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Abstract

Background: Network enrichment analysis is a powerful method, which allows to integrate gene enrichment
analysis with the information on relationships between genes that is provided by gene networks. Existing tests for
network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on
normality assumptions.

Results: We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric
distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected,
but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than
alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of
alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the
Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting
associations between functional sets themselves.

Conclusions: NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some
limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be
freely downloaded from CRAN (https://cran.r-project.org/package=neat).

Keywords: Network, Enrichment analysis, Gene expression, Hypergeometric

Abbreviations: AUC, Area under the ROC curve; CRAN, Comprehensive R archive network; ESR, Environmental stress
response; GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; NEAT, Network enrichment analysis
test

Background
The advent of high throughput technologies has driven
the development of cell biology over the last decades. The
diffusion of microarrays and next generation sequencing
techniques has made available a large amount of data that
can be used to increase our understanding of gene expres-
sion. The need to analyse and interpret these data has led
to the development of new methods to infer relationships
between genes, which require a combination of biolog-
ical knowledge, statistical modelling and computational
techniques.
When the first data on gene expression became avail-

able, they were usually analysed considering each gene
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separately. However, researchers soon realized that genes
act in a concerted manner, and that cellular processes are
the result of complex interactions between different genes
and molecules. Nowadays, sets of genes that are respon-
sible for many cellular functions have been identified, and
are collected in publicly available databases [1, 2].
One of the advantages of these sets of genes, whose

function is already known, is that they can be used to
interpret the results of new experiments: this has led
to the implementation of a large number of methods
for gene enrichment analysis [3]. Their aim is to com-
pare gene expression levels under two different condi-
tions (experimental vs control), and to detect which sets
of genes are differentially expressed (enriched) in the
experimental condition. To this end, genes are ordered
in a list L in decreasing order of differential expression,
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and enrichment is then tested in different ways. Singu-
lar enrichment analysis [4, 5] tests the over or under-
representation of functional gene sets within the set of
genes defined by the first k top genes in L. The major
limitations of this approach lie in the fact that the choice
of k is arbitrary, and that the test does not take into
account gene expression levels. Gene set enrichment anal-
ysis [6, 7] overcomes these limitations, by making use of
the whole list L of genes, and testing the tendency of
genes belonging to a functional set to occupy positions
at the top (or at the bottom) of L. A limitation that is
common to both single and gene set enrichment anal-
ysis, however, is that these methods base computations
on the level of overlap between sets of genes only, with-
out considering associations and interactions between
genes.
Gene networks are an established tool to represent

these interactions. In network inference [8, 9], genes or
molecules are represented as nodes of a graph and their
interactions are modelled as links between the nodes.
These links can be represented as either a directed or
an undirected edge, and a graph is called directed if
all edges are directed, undirected if every edge is undi-
rected and partially directed (or mixed) otherwise [10].
An undirected edge displays association between two
genes, while a directed edge posits a direction in the rela-
tionship between them. Network estimation represents
a difficult task, and many different estimation methods
have been proposed [11, 12]. Marback et al. [13] clas-
sified them into six groups and pointed out that their
predictive performance can vary a lot within each group
and according to the structure of the network. In order
to integrate evidence on gene associations unveiled by a
number of experimental and computational studies into
a single network, curated gene networks for different
species have been proposed, including YeastNet [14] and
FunCoup [15].
In an attempt to integrate the information on inter-

actions between genes provided by gene networks into
enrichment analyses, researchers have recently developed
methods for network enrichment analysis [16–19]. The
idea, here, is to test enrichment between sets of genes
in a network. Shojaie and Michaidilis [16] focus mainly
on network inference, proposing to represent the gene
network with a linear mixed model, so that enrichment
tests can be then computed by testing a system of linear
hypotheses on the fixed effect parameters of the model.
Glaab et al. [17], Alexeyenko et al. [18] and McCormack
et al. [19], instead, assume that a gene network is already
available (either from the literature or as the result of a tai-
lored inferential process) and focus their attention on the
strategy that can be used to assess enrichment between
sets of nodes. In particular, Glaab et al. [17] propose a
network enrichment score based on a suitably defined

network distance between two sets of nodes, alongside an
empirical method for setting a cut-off on this distance. In
contrast to this, Alexeyenko et al. [18] and McCormack
et al. [19] derive network enrichment scores on the basis
of statistical tests against the null distribution of no
enrichment. The advantage of the approach proposed by
Alexeyenko et al. and McCormack et al. is that the assess-
ment of enrichment is based on a significance testing
procedure.
The idea of [18, 19] is that the presence of enrichment

between two sets of genes, say A and B, can be assessed
by comparing the number of links connecting nodes in
A and B with a reference distribution, which models the
number of links between the same two sets in the absence
of enrichment. Both [18] and [19] assume that the ref-
erence distribution is approximately normal, and they
obtain its mean and variance by means of permutations,
i.e., computing the mean and variance of the number of
links between A and B in a sequence of random replica-
tions of the network. Their tests rely on algorithms that
permute the network, and mainly differ between them-
selves for the fact that each algorithm aims to preserve
different topological properties of the original network
in the generation of network replicates. These methods,
however, suffer from three limitations. First of all, they
require the simulation of a large number of permuted net-
works, an activity that can be computationally intensive
and highly time consuming (especially for big networks).
Furthermore, they base the computation of the test on
a normal approximation for the reference distribution,
whose nature is discrete. McCormack et al. [19] show that
such an approximation is inaccurate when the expected
number of links between A and B is small. A further draw-
back of these methods is that they have been implemented
so far only for undirected networks.
In this work we build upon the approach of [18, 19] and

propose an alternative test which we call NEAT (Network
Enrichment Analysis Test). The main idea behind this test
is that, under the null hypothesis of no enrichment, the
number of links between two gene sets A and B follows
an hypergeometric distribution. This enables us to model
the reference distribution directly via a discrete distribu-
tion, without having to resort to a normal approximation.
NEAT does not require network permutations to compute
mean and variance under the null hypothesis, and is there-
fore faster than the existing resampling-based methods.
Moreover, we develop NEAT not only for undirected, but
also for directed and partially directed networks, thus pro-
viding a common framework for the analysis of different
types of networks.

