
Jiang and Ganesan BMC Bioinformatics (2016) 17:106
DOI 10.1186/s12859-016-0946-4

RESEARCH ARTICLE Open Access

CUDAMPF: a multi-tiered parallel
framework for accelerating protein sequence
search in HMMER on CUDA-enabled GPU
Hanyu Jiang* and Narayan Ganesan

Abstract

Background: HMMER software suite is widely used for analysis of homologous protein and nucleotide sequences
with high sensitivity. The latest version of hmmsearch in HMMER 3.x, utilizes heuristic-pipeline which consists of
MSV/SSV (Multiple/Single ungapped Segment Viterbi) stage, P7Viterbi stage and the Forward scoring stage to
accelerate homology detection. Since the latest version is highly optimized for performance on modern multi-core
CPUs with SSE capabilities, only a few acceleration attempts report speedup. However, the most compute intensive
tasks within the pipeline (viz., MSV/SSV and P7Viterbi stages) still stand to benefit from the computational capabilities
of massively parallel processors.

Results: A Multi-Tiered Parallel Framework (CUDAMPF) implemented on CUDA-enabled GPUs presented here, offers
a finer-grained parallelism for MSV/SSV and Viterbi algorithms. We couple SIMT (Single Instruction Multiple Threads)
mechanism with SIMD (Single Instructions Multiple Data) video instructions with warp-synchronism to achieve
high-throughput processing and eliminate thread idling. We also propose a hardware-aware optimal allocation
scheme of scarce resources like on-chip memory and caches in order to boost performance and scalability of
CUDAMPF. In addition, runtime compilation via NVRTC available with CUDA 7.0 is incorporated into the presented
framework that not only helps unroll innermost loop to yield upto 2 to 3-fold speedup than static compilation but
also enables dynamic loading and switching of kernels depending on the query model size, in order to achieve
optimal performance.

Conclusions: CUDAMPF is designed as a hardware-aware parallel framework for accelerating computational
hotspots within the hmmsearch pipeline as well as other sequence alignment applications. It achieves significant
speedup by exploiting hierarchical parallelism on single GPU and takes full advantage of limited resources based on
their own performance features. In addition to exceeding performance of other acceleration attempts,
comprehensive evaluations against high-end CPUs (Intel i5, i7 and Xeon) shows that CUDAMPF yields upto 440
GCUPS for SSV, 277 GCUPS for MSV and 14.3 GCUPS for P7Viterbi all with 100% accuracy, which translates to a
maximum speedup of 37.5, 23.1 and 11.6-fold for MSV, SSV and P7Viterbi respectively. The source code is available at
https://github.com/Super-Hippo/CUDAMPF.

Keywords: SIMT, SIMD, CUDA, Hidden Markov model, Parallelism, Single segment Viterbi, Multiple segment Viterbi,
Viterbi

*Correspondence: hjiang5@stevens.edu
Department of Elec. and Comp. Engg, Stevens Institute of Technology, 07030
Hoboken, NJ, USA

© 2016 Jiang and Ganesan. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0946-4-x&domain=pdf
http://orcid.org/0000-0002-7827-0719
https://github.com/Super-Hippo/CUDAMPF
mailto: hjiang5@stevens.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 2 of 16

Background
Protein motif detection is key to identifying conserved
protein domains within family of proteins as well as
deducing its structure and function within the genome.
The HMMER [1, 2] suite of programs is widely used
for protein motif finding, building the profiled Hidden
Markov Model (HMM), scanning an entire database of
HMMs for all motifs etc. The current version, HMMER
ver 3.x, is a significant improvement over its predeces-
sors due to the scoring system used to compute the
statistical significance of alignment scores. Among the
suite of tools in HMMER, hmmsearch is used to detect
a query motif among a target database of sequences.
The wide applicability of motif finding, the rapid growth
of the set of protein families as well as the set of
known sequences has made it target of many accelera-
tion attempts. Although the list of acceleration attempts
for HMMER 2.x [3] is not exhaustive, some representative
contributions include [4–11]. While HMMER 2.x used
Viterbi algorithm (for optimal alignment) to compute the
scores, HMMER 3.x follows a scoring system that com-
putes the total log-likelihood ratios summed over all pos-
sible alignments, via the Forward-Backward algorithm [2].
Optimal alignment scores are useful in studying similarity
between individual sequences (as in BLAST [12] or Smith-
Waterman [13] algorithms for local alignment), the For-
ward scores are more meaningful in alignment of target
protein sequences against a probabilistic model such as
the HMM.
Although the Forward-Backward algorithm for proba-

