification method
that is used to build a decision tree. It uses the con-
cept of information gain and attributes of the data to
split nodes of a tree into one class or another. It de-
cides the best attribute of the data to properly split
samples of the data and follows some base cases to
add more nodes to the tree.

Support Vector Machines (SVM) work by trying to
separate the classes from samples of a data into different
hyperplanes. It tries to maximize the distance between
classes as much as possible. It can use one hyperplane
for linear classification, or it can have an infinite number
of hyperplanes for nonlinear classification. The way that
this is achieved is utilizing kernel functions that have the
ability to linearly separate the data.
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For this study, there were two different implementations
of SVM algorithms that were tested with the physical
examination dataset. One implementation used Sequential
Minimal Optimization (SMO) [13] while the other is a
slight variation of the SMO algorithm that was developed
from the library package LibSVM [14, 15].

Random Forest is another decision tree type algorithm
that takes advantage of the concept of bagging, or using
many different learned models together to make an ac-
curate prediction [16]. It creates a collection of different
decision trees based on random subsets of samples per
tree and decides which class to predict by employing a
voting mechanism to rank the decisions.

ML-KNN is an extension of the k nearest neighbors al-
gorithm for multi-label classification [17]. It works by de-
termining the k nearest neighbors for an instance as it is
passed to the algorithm, then the information gained from
the labels that are determined to be mostly associated with
the instance is used to predict the appropriate LP for the
unseen instance. BP-MLL is multi-label neural networks
algorithm that can be considered for performance com-
parison, which will be included in our future work. This
algorithm was successfully applied to classification of
functional genomics and text categorization [18].

Deep learning architectures

Deep Learning architectures are becoming more popular
as a set of tools for machine learning. For multi-label
classification, these types of systems are performing very
well, even sometimes outperforming humans in certain
aspects. Here, Deep Learning methods are used to pre-
dict chronic diseases for intelligent health risk predic-
tion. What follows is a brief description of the types of
architectures that we implemented when using physical
examination records to predict chronic diseases. There
are two different implementations of the DNN used for
multi-label classification: one for problem transform-
ation, and another for algorithm adaptation.

Deep Neural Networks (DNN) are an extension of the
MLP and is usually considered a DNN if the MLP has
multiple hidden layers [19, 20]. In addition to multiple
layers, there are different types of activation functions
and gradient descent optimizers that help to achieve a
solution to an issue that MLPs suffer from which is the
vanishing gradient problem. The vanishing gradient
problem arises whenever a network is trying to learn a
model, but the gradients of an error are so small that ad-
justments to the weights through backpropagation al-
most make no difference to the learning process and
gets to a point of never reaching a global minimum. As
mentioned before, there are different activation func-
tions that are typically used for MLPs and DNNs, such
as sigmoid or hyperbolic tangent functions. However,
specifically for Deep Learning, different activation
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functions have been proven to achieve better results in
certain cases. One of these activation functions is called
a Rectified Linear Unit (ReLU). For some activation
functions, the evaluation of a node can lay between
negative one and positive one. However, for the ReLU
function, an evaluation that is below zero is cut off and
the value can only be between zero and one, or more
formally flx) = max(0,x) where x is the result of the
equation coming from the node of the network. Gradi-
ent descent optimizers are optimization algorithms used
for the purposes of finding a local minimum. Hyper pa-
rameters such as learning rates and momentum serve
these gradient descent algorithms by shifting how much
to move through a function space in order to converge
on a global minimum. If a value is either too low or too
high then the optimizer may miss the global minimum
entirely and focus on a local minimum, or perhaps it
may never converge at all.

To optimize the hyper parameters of these deep learn-
ing networks we opted to go with a grid search to find
the best solution and let the networks converge on a
model that suits the data. A grid search is one in which
there are multiple different variables one should account
for in a deep learning model to reach the global mini-
mum as fast or as accurate as possible. For the multi-
layer perceptron, there were three different parameters:
epochs, learning rate, and hidden layers. In practice,
these are the parameters that changed prediction results
the most. Epochs are how many iterations of the data
the network will be used to train a model, the learning
rate is how fast or slow the gradient decent optimizer
adjusts to reach the minimum, and hidden layers refer
to the number of individual layers between the input
and output layers. The DNNs in our example are fully
connected networks, meaning that each node contains a
connecting edge to all of the nodes in the successive
layer in the network. Hidden layer units are the number
of nodes that exist in each individual hidden layer in the
network. The number of units that were chosen came to
be 35. This is based on one of the parameters that
WEKA uses for their multi-layer perceptron, where they
use the equation a = (attributes + classes)/2 to determine
some number of units for a layer.