Methods
The starting point of enrichment analyses is the identifica-
tion of one or more gene sets of interest. These target gene
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sets are typically groups of genes that are differentially
expressed between experimental conditions, but they can
also be different types of gene sets: e.g., clusters of genes
that are functionally similar in a given time course, or
genes that are bound by a particular protein in a ChIP-chip
or ChIP-seq experiment. Enrichment analysis provides a
characterization of each target gene set by testing whether
some known functional gene sets can be related to it.
Methods for gene enrichment analysis assess the relation-
ship between a target gene set and each functional gene set
simply by considering the overlap of these two groups. In
contrast to this, network enrichment analysis incorporates
an evaluation of the level of association between genes in
the target set and genes in the functional gene set into the
test.
Information on associations and dependences between

genes is represented by a network, which consists of a
set of N nodes V = {v1, . . . , vN } that are connected by
edges (links). Each gene is thus represented as a node
vi of the network, and a link between two nodes is
drawn to signify interaction between the corresponding
genes. Examples of genome-wide curated networks that
collect known gene associations are YeastNet [14] and
FunCoup [15].
A natural way to study the relation between two

sets of genes A and B in a network is to consider
the presence or absence of links connecting nodes in
the two groups [18, 19]. In the inferred network, we
expect that individual links may be slightly unstable and
noisy. However, we do expect that the inferred links
contain a sign of the relationships between gene sets.
So, although links between individual genes in sets A
and B may be noisy, if there is a functional relation-
ship between functions described by sets A and B we
expect the number of links between the two groups to
be larger (or smaller) than expected by chance. If this
is the case, we say that there is enrichment between A
and B.
Links between two nodes of a network can be either

directed (arrows) or undirected. The presence of an arrow
between two genes implies a directionality in the rela-
tion between them, whereas an undirected edge does not
provide information on the direction of the relation. The
upcoming subsection considers directed networks. In this
case, one can distinguish two cases: whether genes in the
target set regulate genes of the functional set, or genes
in the functional gene set regulate genes in the target
set (enrichment from A to B, or from B to A). This dis-
tinction does not occur for undirected networks, which
are the subject of the next subsection: in this case, A
and B are exchangeable, and we simply talk of enrich-
ment “between” A and B. A workflow diagram summa-
rizing the input and the output of NEAT is shown in
Fig. 1.

Fig. 1Workflow diagram of a typical network enrichment analysis
with NEAT

Enrichment test for directed networks
In a directed network, we assess the presence of enrich-
ment from A to B by considering the number of arrows
going from genes in A to genes belonging to B. We denote
this by nAB. The observed nAB can be thought of as a
realization from a random variable NAB, with expected
value μAB. To assess the relation from A to B, we com-
pare μAB with the number of arrows that we would expect
to observe from A to B by chance, which we denote as
μ0. We say that there is enrichment from A to B if μAB is
different from μ0. Furthermore, we say that there is over-
enrichment from A to B if μAB is higher than μ0, and
under-enrichment (or depletion) if μAB is lower than μ0.
We propose a test based on the hypergeometric distri-

bution to assess the significance of this difference. The
motivation behind this choice is the following. The hyper-
geometric distribution models the number of successes in
a random sample without replacement: in our case, we
can mark arrows in the network that reach genes in B
as “successful”, and the remaining ones as “unsuccessful”.
Then, we can view the arrows that go out from genes in A
as a random sample without replacement from the popu-
lation of arrows present in the graph: if there is no relation
(i.e., no enrichment) between A and B, then the distribu-
tion of NAB (the number of successes in the sample) is

NAB ∼ hypergeom(n = oA,K = iB,N = iV ), (1)

where the sample size oA is the outdegree of A (the total
number of arrows going out from genes that belong to
A), the number of successful cases in the population iB
is the indegree (number of incoming arrows) of B and
the population size iV is the total indegree of the network
(which is equal to the total number of arrows).
It is certainly possible to imagine alternative choices for

the null distribution of NAB. Alexeyenko et al. [18] and
McCormack et al. [19] assume that NAB is normal with
mean μ0 and variance σ 2

0 , and they use network per-
mutations to estimate μ0 and σ 2

0 . However, the normal
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distribution is continuous and symmetric, so that their
choice implies somehow that the behaviour ofNAB should
be roughly symmetric, and could be well approximated
with a continuous random variable. In addition, estima-
tion of μ0 and σ 2

0 by means of network permutations
can be highly time consuming. Alternatively, one could
consider for NAB an hypergeometric distribution with dif-
ferent parameters, defined for example, by considering all
possible edges in the network (instead of the edges that are
actually present in the network) as a population. We pre-
fer model (1) over this alternative, because the choice of
the parameters therein allows to condition on two quan-
tities that we consider crucial, which are the outdegree
of A and the indegree of B. Moreover, in our experience
so far, we have observed that tests based on alternative
parametrizations often result in poor performances.
The null mean and variance of NAB can be immediately

derived from model (1). In particular, in the absence of
enrichment we expect to observe, on average, μ0 = oA iB

iV
arrows from nodes in A to nodes in B. Thus, we expect μ0
to increase as the number of arrows leaving A, or reach-
ing B, increases. Biological assessment of enrichment can
therefore be carried out by testing the null hypothesis of
no enrichment

H0 : μAB = μ0

against the alternative hypothesis of enrichment

H1 : μAB �= μ0.

In a test with a discrete test statistic and two-sided alter-
native, such as the one that we propose, the p-value can
be computed in different ways [20–22]. Let T be a discrete
test statistic and t be the observed value of T . A first pos-
sibility is to compute the p-value for the two-tailed test by
doubling the one-tailed p-value, p1 = 2 min[P0(T ≤ t),
P0(T ≥ t)], where P0 denotes the distribution of T under
the null hypothesis. An evident drawback of this formula,
however, is that p1 can exceed 1, and therefore p1 does
not represent a probability. Even though a simple modifi-
cation p2 = min(p1, 1) could avoid the problem, we prefer
to subtract P0(T = t) from p1 (P0(T = t) is non-null for
discrete T , and this is the reason why p1 can exceed 1) and
to compute the p-value using

p = 2min[P0(T < t),P0(T > t)]+P0(T = t)
=2min [P0(NAB > nAB),P0(NAB < nAB)] + P0(NAB = nAB),

(2)

which always lies within the interval [ 0, 1] and differs from
p1 by a factor equal to P0(T = t). A p-value close to
0 can be regarded as evidence of enrichment, because it
entails that the number of links from A to B is signifi-
cantly smaller or higher than we would expect it to be in
the absence of enrichment. Therefore, for a given type I

error probability α, we conclude that there is evidence of
enrichment from A to B if p < α, while if p ≥ α there is
not enough evidence of enrichment.
As an example, consider the network in Fig. 2. Suppose

that we are interested to test whether there is enrichment
from the set A = {1, 4} to the set B = {3, 5, 7}. It can be
observed that there are 5 arrows going out from A, and 2
of them reach B. The whole network consists of 15 arrows,
of which 4 reach B. Thus, nAB = 2, oA = 5, iB = 4
and iV = 15. The idea behind (1) is that, if the 5 arrows
that are going out from A are a random sample (without
replacement) from the 15 arrows that are present in the
network, then the proportion of arrows reaching B from
A should be close to the proportion of arrows reaching B
in the whole network, and in the absence of enrichment
we should observe on average μ0 = 1.33 edges. In this
case, it seems that arrows going out from A tend to reach
B more frequently (40 %) than other arrows do (27 % of
the 15 arrows in the network reach B). However, the com-
putation of the p-value leads to p = 0.48: the observed
nAB = 2 does not provide enough evidence to reject the
null hypothesis, so that the conclusion of the test is that
there is no enrichment from A to B.
We can also consider sets B = {3, 5, 7} and C = {2, 5}

(note that the two groups share gene 5), and test enrich-
ment from B to C. In this case, nBC = 3 arrows out of
oB = 4 (75 %) reach C from B, whereas in the whole net-
work iC = 4 arrows out of dV = 15 (27 %) reach C. The
null expectation is hereμ0 = 1.07; if we fix the type I error
probability equal to α = 5 %, the p-value p = 0.03 leads to
the conclusion that there is enrichment from B to C.