bilistic inference has the same computational complexity
as the Viterbi algorithm, computing the Forward scores
requires much higher computational throughput (FLOPS)
than the Viterbi algorithm [2]. This is due to the sen-
sitivity of the sequential dependency imposed by the
D-D transitions in the profiled HMM. The D-D transi-
tions in the Forward algorithm are always essential to
computing the overall scores, where as the D-D transi-
tions in Viterbi algorithm has an effect, only if it scores
higher than the other transitions. This enables various
methods to quickly assert the impact of D-D transi-
tions in Viterbi scores and increase its overall through-
put, and are not applicable to accelerating Forward score
computation.
It is shown that [3] distribution of high-scores of opti-

mal alignment (via Viterbi algorithm) is Gumbel dis-
tributed with parameter λ = log 2 and that of Forward
scores (total log-likelihood ratio sums) is exponentially
distributed with the same λ = log 2. Hence, the high-
scoring tails of Viterbi and Forward scores agree with
each other, which enables designing an efficient task
pipeline that can filter out sequences based on Viterbi
scores that are not expected to score high via the For-
ward algorithm. Although, this pipeline removes the load

off the Forward score computing stage, the Viterbi based
pre-filtering is still as expensive as the scoring system
employed in HMMER 2.x. In order to mitigate the com-
putational workload on the P7Viterbi stage a heuristic
Multiple-Segment-Viterbi (MSV) is introduced that is
analogous to word hit and ungapped extension stages
implemented in BLAST. The MSV stage employs a much
simpler Hidden Markov Model for scoring that eliminates
sequential dependencies between the Dynamic Program-
ming (DP) matrix cells which was “Vectorized” on a par-
allel machine. Through choice of sensitivity parameters of
MSV scores in HMMER 3.x, an 8-bit saturating scoring
system was used whose computation was vectorized on a
128-bit SSE register as 16 parallel operations on 8-bit data,
thus achieving a 16-fold speedup on a commodity proces-
sor core. Furthermore, the latest version of HMMER, ver
3.1, includes the SSV(Single ungapped Segment Viterbi)
sub-stage, another heuristic to accelerate the MSV stage
by ignoring “J” state transitions that is designed to chain
multiple matches together [14]. Although this may result
in false negatives on the score of sequences, it provides
speedup over MSV significantly.

Previous work
Due to extensive computational and scoring optimiza-
tion procedures implemented in HMMER 3.x [2], it is
extremely unlikely to improve the performance further
either on CPU or GPU based platforms with generic
optimization techniques alone. For the previous version,
HMMER 2.x, which is based on Viterbi algorithm, sev-
eral strategies were proposed to accelerate the underlying
Viterbi score calculation. hmmsearch in HMMER 2.x
was initially parallelized for clusters via MPI in [4] where
the state loop was vectorized to process 24 HMM states
in SIMD fashion or 8 state triplets at once. The ini-
tial work utilizing Graphics Processing Units (GPUs) to
accelerate hmmsearch in HMMER 2.x is Claw-HMMER
[5], and GPU-HMMER [6] achieves limited speedup
over it. Partial prefix sums were used [7] to break the
chain of dependencies in computation of Viterbi scores.
This helped extract a hybrid task and data-level paral-
lelism in order to solve the load imbalance problem that
arises due to variations in sequence lengths. In addi-
tion to multiprocessor systems, a number of attempts
to accelerate implementation of the HMMER recurrence
have been carried out for FPGAs [8–10]. An extensive
review of various acceleration attempts was compiled
in [11].
However, unlike the previous version, which has been

target of numerous acceleration attempts, there exist only
a handful of existing work aimed to improve the perfor-
mance of key segments of HMMER 3.x pipeline. The main
reason being HMMER 3.x is already highly optimized and
is about 100- to 1000- fold faster than HMMER 2.x [1],

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 3 of 16

implemented on the commodity processors with SSE sup-
port and multi-core parallel. This renders any accelera-
tion attempt for previous versions of HMMER obsolete.
Hence alternative architectures such as FPGA [15] have
been explored as an accelerator hardware for MSV and
P7Viterbi segments in HMMER 3.x. The Viterbi algorithm
was rewritten for parallelization via prefix sums approach
on the FPGA and is able to achieve comparable perfor-
mance for P7Viterbi implemented on dual-core proces-
sors. However the hardware limitations on the FPGA
makes this implementation suitable for smaller models
(upto 512) and tiling larger models into several dataflow
partitions.
In [16], a speculative GPU based method was imple-