There are also some different activation functions that
were used, either the sigmoid function or ReLU, and
dropout layers were also chosen. Dropout was developed
for the purposes of helping a network avoid overfitting
[21]. The basic idea behind dropout is to block certain
nodes from firing in the network and allow other nodes
the opportunity to learn through different connections
or infer different information by only allowing access to
certain information. There are differing opinions on
whether or not one should allow dropout between each
layer, or only during the last hidden layer and output. In
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this study both options are investigated to get an overall
view of how the network performs.

Determining the cost function for a network can make
a large difference in the accuracy of the network so
special care should be taken to examine whether or not
the right cost function is used. For single label data, a
softmax function was used for the output layer. The
reason for this is straightforward. The equation for the
softmax function is as follows:

"

€ .

o(n);, = mforz =1.K (6)
where a vector of n values of length K is normalized
against the exponential function. The idea behind the
softmax function is to normalize the data such that the
values of the output layer in the network lie in the range
(0, 1) and the sum total of the values equal 1. These
values can then be interpreted as probabilities, where
the highest probability is most likely the best candidate
label for the sample in the dataset. Of course, this is
acceptable for single label data because each label is con-
sidered mutually exclusive. For multi-label data another
option should be considered. Because we cannot use
softmax in this case, we should use some other function
that has a range of (0, 1) so that these can be interpreted
as probabilities. The sigmoid function is a good use for
this task. Since the predictions in the output layer of the
network are independent of the other output nodes, we
can set a threshold to determine the classes for which
the sample belongs. In our case, the threshold 0 for the
output layer is 0.5 (Eq. 7). When selecting 0, analyzing
the output of the prediction values to find the range will
help to guide selection of the threshold value.

0, <80

1 x20 ,where 6 = 0.5 (7)

s ={

Evaluation methods
In order to compare these different methods, accuracy
cannot be the single metric used to determine the effect-
iveness of an algorithm. There are multiple other
methods that typically get used to get an overall census
on how a method performs. For example, one method
could have a very high accuracy, but the data could be
imbalanced and the model could be biased towards
some certain class that dominates the dataset and only
selects that class as the prediction based on the training
data, ensuring that most of the guesses are labeled cor-
rect even though it is simply selecting the dominating
class most of the time without actually learning any in-
formation about the data.

The metrics that are used to compare the different
methods are accuracy, precision, recall, and F-score. The
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accuracy of a method determines how correct the values
are predicted. Precision determines the reproducibility
of the measurement, or how many of the predictions
were correct. Recall shows how many of the correct re-
sults were found. F-score uses a combination of preci-
sion and recall to calculate a score that can be
interpreted as an averaging of both scores. The following
equations show how to calculate these values, where TP,
TN, FB, and FN are true positive, true negative, false
positive, and false negative respectively.

B - TP + TN
CHUTAY = Tp L FP+ IN + EN

P
1P + FP

TP
TP + FEN

Precision =

Recall =

2 X Precision x Recall

FS =
core Precision + Recall

Classifier evaluation platform and development
environment

The majority of classifiers were used with the software
package WEKA, which as mentioned earlier is a com-
mon benchmark tool to evaluate the performance be-
tween multiple algorithms. There are two different
categories of classifiers that were used with WEKA; one
that used the GUI interface to run individual algorithms
on the data that was transformed via the MLPJTC
method, and the other category used the MULAN pack-
age that was built upon the WEKA API to handle the
multi-label data. For multi-label classification, the
RAKEL method from the MULAN package is used, and
then the base classifier implemented through the WEKA
API is used for classification of the data itself. In other
words, the RAKEL method transforms the multi-label
data in order for the classifiers to be run. The MLPJTC
results are listed in Table 1 and the RAKEL results are
listed in Table 2. An additional multi-label method,
MLKNN, is also listed in Table 2. MLKNN was imple-
mented in the MULAN package by the authors of