Enrichment test for undirected networks
When dealing with undirected networks, the presence of
enrichment between A and B is assessed considering the
number of edges that connect genes in A to genes in B.
We denote this by nAB. Given the undirected nature of the
links in the network, there is no distinction between inde-
gree and outdegree of a node, and it only makes sense to
consider the degree of a node, which is the number of ver-
tices that are linked to that node. The null distribution (1)
should thus be adapted accordingly. Let us define the total
degree dS of a set S as the sum of the degrees of nodes that
belong to it: then, in the absence of enrichment we can
view nAB as the number of successes in a random sample
of size dA, drawn from a population of size dV . The null
distribution of NAB for undirected networks is thus

NAB ∼ hypergeom(n = dA,K = dB,N = dV ),

where dA, dB and dV are the total degrees of sets A,B
and V .
The null hypothesis is then that μAB = μ0 = dA dB

dV , the
alternative that μAB �= μ0. The p-value is computed using
formula (2).
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Fig. 2 Example: NEAT in directed networks. Left: directed network consisting of 8 nodes connected by 15 arrows. Set A contains nodes 1 and 4 (red)
and set B nodes 3, 5 and 7 (orange). Right: bipartite representation of the same network: it can be observed that nAB = 2, oA = 5, iB = 4 and iV = 15.
It follows that μ0 = 1.07 and p = 0.48

As an example, consider the network in Fig. 3a and
suppose that we are interested to test the presence of
enrichment between the pairs of sets (A,B), (A,C) and
(B,C). Sets A and B are linked by nAB = 4 edges, and their
degrees are dA = 4 and dB = 15, while dV = 36. Thus,
μ0 = 1.67 and pAB = 0.023. In the same way, it is possi-
ble to compute pAC = 0.465 and pBC = 0.038. Figure 3b
shows the relation between the three sets fixing α = 5 %:
enrichment is present between the pairs (A,B) and (B,C),
but not between sets A and C.

Enrichment test for partially directed networks
A partially directed network (or “mixed” network) is a
network where both directed and undirected edges are
present. It is possible to view such a network as a directed
network, where every undirected edge connecting two
nodes v and w represents in fact a pair of arrows, the for-
mer going from v tow and the latter fromw to v. If such an
adaptation is adopted, model (1) can be applied and par-
tially directed networks can be analysed within neat as
directed networks.
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Fig. 3 Example: NEAT in undirected networks. Left: undirected network with 12 nodes. We are interested to infer the relation between sets A (nodes
1 and 5), B (2, 4 and 7) and C (6 and 8). Right: representation of the relations between sets: enrichment is detected between sets A and B (p = 0.023)
and between sets B and C (p = 0.038), but not between sets A and C (p = 0.465)
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Software
NEAT is implemented in the R package neat [23], which
can be freely downloaded from CRAN: https://cran.r-
project.org/package=neat. The manual and a vignette
illustrating the package are also available from the same
URL. The package allows users to specify the network in
different formats, it includes functions to plot and sum-
marize the results of the analysis and is accompanied by a
set of data and examples, including the enrichment anal-
ysis of the ESR gene sets that we discuss in the upcoming
section.

Results
Performance evaluation
We assess the performance of NEAT by means of simu-
lations. Table 1 summarizes some aspects of these simu-
lations, that are the subject of the next two subsections.
The R scripts and data files for each simulation can be
found at https://github.com/m-signo/neat. We first con-
sider directed networks, and check whether the perfor-
mance of NEAT is influenced by the degree distribution
of the network, or by the level of overlap between sets of
nodes. We then consider undirected networks, and carry
out a comparison of NEAT with the NEA test of [18] and
with the LP, LA, LA+S and NP tests of [19].
We compare the performance of the methods under the

null hypothesis by checking whether the empirical distri-
bution of p-values in the absence of enrichment is uniform
using the Kolmogorov-Smirnov test, and by computing
the following ratios:

R1 = Number of enrichments at 1 % level
0.01 × Number of tests where H0 is true

and

R5 = Number of enrichments at 5 % level
0.05 × Number of tests where H0 is true

.

The idea behind R1 and R5 is that if the null hypothesisH0
is true, we expect a good test to reject it with a frequency
that is close to α. So, the target value for R1 and R5 is 1.

Furthermore, we compare the capacity of different tests
to correctly detect enrichments and non-enrichments by
computing specificity and sensitivity at α = 5 % level,
and the area under the ROC curve (AUC). The specificity
is the proportion of correctly detected non-enrichments,
and we expect it to be as close as possible to 1 − α. The
sensitivity indicates the proportion of correctly detected
enrichments, whereas the AUC is a measure of the overall
capacity of a test to discriminate enrichments and non-
enrichments across all values of α. Therefore, a test will
show a good performance whenever it achieves a speci-
ficity close to 1 − α, and values of sensitivity and AUC as
high as possible (ideally 1).

Simulation with directed networks
In simulations S1 and S2, we generate two random net-
works with 1000 nodes and with fixed indegree and out-
degree distributions using the algorithm implemented by
[24]. The indegree and outdegree distributions of nodes
are power law with exponent 4 and minimum degree 20
in simulation S1, and a mixture of two Poisson distribu-
tions, with parameters λ1 = 40 and λ2 = 100 and weights
q1 = 99 % and q2 = 1 %, in simulation S2.
We consider 50 sets of nodes whose size ranges between

50 and 100, and we test enrichment from A to B and from
B to A for every pair of sets: this means that, in total, we
compute 50×49 = 2450 tests. In the original networks, no
preferential attachment (i.e., no enrichment) between any
couple of these sets is present; we generate enrichments by
increasing or reducing the number of arrows for 200 pairs
of sets. In each case, enrichment is created by adding or
removing arrows randomly from one group to the other, in
such a way that nAB increases or reduces by a proportion
uniformly ranging from 10 to 50 %.
Table 2 shows that the empirical distribution of p-values

in absence of enrichment is approximately uniform both
in simulation S1 and S2. The sensitivity is higher in sim-
ulation S2, whereas the specificity is close to the target
value (95 %) in both cases. As a result, the area under the
ROC curve is slightly higher in simulation S2. Overall, the
test shows in both cases a good capacity to discriminate
enrichments and non-enrichments.