Table 1 The results of the classifiers for single-label, multi-class
dataset

Algorithm Accuracy (%) Precision Recall F-Score
LibSYM 49.89 0422 0499 0416
MLP 74.94 0.744 0.749 0.744
SMO 69.67 0.691 0.697 0.670
148 77.26 0.771 0.773 0.771
DNN 71.10 0.757 0.711 0.726
RF 81.51 0.810 0.815 0.808
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Table 2 The results of the classifiers for multi-label dataset

Base Classifier Accuracy (%) Precision Recall F-Score
RAKEL-LibSVM 5947 0.697 0.603 0.630
RAKEL-MLP 81.63 0.854 0.838 0.837
RAKEL-SMO 59.47 0.697 0.603 0630
RAKEL-J48 83.64 0.864 0.865 0.856
RAKEL-RF 85.67 0.884 0.880 0.874
MLKNN 51.03 0.602 0530 0.547
DNN 92.07 0915 0.867 0.823

RAKEL and is a method that was included for bench-
mark purposes. The deep learning architectures were
implemented in the deep learning package TensorFlow,
which is an API written in Python and developed by
Google. TensorFlow provides a way to build deep neural
networks using basic implementations of the different
deep learning architectures, or the axioms of these archi-
tectures. TensorFlow also includes tools to evaluate per-
formance and help with deciding how to manipulate
parameters to allow the network to learn properly.

Results and discussion

Dataset and preprocessing

The physical examination dataset is from a medical cen-
ter where 110,300 anonymous medical examination re-
cords were obtained [9]. In the table of dataset, each
row represents the physical examination record of a pa-
tient and each column refers to a physical examination
item or feature, except for the last six columns that indi-
cate disease types. The dataset includes 6 normal
chronic diseases including hypertension, diabetes, fatty
liver, cholecystitis, heart disease, and obesity and the
prediction in this study focuses on the first three of
them. Each type of six diseases corresponds to a class
label in the classification. From over 100 examination
items, 62 features were selected as significant based on ex-
pert knowledge and related literature. These items are 4
basic physical examination items, 26 blood routine items,
12 urine routine items, and 20 items from liver function
tests. One may get more details about the dataset from [9]
and website provided at the end of this paper.

In order to get some evaluations on the data, a ten-
fold cross validation step is performed on the data,
where 90% of the data is used for training and 10% is left
for testing. Usually, random sampling is enough to get
results from cross validation, however with the physical
examination records another approach is needed be-
cause not all classes were being represented in the train-
ing for the model of the classifier.

From Fig. 1, when the data is transformed into a single
label, multiclass problem it is apparent that there is a
vast amount of imbalance in the data. This was a bit
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Fig. 1 The distribution of physical examination records for chronic
diseases. Here, the list of chronic diseases are Fatty Liver (FL),
Diabetes (D), Hypertension (H), a combination of these diseases
(DFL, HFL, HD, HDFL), and the absence of the disease or classified as

Normal (N)

expected considering that we were transforming the
dataset using the LP method. As mentioned in the be-
ginning of the paper, it is common to end up a situation
such as this, where some labels have a small representa-
tion of the overall dataset. The first two classes alone
make up for 64.25% of the data. With such an imbal-
anced dataset, it is not hard to imagine that a classifier
could tend to be biased towards the first two classes. A
couple of strategies were employed to help the classifiers
avoid biased predictions. The first is to stratify the train-
ing and testing datasets when randomly sampling for a
ten-fold cross validation. Stratifying a dataset in this case
means that the sampling is proportional to the original
dataset. In other words, the sampling will maintain the
percentage of class labels from the original data, but will
ensure that each class is represented for training pur-
poses. Another issue presented itself however because
the lower classes did not have enough samples for the
model to differentiate between specific instances when
training. A way to help with this is to include oversam-
pling of the lower classes so that more information can
be gained for lower represented classes. One such imple-
mentation is the Synthetic Minority Over-sampling
Technique (SMOTE) [22]. This method under-samples
the majority class as well as over-samples the minority
classes and additionally introduces some synthetic exam-
ples of the minority to fill some feature space for the class
rather than simply oversample with replacement or mak-
ing multiple copies of instances. According to the authors
of SMOTE, this is an improvement technique that has
worked well with handwritten character recognition.