Table 1 An overview of simulations S1–S5

Simulation Network type Degree distribution Graph density Mean overlap Maximum overlap

S1 Directed Power law 3 % 4 % 11.3 %

S2 Directed Mixture of 2 Poisson 4 % 3.6 % 9.5 %

S3 Directed Mixture of 2 Poisson 4 % – –

S4 Undirected Power law 3 % 3.8 % 12 %

S5 Undirected Mixture of 2 Poisson 4 % 3.6 % 11 %

In Simulations S1 and S2, we compare the performance of NEAT in two directed networks with different degree distribution. In simulation S3, we check the performance of
the test for different levels of overlap, ranging from 0 to 100 %. In Simulations S4 and S5, we compare NEAT to alternative tests in two undirected networks with different
degree distribution

https://cran.r-project.org/package=neat
https://cran.r-project.org/package=neat
https://github.com/m-signo/neat
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Table 2 Performance of NEAT in simulations S1 and S2

Simulation pKS R1 R5 Sensitivity Specificity AUC

S1 0.510 1.56 1.17 73 % 94 % 0.894

S2 0.125 1.20 1.12 78 % 94 % 0.927

pKS denotes the p-value of the Kolmogorov-Smirnov test for uniform distribution,
AUC is an abbreviation for “area under the ROC curve”. In both simulations, the
distribution of p-values under H0 is uniform and the specificity is close to the
expected 95 % value. Sensitivity and AUC are higher in simulation S2

In simulation S3 we check whether the proportion of
overlap between sets A and B, that we measure with the
Jaccard index

JAB = |A ∩ B|/|A ∪ B|,
could have an effect on specificity and sensitivity. We
consider the same network used in simulation S2, and
we test enrichment between pairs of sets with fixed size
|A| = |B| = 50, but with increasing overlap (we con-
sider |A ∩ B| ∈ {0, 5, 10, 15, . . . , 50}). Under H0 we do
not modify the network, whereas under H1 we introduce
enrichments adding 35 arrows going from genes in A to
genes in B. For every value of overlap, we consider 2000
test (H0 is true in 1000 cases, and false in the remaining
1000). Figure 4 shows that the specificity remains constant
and close to 95 % for any level of overlap; the sensitivity, on
the other hand, is slightly higher when the level of overlap
is moderate.
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Fig. 4 Specificity and sensitivity in simulation S3. The plot shows the
values of specificity and sensitivity for different levels of overlap (every
point in the plot is computed on the basis of 1000 tests). We observe
that the specificity of the test does not vary substantially for different
levels of overlap, and is always close to 95 % as expected. The
sensitivity, instead, slightly reduces as the percentage of overlap
increases

Simulation with undirected networks
As alternative methods for network enrichment analysis
are available for undirected networks only, we compare
NEAT with them in two simulations where we consider
undirected networks with 1000 nodes. We generate two
random networks with fixed degree distribution, using
the algorithm implemented by [24]; the degree distribu-
tion follows a power law in simulation S4 and a mixture
of Poisson distributions in simulation S5, with the same
parameters used in simulations S1 and S2. Likewise, we
consider 50 sets of nodes, whose sizes vary between 50
and 100 nodes. We test enrichment between every pair
of sets A and B, so that the total number of comparisons
is here 50 × 49/2 = 1225. We introduce enrichments
for 100 pairs of sets by adding or removing edges ran-
domly between them, in such a way that nAB is increased
or reduced by a proportion uniformly ranging from 10 to
50 %.
Tables 3 and 4 show the results for simulations S4 and

S5, respectively. As concerns the behaviour under the null
hypothesis, the distribution of p-values is uniform in both
cases for NEAT and LA, and in one case for LA+S (simula-
tion S4) and NP (S5). NEA and LP, instead, do not produce
uniform distributions: as it can be observed from Fig. 5,
the reason is that the distribution is strongly left-skewed
for NEA, whereas for LP the distribution is right-skewed
(the same patterns occur also in simulation S5). In both
simulations, most of the methods achieve a specificity
close to 95 % as expected; comparison with the other tests
shows that the sensitivity and AUC of NEAT are overall
good.
Table 5 compares the speed of computation for the dif-

ferent methods. NEAT turns out to be the fastest method
by far, being 22 times faster than NP (the fastest alter-
native) and more than 3000 times faster than NEA (the
slowest alternative). This result is mostly due to the fact
that NEAT does not require the generation of a large
number of permuted networks to compute the test.

Table 3 Results of simulation S4

Test pKS R1 R5 Sensitivity Specificity AUC

NEAT 0.399 1.33 1.14 69% 94% 0.920

NEA 0.001 0 0.87 68% 96% 0.918

LP 0 2.13 1.51 68% 92 % 0.908

LA 0.255 1.60 1.17 60 % 94% 0.897

LA+S 0.409 1.87 1.17 63 % 94% 0.913

NP 0.037 1.24 1.28 58 % 94% 0.884

The best results for each indicator are in bold. pKS denotes the p-value of the
Kolmogorov-Smirnov test for uniform distribution, AUC is an abbreviation for “area
under the ROC curve”. The distribution of p-values under H0 is evidently not uniform
for NEA and LP. NEAT shows the highest values of sensitivity and AUC, and its
specificity is close to the target value (95 %)
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Table 4 Results of simulation S5

Test pKS R1 R5 Sensitivity Specificity AUC

NEAT 0.343 0.62 0.98 79% 95% 0.925

NEA 0.024 0 0.82 73 % 96 % 0.912

LP 0 1.33 1.51 78% 92 % 0.904

LA 0.111 1.16 1.33 73 % 93 % 0.908

LA+S 0.024 1.16 1.13 76 % 94 % 0.910

NP 0.323 1.42 1.16 70 % 94 % 0.908

The best results for each indicator are in bold. pKS denotes the p-value of the
Kolmogorov-Smirnov test for uniform distribution, AUC is an abbreviation for “area
under the ROC curve”. The distribution of p-values under H0 can be considered
uniform for NEAT, LA and NP, and is questionable for LA+S. NEAT shows the highest
values of sensitivity and AUC, and its specificity is exactly equal to the target value
(95 %)

Network enrichment analysis: an application to yeast
The budding yeast Saccharomyces cerevisiae is a uni-
cellular eukaryote organism that can be easily grown
in laboratory. Because of these features, it represents a
model organism that has been extensively studied, and
it was the first eukaryote whose genome was completely
sequenced [25]. Since then, a large number of studies
has aimed to detect associations between genes. In an
attempt to collect these results into a unique source, Kim

et al. [14] developed YeastNet, an undirected gene net-
work that aims to integrate the results of a large number of
high-throughput studies on Saccharomyces cerevisiae. In
its most recent version (v3), YeastNet comprises 362512
edges connecting 5808 genes. We use this network of
known associations in the following analyses.

Network enrichment analysis of environmental stress
response in yeast
After analysing gene expression patterns of yeast Sac-
charomyces cerevisiae in response to different stressful
stimuli, Gasch et al. [26] inferred the existence of a set of
868 genes that reacted in a similar way to different, hostile
environmental changes. This set of genes, called Environ-
mental Stress Response (ESR), is believed to constitute a
coordinated, initial reaction to the emergence of any hos-
tile condition in the cell. It consists of two subgroups of
genes, containing genes that are repressed and induced
under stressful conditions, respectively.
We take these two gene sets as target sets, and for each

of them we test enrichment with the following functional
gene sets: 99 gene sets that are part of the GO Slim bio-
logical process ontology (we do not consider the groups
“biological process” and “other” in the analysis) and 106
known KEGG pathways.
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Fig. 5 Histogram of p-values in absence of enrichment in simulation S4. The test of Kolmogorov-Smirnov indicates that the distribution is uniform
for NEAT (p = 0.34), LA (p = 0.11) and NP (p = 0.32). The distribution of p-values is highly left-skewed for NEA, and right-skewed for LP
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Table 5 Speed comparison

Test Software Simulation S4 Simulation S5

NEAT R package neat 0.6 0.7

NEA R package neaGUI 2125.4 2151.5

LP CrossTalkZ 28.6 44.7

LA CrossTalkZ 14.4 18.0

LA+S CrossTalkZ 21.8 27.6

NP CrossTalkZ 12.9 15.8

The table compares the time (in seconds) that each method required to compute
1225 tests for enrichment in simulations S4 and S5, using a processor with 2.5 GhZ
CPU frequency. NEAT turns out to be by far the fastest method

At α = 1 % level, NEAT detects over-enrichment
between 23 GO Slim sets and the set of repressed genes,
and between 25GO Slim sets and the set of induced genes.
Furthermore, 15 KEGG pathways are found to be over-
enriched with the set of repressed ESR genes, and 47 with
the set of induced genes.
Gasch et al. [26] reports that genes that are repressed in

the ESR are involved in growth related processes, various
aspects of RNAmetabolism, nucleotide biosyntesis, secre-
tion, encoding of ribosomal proteins and other metabolic
processes. These results are in strong agreement with
the list of over-enrichments detected by NEAT, shown in
Table 6. As a matter of fact, most of the over-enrichments
detected by NEAT are related to RNA transcription,
nucleotide secretion and translation of ribosomal proteins
(rows 1-18 and 24-35 in Table 6), growth-related processes
(row 22) and further metabolic processes (rows 23 and
33-35).
Gasch et al. [26] observed that inference for the set

of genes that are induced by the ESR is more compli-
cated, because most of the genes in this group lack func-
tional annotations. It is worthwhile to observe that NEAT
detects a large number of enriched KEGG pathways (47
out of 106). This preliminary observation points out a
major feature of the Environmental Stress Response: the
cell reacts to the emergence of different hostile condi-
tions by activating a number of known cellular pathways
that involve energy production, metabolic reactions and
molecular transportation (see Table 8).
Our results for this gene set do not only match the

ones of the original study - identifying many processes
and pathways that are related to carbohydrate metabolism
(rows 1–3 in Table 7 and 1–9 in Table 8), fatty acid
metabolism (rows 4–6 in Table 7 and 10–18 in Table 8),
mythocondrial functions and cellular redox reactions
(rows 5–9 in Table 7 and 19–21 in Table 8), protein folding
and degradation (10 in Table 7 and 22 in Table 8) and cel-
lular protection during stressful conditions (rows 11–13
in Table 7 and 23 in Table 8) - but they also unveil further
enrichments that involve molecular transportation (rows

3, 6, 14–18 in Table 7) and amino-acid metabolism (rows
24–36 in Table 8).
Tables 9, 10 and 11 compare the p-values obtained

with NEAT with those obtained with LA+S [19], which,
according to the conclusions of [19] and to our own
simulations, can be considered as the main competitor
of NEAT. The tables show a large overlap between the
over-enrichments detected by the two methods at a 1 %
significance level: the two methods jointly detect 34 over-
enrichments (19 GO Slim sets and 15 KEGGpathways) for
the set of repressed ESR genes, and 67 (24 GO Slim sets
and 43 KEGG pathways) for the set of induced ESR genes.
There is only a small number of discrepancies between
the two methods and these are mostly borderline cases.
In particular, LA+S detects 4 over-enrichments that are
not detected by NEAT (rows 39 in Table 9, 26–27 in
Table 10 and 48 in Table 11), whereas NEAT detects 9
over-enrichments that are not detected by LA+S (rows
19–22 in Table 9, 25 in Table 10 and 43–46 in Table 11). As
concerns computing time, NEAT computed the required
task (410 tests in total) in 23 s, whereas the same compu-
tation with LA+S required 1,171 s. In summary, the two
methods lead to very similar conclusions, but NEAT is
considerably more efficient.

Network enrichment analysis of GO Slim sets: overlap does
not imply enrichment
Gene ontologies [1] consist of a large number of gene
sets, which are involved in different cellular functions or
biological processes, or that are active in a specific compo-
nent of the cell. These sets of genes are typically employed
to enrich sets of differentially expressed genes that have
been experimentally detected (the analysis of the ESR gene
sets in the previous subsection provides an example of
this). However, network enrichment analysis is a more
general instrument, which allows to assess the relation
between pairs of gene sets in a network. One might won-
der, for instance, whether gene sets within an ontology
tend to be strongly related to each other, or whether there
is a strong separation between them.
We consider gene sets in the GO Slim biological pro-

cess ontology for Saccharomyces cerevisiae (we once more
exclude the two general groups “biological process” and
“other” from the analysis). As a result of the hierar-
chical structure of Gene Ontologies, 12 gene sets are
nested within another group. We exclude these 12 sets
from the analysis: the remaining 87 gene sets do not
have hierarchical relations with each other, and pairs of
these sets display overall a low overlap (1.7 % on aver-
age), which is null in most cases (62 % of pairs of sets
do not share genes). If overlapping of sets was taken by
itself as evidence of a relation between two gene sets, one
would therefore conclude that most of these gene sets are
unrelated.
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Table 6 Network enrichment analysis of the repressed ESR gene set

Gene set nAB μ0 log10 (p-value)

Go Slim BP sets:

1 Cytoplasmic translation 6878 2641.9 <-300

2 Ribosomal large subunit biogenesis 3408 1097.8 <-300

3 Ribosomal small subunit biogenesis 5861 2073.7 <-300

4 Ribosome assembly 1782 621.9 <-300

5 RNA modification 2944 1062.0 <-300

6 rRNA processing 9187 3290.2 <-300

7 tRNA processing 2037 901.0 <-300

8 Translational elongation 1786 782.3 –283.8

9 Ribosomal subunit export from nucleus 1420 561.4 –281.8

10 Translational initiation 939 462.5 –112.1

11 Transcription from RNA polymerase III promoter 565 228.4 –107.7

12 SnoRNA processing 634 303.3 –82.0

13 Regulation of translation 1952 1328.6 –73.5

14 DNA-dependent transcription, termination 774 447.0 –57.5

15 Transcription from RNA polymerase I promoter 1005 646.4 –49.5

16 Protein alkylation 1063 759.4 –31.4

17 tRNA aminoacylation for protein translation 400 233.1 –29.4

18 Peptidyl-amino acid modification 1088 883.0 –13.2

19 Nuclear transport 3154 2003.5 –162.4

20 Organelle assembly 2090 1362.7 –96.1

21 Nucleobase-containing compound transport 1453 1155.4 –20.8

22 Cytokinesis 1024 806.9 –16.0

23 Vitamin metabolic process 325 274.0 –3.1

KEGG pathways:

24 Ribosome biogenesis in eukaryotes 9824 3661.0 <-300

25 Ribosome 18640 8731.7 <-300

26 RNA polymerase 3057 1541.2 <-300

27 RNA transport 4341 2906.4 –177.6

28 Aminoacyl-tRNA biosynthesis 1433 960.9 –58.2

29 RNA degradation 2560 1939.3 –51.9

30 mRNA surveillance pathway 1768 1413.5 –24.0

31 Pentose phosphate pathway 1126 947.1 –9.7

32 Spliceosome 2649 2523.6 –2.3

33 Purine metabolism 5579 3623.0 –263.6

34 Pyrimidine metabolism 4541 2884.5 –234.9

35 Cyanoamino acid metabolism 218 158.8 –6.3

36 One carbon pool by folate 541 392.5 –15.0

37 Sulfur relay system 238 196.5 –2.9

38 Carbapenem biosynthesis 117 89.8 –2.7

The table lists the 23 Go Slim BP gene sets and the 15 KEGG pathways which the set of repressed ESR genes is found to be over-enriched with at 1 % significance level

If, however, we do not limit our attention to the overlap
between pairs of sets, but consider also known associ-
ations between genes in the two sets as represented in

YeastNet [14], we obtain a different conclusion. We have
used NEAT to test whether there is enrichment between
each pair of sets. In a random network where no relations
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Table 7 Network enrichment analysis of the induced ESR gene set (GO Slim sets)

GO Slim BP gene set nAB μ0 log10 (p-value)

1 Carbohydrate metabolic process 1296 671.2 –110.9

2 Oligosaccharide metabolic process 442 165.3 –77.3

3 Carbohydrate transport 202 65.8 –45.0

4 Lipid metabolic process 693 484.4 –19.9

5 Peroxisome organization 181 124.8 –6.0

6 Lipid transport 120 79.7 –4.9

7 Generation of precursor metabolites and energy 585 294.8 –54.0

8 Cellular respiration 210 118.4 –14.5

9 Proteolysis involved in cellular protein catabolic process 639 488.5 –10.9

10 Protein folding 476 296.9 –22.7

11 Response to oxidative stress 813 242.2 –202.7

12 Response to chemical stimulus 1489 885.1 –83.4

13 Response to starvation 459 331.4 –11.2

14 Transmembrane transport 910 644.4 –24.2

15 Endocytosis 395 245.5 –19.3

16 Protein targeting 628 478.8 –10.9

17 Ion transport 464 380.2 –4.8

18 Amino acid transport 137 109.4 –2.1

19 Cofactor metabolic process 523 219.0 –73.7

20 Nucleobase-containing small molecule metabolic process 722 404.5 –49.2

21 Membrane invagination 278 120.6 –37.0

22 Vacuole organization 335 200.2 –18.9

23 Protein maturation 49 27.7 –3.9

24 Cell morphogenesis 113 79.4 –3.6

25 Sporulation 352 306.4 –2.1

The table lists the 25 Go Slim BP gene sets which the set of induced ESR genes is found to be over-enriched with at 1 % significance level

between the sets are present, we would expect to detect
37 enrichments (on average) out of 3741 tests for α = 1 %;
instead, we detect 1409 enrichments, 38 times more than
expected. Out of these, 710 are under-enrichments, and
699 are over-enrichments. An under-enrichment, here,
indicates that two GO Slim sets are poorly connected
to each other: the high number of under-enrichments,
therefore, might be not particularly surprising or interest-
ing, as we do expect that unrelated gene sets within the
ontology are poorly connected. The high number of over-
enrichments, on the other hand, is striking: this indicates
that many groups within the ontology are highly con-
nected to each other - something that would occur rather
rarely, if there was no relation between the sets.
This result points out a major difference between gene

enrichment analysis and network enrichment analysis:
whereas in the first case the extent of overlapping between
two gene sets is taken by itself as evidence of enrich-
ment, network enrichment analysis bases the evaluation
of enrichment on the level of connectivity that exists

between the two sets in a network. Of course, the two
facts are not completely unrelated. Figure 6 shows that
there is a certain correlation between overlap of gene
sets (Jaccard index) and network enrichment, so that
we tend to find network enrichment in the presence of
higher levels of overlap. This correlation is, however, low
(the Pearson correlation coefficient between JAB and pAB
is−0.15), pointing out that there does not necessarily have
to be enrichment for highly overlapping gene sets, and
vice versa. As an example, the GO Slim sets “cytokine-
sis” and “nuclear organization” do not share genes, but are
detected as enriched (p = 0.0003) in YeastNet. This result
can be explained by the fact that “nuclear organization”
includes genes involved in the assembly and disassem-
bly of the nucleus, which is a preliminary step in cell
cytokinesis.

Conclusion
Network enrichment analysis is a powerful extension of
traditional methods of gene enrichment analysis, that
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Table 8 Network enrichment analysis of the induced ESR gene set (KEGG pathways)

KEGG pathway nAB μ0 log10 (p-value)