Comparison of different classifiers

In Table 1, various popular classification methods are
compared against each other to analyze the performance
of the single-label, multi-class dataset. LibSVM and
SMO are different types of support vector machines,
MLP is the WEKA implementation of the Multilayer
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Perceptron, J48 is the Java implementation of the C4.5
decision tree algorithm, DNN represents the deep learn-
ing architecture that was implemented in TensorFlow,
and RF is the Random Forest classifier.

The support vector machines were not able to handle
the data as well as the decision tree type algorithms,
which scored the best overall. MLP and DNN similarly
scored lower than the decision tree algorithms. In the
case of single label, multi-class, a bagging type algorithm
does fairly well on this dataset.

For Table 2, the classifiers from Table 1 are used as a
base classifier for the RAKEL method in order to handle
multi-label classification. The difference here is in the
MLKNN and DNN methods. These two methods could
handle the data without first transforming it into a LP.
In all cases of RAKEL except for SMO, the results were
improved from the previous table. MLKNN performed
the worst out of all methods. DNN had the best accur-
acy, but when considering the other metrics listed in the
table, RAKEL with Random Forest as a base classifier
was the best performing classifier overall. This makes
sense, because not only is RAKEL creating random sub-
sets of the data, but Random Forest is also generating
subsets of the samples for its decision trees. This allows
for a very large coverage of all the features to be able to
strongly identify correlations in the data. These subsets
could allow for more precision when making a predic-
tion. The DNN architecture is trying to find correlations
from the data as a whole without any type of ranking,
voting, or making subsets of the samples, so there is a
wider net of interpretation from the dataset. Also, differ-
ent adjustments of hyper-parameters could help increase
precision and recall values. This dataset in particular has
a large amount of TN values which dominate the terms
in the equation for accuracy. The model itself tended to-
ward a negative prediction. This is one reason why ac-
curacy was so high while other metrics were lower.

Optimization of deep learning parameters in single-label
data

A grid search of hyper parameters was used when trying
to find the optimal parameter to use with the physical
examination dataset. When using a grid search one
could randomly choose a set of parameters and train
using the chosen set, then repeat until a certain number
of runs were achieved, or another option would be to it-
erate through all possible combinations to get perform-
ance metrics for each run. The latter was chosen as the
preferred method of evaluation in addition to the ten-
fold cross validation step. The epochs, or iterations
were 775 and 1000, the learning rate was 0.01, 0.05,
0.75, and 0.1. Hidden layers for the single label data
were set as either 1 or 2. The Sigmoid and ReLU
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activation functions were also used for comparisons
to evaluate how each of them compared.

Overall, the Sigmoid function performed better than
the ReLU activation function when compared with the
same hyper parameters, as shown in Fig. 2. Further ana-
lysis was performed to see the effects of adding multiple
layers had on the network to learn about the data. As
you can see from Fig. 3, accuracy drops drastically as
multiple layers are introduced. The simpler the network
is constructed, the better the accuracy becomes. Here,
there are multiple dropout layers introduced to compare
performance, including no dropout layers, one dropout
layer between the last hidden layer in the network and
the output layer, and dropout layers between every layer
in the network. The results given in Fig. 3 show that
when the network is past the fourth hidden layer, the
network plateaus in performance. As more layers are
introduced to the network, the issue of the vanishing
gradient is more apparent and propagates to the other
layers in the network more quickly as a consequence. In
addition, for such a problem as this, the extra layers
added more complexity to the model that may not
reflect the complexity of the data itself.

The structure of the DNN here is very similar to the
implementation of the MLP provided by the WEKA
software benchmark tool. However, there are some dif-
ferences which accounts for the variation in the results.
In terms of nodes in the network, each represented node
in the WEKA version uses the sigmoid activation func-
tion including the output layer. For the loss function,
the squared-error loss is used with backpropagation for
learning. In the case of the TensorFlow implementation,
the output layer of the network was made up of linear
units that were not squashed by any activation function.
For the loss function, a softmax function with cross en-
tropy was used to calculate the error across the network,
then it is passed to an optimizer that implements the
Adam algorithm [23] for stochastic gradient optimization.