1 Starch and sucrose metabolism 1436 394.2 <-300

2 Pentose and glucuronate interconversions 414 110.7 –119.9

3 Glycolysis/Gluconeogenesis 1235 616.3 –116.5

4 Fructose and mannose metabolism 562 200.0 –106.7

5 Galactose metabolism 511 173.9 –104.5

6 Amino sugar and nucleotide sugar metabolism 567 264.2 –63.4

7 Other glycan degradation 79 11.7 –44.2

8 Pyruvate metabolism 633 355.9 –42.8

9 Propanoate metabolism 189 107.3 –12.9

10 Glycerolipid metabolism 444 172.1 –72.7

11 Peroxisome 633 313.3 –61.2

12 Fatty acid degradation 419 215.0 –37.2

13 Arachidonic acid metabolism 117 36.7 –28.1

14 Sphingolipid metabolism 227 103.6 –27.3

15 Glycerophospholipid metabolism 450 270.9 –24.5

16 alpha-Linolenic acid metabolism 69 27.1 –11.7

17 Fatty acid elongation 138 75.3 –10.8

18 Biosynthesis of unsaturated fatty acids 134 103.9 –2.5

19 Glutathione metabolism 467 204.8 –59.9

20 Citrate cycle (TCA cycle) 487 267.3 –35.6

21 Ubiquinone and other terpenoid-quinone biosynthesis 96 41.8 –13.1

22 Protein processing in endoplasmic reticulum 1121 866.0 –17.4

23 Longevity regulating pathway 987 544.0 –70.6

24 beta-Alanine metabolism 397 104.0 –118.0

25 Taurine and hypotaurine metabolism 132 24.3 –59.4

26 Tyrosine metabolism 382 163.5 –51.8

27 Tryptophan metabolism 292 113.3 –48.2

28 Valine, leucine and isoleucine degradation 276 107.5 –45.3

29 Alanine, aspartate and glutamate metabolism 488 262.2 –38.0

30 Histidine metabolism 267 127.4 –28.8

31 Arginine and proline metabolism 301 154.3 –27.0

32 Lysine degradation 294 150.4 –26.6

33 Phenylalanine metabolism 171 71.4 –25.0

34 Glycine, serine and threonine metabolism 350 264.3 –6.7

35 Cysteine and methionine metabolism 338 285.3 –2.8

36 Arginine biosynthesis 167 134.0 –2.4

37 Butanoate metabolism 460 84.8 –202.8

38 Pentose phosphate pathway 604 288.0 –64.0

39 Regulation of autophagy 303 126.7 –43.3

40 Insulin resistance 337 172.8 –30.1

41 Glyoxylate and dicarboxylate metabolism 368 201.6 –27.3

42 Methane metabolism 435 254.2 –26.2

43 Nicotinate and nicotinamide metabolism 154 99.8 –6.7

44 Nitrogen metabolism 88 52.8 –5.4

45 Thiamine metabolism 57 32.9 –4.1

46 Selenocompound metabolism 122 89.3 –3.2

47 Sulfur metabolism 133 105.3 –2.2

The table lists the 47 KEGG pathways which the set of induced ESR genes is found to be over-enriched with at 1 % significance level
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Table 9 Repressed ESR gene set: comparison between NEAT and LA+S

μ0 log10 (p-value)

Gene set NEAT LA+S NEAT LA+S

GO Slim BP sets:

1 Cytoplasmic translation 2641.9 3583.5 <-300 –290.9

2 Ribosomal large subunit biogenesis 1097.8 1602.4 <-300 –269.2

3 Ribosomal small subunit biogenesis 2073.7 3013.2 <-300 –236.8

4 Ribosome assembly 621.9 872.1 <-300 –95.9

5 RNA modification 1062.0 1422.7 <-300 –213.7

6 rRNA processing 3290.2 4623.2 <-300 <-300

7 tRNA processing 901.0 1137.6 <-300 –103.3

8 Translational elongation 782.3 1019.5 –283.8 –71.2

9 Ribosomal subunit export from nucleus 561.4 693.4 –281.8 –151.2

10 Nuclear transport 2003.5 2452.5 –162.4 –33.0

11 Translational initiation 462.5 594.8 –112.1 –33.6

12 Transcription from RNA polymerase III promoter 228.4 281.6 –107.7 –43.6

13 Organelle assembly 1362.7 1719.2 –96.1 –8.0

14 SnoRNA processing 303.3 349.8 –82.0 –26.5

15 Regulation of translation 1328.6 1577.5 –73.5 –12.9

16 DNA-dependent transcription, termination 447.0 575.2 –57.5 –11.7

17 Transcription from RNA polymerase I promoter 646.4 874.2 –49.5 –5.2

18 tRNA aminoacylation for protein translation 233.1 256.7 –29.4 –11.2

19 Protein alkylation 759.4 1000.0 –31.4 –1.2

20 Nucleobase-containing compound transport 1155.4 1445.1 –20.8 –0.1

21 Cytokinesis 806.9 925.9 –16.0 –1.8

22 Peptidyl-amino acid modification 883.0 1102.4 –13.2 –0.1

23 Vitamin metabolic process 274.0 245.8 –3.1 –5.5

KEGG pathways:

24 Ribosome biogenesis in eukaryotes 3661.0 5212.5 <-300 <-300

25 Ribosome 8731.7 11954.0 <-300 –283.3

26 RNA polymerase 1541.2 2058.0 <-300 –76.1

27 Purine metabolism 3623.0 4136.9 –263.6 –66.9

28 Pyrimidine metabolism 2884.5 3402.5 –234.9 –61.0

29 RNA transport 2906.4 3193.2 –177.6 –75.4

30 Aminoacyl-tRNA biosynthesis 960.9 934.2 –58.2 –49.8

31 RNA degradation 1939.3 2051.3 –51.9 –19.9

32 mRNA surveillance pathway 1413.5 1477.3 –24.0 –12.7

33 One carbon pool by folate 392.5 344.2 –15.0 –19.5

34 Pentose phosphate pathway 947.1 979.2 –9.7 –4.6

35 Cyanoamino acid metabolism 158.8 132.2 –6.3 –7.2

36 Sulfur relay system 196.5 172.7 –2.9 –3.9

37 Carbapenem biosynthesis 89.8 75.1 –2.7 –4.1

38 Spliceosome 2523.6 2432.2 –2.3 –4.1

39 Synthesis and degradation of ketone bodies 39.8 29.8 –0.3 –2.2

The table reports the gene sets that are found to be over-enriched (α = 1 %) by at least one of the two methods. μ0 denotes the expected value of NAB in the absence of
enrichment. The last two columns report log10 p-values for the proposed NEAT and the LA+S test of [19], respectively
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Table 10 Induced ESR gene set: comparison between NEAT and LA+S (GO Slim sets)

μ0 log10 (p-value)

GO Slim BP set NEAT LA+S NEAT LA+S

1 Response to oxidative stress 242.2 248.5 –202.7 –253.7

2 Carbohydrate metabolic process 671.2 663.9 –110.9 –123.3

3 Response to chemical stimulus 885.1 912.4 –83.4 –92.8

4 Oligosaccharide metabolic process 165.3 158.1 –77.3 –104.5

5 Cofactor metabolic process 219.0 225.6 –73.7 –76.2

6 Generation of precursor metabolites and energy 294.8 293.4 –54.0 –56.1

7 Nucleobase-containing small molecule metabolic process 404.5 417.4 –49.2 –41.0

8 Carbohydrate transport 65.8 77.7 –45.0 –52.8

9 Membrane invagination 120.6 118.3 –37.0 –51.7

10 Transmembrane transport 644.4 684.7 –24.2 –16.2

11 Protein folding 296.9 296.3 –22.7 –26.6

12 Lipid metabolic process 484.4 495.7 –19.9 –23.3

13 Endocytosis 245.5 248.7 –19.3 –19.3

14 Vacuole organization 200.2 199.7 –18.9 –22.4

15 Cellular respiration 118.4 125.2 –14.5 –14.1

16 Response to starvation 331.4 318.4 –11.2 –15.8

17 Protein targeting 478.8 485.1 –10.9 –15.8

18 Proteolysis involved in cellular protein catabolic process 488.5 494.1 –10.9 –9.8

19 Peroxisome organization 124.8 123.5 –6.0 –6.0

20 Lipid transport 79.7 90.4 –4.9 –2.8

21 Ion transport 380.2 410.7 –4.8 –2.1

22 Protein maturation 27.7 30.9 –3.9 –3.0

23 Cell morphogenesis 79.4 80.8 –3.6 –3.7

24 Sporulation 306.4 301.7 –2.1 –2.5

25 Amino acid transport 109.4 113.0 –2.1 –1.6

26 Response to osmotic stress 181.8 178.3 –1.6 –2.1

27 Protein phosphorylation 587.6 564.3 –1.4 –2.7

The table reports the gene sets that are found to be over-enriched (α = 1 %) by at least one of the two methods. μ0 denotes the expected value of NAB in the absence of
enrichment. The last two columns report log10 p-values for the proposed NEAT and the LA+S test of [19], respectively

allows to integrate them with the information on con-
nectivity between genes provided by genetic networks.
Whereas gene enrichment analysis bases the test for
enrichment solely on the overlap between two gene sets
and ignores the relationships between individual genes,
network enrichment analysis exploits a larger amount of
information bymaking use of gene networks, and it is thus
capable to detect enrichment even between two gene sets
that do not share genes.
In this paper, we have presented a Network Enrich-

ment Analysis Test (NEAT) that aims to overcome some
limitations which affect the network enrichment tests of
[18, 19]. First of all, we believe that a normal approxima-
tion does not make justice to the discrete nature of NAB.
We have shown that this approximation can be avoided if

one models NAB directly, using a hypergeometric distri-
bution with suitably specified parameters. In addition, the
normal approximation employed by [18, 19] requires the
computation of a large number of network permutations
to obtain the mean and variance under H0: this opera-
tion can be very time consuming for big networks and it
makes the computation of the test rather slow. The use of
the hypergeometric distribution, instead, allows to specify
the null distribution of NAB without resorting to permu-
tations, thus speeding up computations considerably. A
further drawback of existing methods for network enrich-
ment analysis [16–19] is that they have been implemented
only for undirected networks. We address this prob-
lem by considering different types of networks (directed,
undirected and partially directed) and by proposing two
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Table 11 Induced ESR gene set: comparison between NEAT and LA+S (KEGG pathways)

μ0 log10 (p-value)

KEGG pathway NEAT LA+S NEAT LA+S

1 Starch and sucrose metabolism 394.2 400.6 <-300 <-300

2 Butanoate metabolism 84.8 98.0 –202.8 <-300

3 Pentose and glucuronate interconversions 110.7 127.5 –119.9 –185.7

4 beta-Alanine metabolism 104.0 122.9 –118.0 –209.8

5 Glycolysis/Gluconeogenesis 616.3 618.7 –116.5 –149.3

6 Fructose and mannose metabolism 200.0 206.2 –106.7 –160.7

7 Galactose metabolism 173.9 193.2 –104.5 –126.4

8 Glycerolipid metabolism 172.1 193.2 –72.7 –103.2

9 Longevity regulating pathway - multiple species 544.0 508.2 –70.6 –79.1

10 Pentose phosphate pathway 288.0 284.2 –64.0 –105.8

11 Amino sugar and nucleotide sugar metabolism 264.2 277.6 –63.4 –66.7

12 Peroxisome 313.3 332.9 –61.2 –55.8

13 Glutathione metabolism 204.8 221.6 –59.9 –77.8

14 Taurine and hypotaurine metabolism 24.3 28.5 –59.4 –92.8

15 Tyrosine metabolism 163.5 169.9 –51.8 –62.6

16 Tryptophan metabolism 113.3 130.9 –48.2 –59.4

17 Valine, leucine and isoleucine degradation 107.5 124.8 –45.3 –56.8

18 Other glycan degradation 11.7 12.9 –44.2 –66.3

19 Regulation of autophagy 126.7 135.2 –43.3 –45.5

20 Pyruvate metabolism 355.9 388.8 –42.8 –41.6

21 Alanine, aspartate and glutamate metabolism 262.2 284.5 –38.0 –36.7

22 Fatty acid degradation 215.0 225.0 –37.2 –43.7

23 Citrate cycle (TCA cycle) 267.3 299.5 –35.6 –32.9

24 Insulin resistance 172.8 176.5 –30.1 –30.4

25 Histidine metabolism 127.4 147.8 –28.8 –25.8

26 Arachidonic acid metabolism 36.7 44.1 –28.1 –40.6

27 Glyoxylate and dicarboxylate metabolism 201.6 224.8 –27.3 –23.7

28 Sphingolipid metabolism 103.6 116.3 –27.3 –26.2

29 Arginine and proline metabolism 154.3 180.2 –27.0 –24.8

30 Lysine degradation 150.4 160.2 –26.6 –31.5

31 Methane metabolism 254.2 262.7 –26.2 –23.7

32 Phenylalanine metabolism 71.4 81.5 –25.0 –26.4

33 Glycerophospholipid metabolism 270.9 285.1 –24.5 –22.3

34 Protein processing in endoplasmic reticulum 866.0 857.1 –17.4 –20.7

35 Ubiquinone and other terpenoid-quinone biosynthesis 41.8 47.1 –13.1 –12.3

36 Propanoate metabolism 107.3 122.9 –12.9 –9.9

37 alpha-Linolenic acid metabolism 27.1 30.5 –11.7 –11.2

38 Fatty acid elongation 75.3 76.1 –10.8 –12.9

39 Glycine, serine and threonine metabolism 264.3 281.1 –6.7 –3.5

40 Nicotinate and nicotinamide metabolism 99.8 111.9 –6.7 –4.7

41 Nitrogen metabolism 52.8 60.7 –5.4 –4.0

42 Thiamine metabolism 32.9 36.8 –4.1 –3.2

43 Selenocompound metabolism 89.3 97.0 –3.2 –1.9

44 Cysteine and methionine metabolism 285.3 310.6 –2.8 –1.0

45 Arginine biosynthesis 134.0 154.2 –2.4 –0.6

46 Sulfur metabolism 105.3 121.9 –2.2 –0.5

47 Biosynthesis of unsaturated fatty acids 103.9 102.1 –2.5 –3.1

48 Regulation of mitophagy - yeast 554.4 510.4 –1.6 –5.1

The table reports the gene sets that are found to be over-enriched (α = 1 %) by at least one of the two methods. μ0 denotes the expected value of NAB in absence of
enrichment. The last two columns report log10 p-values for the proposed NEAT and the LA+S test of [19], respectively
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Fig. 6 Relation between overlap (JAB) and p-values. Note that p-values are represented on a negative log-scale to enhance readability

different parametrizations, which take into account the
different nature of directed and undirected links.
We believe that NEAT could constitute a flexible

and computationally efficient test for network enrich-
ment analysis. Our simulations show that NEAT has a
good capacity to correctly classify enrichments and non-
enrichments. Comparison of NEAT with other meth-
ods points out an overall good performance in terms
of sensitivity and of specificity, as well as the computa-
tional efficiency of the proposed method. The examples
illustrated in the previous section show that NEAT can
retrieve enrichments that were detected with gene enrich-
ment analysis, but it can also unveil further enrichments
that would be overlooked, if known associations between
genes were ignored. Even though the focus of this paper
is on gene regulatory networks, NEAT is a rather general
test: it can be applied to networks that arise in differ-
ent contexts and disciplines, whenever the interest is to
infer the relationship between groups of vertices. This can
include, for example, other types of biological networks,
as well as social, economic or technological networks.
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