Impact of deep learning parameters for multi-label data

The following results are using the DNN architecture
without any transformation of the data (algorithm adap-
tation) in order to obtain results for multi-label classifi-
cation. The architecture is almost identical to the single
label, multiclass data, however the cost function has
changed. As previously mentioned, the cost function for
this architecture has to be a bit different considering the
fact that a prediction for a class is not mutually exclu-
sive, so the sigmoid function with the addition of cross
entropy was selected and a threshold () is used on the
results of the cross entropy calculation to determine
whether or not a class is predicted for multi-label classi-
fication. It was found that the sigmoid activation func-
tion performed better than the ReLU and hyperbolic



Maxwell et al. BMC Bioinformatics 2017, 18(Suppl 14):523

Page 128 of 169

0.76
0.74 4
0.72 4
0.70
0.68 4

Sigmoid Function, 1 Hidden Layer

| —— Epoch 775, 0 Drop

0.66 -
0.64 4

Accuracy

0.62
0.60

0.010 0050 0075  0.100
Learning Rate

Sigmoid Function, 2 Hidden Layers

0.76
0.74 4
0.72 o
0.70 4
0.68 4

{- —e— Epoch 775, 0 Drop

Accuracy

0.66 4
0.64 4

0.62 4
0.60

0.010 0.050 0.075 0.100
Learning Rate

DNN architecture

| - -~ Epoch 775 1 Dropout
+++ Epoch 1000 0 Dropout 3
Epoch 1000 1 Dropout < 0,68 4

[ --- Epoch 775 1 Dropout
Epoch 775 2 Dropout &
5
Epoch 1000 0 Dropout 8 060 4
Epoch 1000 1 Dropout <

f- —=— Epoch 1000 2 Dropout

o 0.65

Fig. 2 Performance comparison of activation functions. The sigmoid and ReLU activation functions are compared against each other in the

ReLU Function, 1 Hidden Layer ~

I —e— Epoch 775, 0 Drop
=== Epoch 775 1 Dropout

[ ----- Epoch 1000 0 Dropout

Epoch 1000 1 Dropout

0.66 -

0.010 0050 0075  0.100
Learning Rate

ReLU Functipn, 2 Hidden Layers

[ —e— Epoch 775, 0 Drop
- =~ Epoch 775 1 Dropout
[ ----+ Epoch 775 2 Dropout
Epoch 1000 0 Dropout
Epoch 1000 1 Dropout
—=— Epoch 1000 2 Dropout

T T T T
0.010 0.050 0.075 0.100
Learning Rate

functions for this case. To verify that the results were
consistent, different numbers of units per layer were
tested. In Table 3, the DNN for multi-label data has the
same hyper parameters as the previous best version, but
the numbers of units per layer were tested with 35, 256,
and 512 units. Similarly, the single label version also had
better overall results from a less complex architecture,
but because of the LP of the data, the distribution of
classes were so varied and imbalanced that the metrics
suffered some loss in the results. Particularly in the
multi-label data, the accuracy seems to be better than
other multi-label methods that were compared. Accur-
acy does generally give an overall view of the results of
the architecture itself, but more importantly the other
metrics such as precision, recall, and f-score truly give a

Comparison of Hidden Layers for Sigmoid Function
0.80 . ‘ : :
—— 0 Dropout
075 - 1 Dropout
All Dropout
0.70
. 0.65
Q
s
3 060
Q
<
% 055
g
< 050
0.45
0.40
0.35 -
1 2 3 4 5 6 7 8 9 10
Hidden Layers
Fig. 3 A comparison of additional layers added to the MLP. The
hyperparameters are: 1000 epochs, 0.1 learning rate, 35 hidden layer
units, hidden layers from 1 to 10, and no dropout to one dropout
layer to all dropout layers. These parameters were chosen because
they gave the best overall performance for MLP with 1 or 2 layers

better sense of the performance of the network. In the
case of the DNN for multi-label data, the training
metrics are pretty high, but the metrics for the testing
data are lower than the training data. This indicates that
the testing data has some wide variability that the
network cannot grasp.

The specific architectures that were developed for the
physical examination data were DNNs. However, there
are a variety of different architectures that could have
been chosen. In this case, it seemed that other architec-
tures did not perform as well as DNNs, possibly due to
the fact that the data itself is not so complex as to need
the level of computation that other architectures like
Convolutional Neural Networks or Recurrent Neural
Networks would need. In addition to the complexity, the
learning method of the data generally would fit a regression
type of model to learn against the data, which does not
necessarily fit the type of data that is generally associated
with the other architectures. In most cases, such a type of
classification of this data falls in the category of DNNs.

Figure 4 and Fig. 5 show the area under the precision-
recall curve (AUPR) and the area under the receiver
operating characteristic curve (AUROC). These two
values combined together show the overall performance
of a trained classifier, and have been used many times to
determine the effectiveness of a model to predict a class
[24]. The performance of the classifier is determined
from each class independent of the other, and then

Table 3 DNN results for multi-label data with respect to different
number of units

Units Per Layer Accuracy (%) Precision Recall F-Score
35 92.07 0915 0.867 0.823
256 91.34 0919 0.854 0.798
512 91.80 0917 0.865 0.819
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Fig. 4 The Precision Recall (PR) curve for the testing dataset. The
testing dataset which contained 10% of the data, or 11,030
instances. Class 0 is Hypertension, Class 1 is Diabetes, and Class 2 is
Fatty Liver

together as micro and macro averaged scores. A micro-
averaged score gives a value that considers the weight of
each class label, whereas the macro-average score is an
averaging of the individual scores across each label. The
equations for micro and macro scores are shown below.

i
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Fig. 5 The Receiver Operator Characteristic (ROC) curve of the
testing data. Class 0 is Hypertension, Class 1 is Diabetes, and Class 2
is Fatty Liver
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For the multi-label dataset, an increase in accuracy
could be explained by the fact that each class has more
training samples since the classes are not mutually ex-
clusive. Considering the distribution of each LP in Fig. 1,
the imbalanced data is less of an issue and each class is
more likely to have some representation when random
sampling for the training set. Some adjustment could be
made to the threshold value when the prediction of the
output layer is calculated, which could also improve the
accuracy of the model.

The introduction of batch normalization has also im-
proved the results of the training [25]. Batch normalization
is the process in which mini-batches of the training data
are used to step through the network instead of processing
the entire training dataset as one step of training. The rea-
son is to minimize the impact of the covariate shifts from
the features of the input data, effectively normalizing the
layers and reducing the need for other architecture
regularization techniques such as dropout layers. Another
advantage is that batch normalization can reduce the
amount of epochs needed to train the network. For ex-
ample, before batch normalization, our network achieved
an accuracy of 89.90%, after 1000 epochs. After batch
normalization using a batch size of 512, the accuracy in-
creased to 92.07%, with only 100 epochs, significantly
reducing the amount of training time.

Some architectures can be sensitive to initialization
weights. Although the purpose of a Neural Network is
to be able to adjust weights even from random initial
values, setting the initial weights can significantly affect
the results of the prediction depending on the architec-
ture. In the described implementation, a truncated nor-
mal is used to initialize the weights within two standard
deviations from the mean. The standard deviation was
selected to be 0.001 with a mean of zero, so the random
values ranged between 0 and 0.003. Previously imple-
mented architectures used a randomized normal distribu-
tion for values ranging between zero and one, but
selecting a truncated normal so close to zero increased all
evaluation measures by a few points. This architecture
seemed to learn fairly well no matter the initialization
values. Evaluation measures varied only a small amount.

Conclusions

In this study, a multi-label classification method is devel-
oped using deep learning architectures for the purposes
of predicting chronic diseases such as hypertension in
patients for physicians. Such architectures are valuable
tools as they are able to calculate correlations in the data
through iterative optimization techniques. The results
show that DNNs give the highest accuracy among all six
popular classifiers. The F-score of DNNs is slightly lower
(but compatible) than Random Forrest and MLP classi-
fiers and but much higher than that of SVM and MLKNN
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classifiers. DNNs play a valuable role in the future of
multi-label classification methods because they are able to
adapt to the original data and can eventually find a decent
optimized function even with rudimentary pieces from
which to learn information. Some expert knowledge could
vastly improve the rate and ease at which a network could
learn the intricate details of a system. In this case, there
are some areas of improvement that could be made in
terms of the architecture and a thorough investigation of
the way the data is passed through the architecture of the
network should be considered. Further modification of
this architecture could enhance the performance of the
model in order to achieve better results for precision, re-
call, and f-score values. Deep learning architectures provide
a powerful way to model complex correlations of features
together to form an optimized function from which physi-
cians can predict chronic diseases. Additional improve-
ments to the model could easily allow for the inclusion of
other chronic diseases as newer data is gathered.
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