mented to reduce the global memory access within the
kernel of MSVFilter. This approach aims to reduce the
execution time of original reduction loop empirically. Lin’s
work [17, 18] also focused on MSV stage by following
the parallel strategy of GPU-HMMER but introducing
SIMD instructions. Different sequences were assigned
to individual threads in both methods. Partial opti-
mization was proposed in [19], which parallelizes the
P7Viterbi part without considering the D-D path depen-
dency. Although this approach claims a 14x speedup
than original functions, it sacrifices the sensitivity of
probabilistic inference. Another attempt of accelerating
P7Viterbi [20] was implemented on Intel and AMD CPUs
with proposed cache-oblivious strategy that offsets cache
miss penalties of original work. Moreover, the newest
stage of HMMER 3.1, SSVFilter, was accelerated [21]
through a set of optimizations that mainly include model
tiling, loop unrolling, coalesced and vectorized memory
access.
Other work related to pairwise and multiple

sequence alignment based on the Smith-Waterman and
Needleman-Wunsch algorithms have been accelerated
on CUDA-based GPUs. CUDA-LINSi [22], a Multi-
ple Sequence Alignment (MSA) algorithm, accelerated
CPU-based LINSi of MAFFT [23] software package
by optimizing global and shared memory access as
well as employing data compression techniques. Pair-
wise and group-to-group alignments are calculated by
individual threads in this work. Another CUDA-based
MSA acceleration, CUDA ClustalW [24], assigned one
pairwise alignment to a thread block by extracting
parallelism along the major/minor diagonal direction.
[25] proposed a comprehensive acceleration solution on
the GPU for all-to-all pairwise global, semi-global and
local sequence alignments, using tile-based dynamic
programming framework that significantly reduces the
number of write/fetch through device memory. How-
ever, in contrast to sequence alignment algorithms,
protein-motif finding imposes non-local and complex
dependencies between the dynamic programming

(DP) cells which necessitates alternative techniques for
parallelization.

CUDA-enabled GPU architecture
As a parallel computing engine, CUDA-enabled GPUs are
built around a scalable array of multi-threaded stream-
ing multiprocessors (SM) for large-scale data and task
parallelism, which are capable of executing thousands
of threads based on SIMT mechanism. Following Tesla
[26], Fermi [27] and Kepler [28] to latest Maxwell [29],
each generation has more hardware resources and newer
intrinsic functionalities than the previous. Our proposed
algorithms and methods in this paper which utilizes the
latest intrinsics, are designed for the Tesla K40 of Kepler
architecture with compute capability 3.5 or higher. The
Kepler architecture also features more powerful stream-
ing multiprocessor (SMX) which consists of 192 single-
precision CUDA cores, 64 double-precision units, 32
special function units and load/store units [28]. In high-
light, the architecture offers another 48KB on-chip Read-
Only Data cache with an independent datapath from
the existing L1 and shared memory datapath, and the
maximum amount of available registers for each thread
is increased to 255 for GK110 instead of prior 63 per
thread.

HMMER pipeline: MSV/SSV and P7Viterbi
The task pipeline of HMMER 3.x is optimized for com-
putational efficiency that employs heuristics to eliminate
vast majority of low scoring sequences by introducing
MSV- and SSVFilter. As sequences filters, MSV detects
contiguous match alignments while SSV captures single
match aligmnet, which are analogous to the ungapped
high scoring pairs implemented in BLAST. Although
BLAST uses a two-stage filter to detect and extend the
ungapped alignments, the uniform entry/exit probability
in the MSV/SSV model allows for partial matches upto
the size of the query motif. The profile MSV/SSV mod-
els are shown in Fig. 1(a,b), and the full Plan-7 Viterbi
model (P7Viterbi) is shown in Fig. 1(c). Without inter-row
dependency caused by “J” state, the potential missing of
higher score will be checked in SSV stage [14] followed
by a regular MSV processing. As shown in Fig. 2, the
result of pipeline benchmark indicates that 2.2% of the
sequences cross the MSV/SSV threshold to be passed on
to the P7Viterbi stage. Only 0.1% of all the sequences are
passed on to the Forward-scoring stage. The correspond-
ing execution time is close to 72 % for MSV/SSV, 21% for
P7Viterbi and 7% for Forward-Backward stage.

Methods
GPU acceleration
Since the majority of the execution time is spent in
the MSV/SSV filtering stage, it is a prime candidate

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 4 of 16

(a)

(b)

(c)

Fig. 1 Profiled HMMmodels. (a) MSV model; (b) SSV model; (c) P7Viterbi model

for acceleration. As vast majority of input sequences
are also eliminated in this stage, any improvement in
the performance will greatly impact the efficiency of
the pipeline. Both MSV and SSV model exhibits reg-
ular and well-behaved dependencies that can be easily
parallelized compared to P7Viterbi. However, in order
to exceed the performance of the highly optimized
MSV/SSV filter of latest HMMER especially on multi-
core CPUs, it is imperative to go beyond generic par-
allelization techniques and exploit architecture-specific
intrinsics.
The model simplifications in the MSV compared to

the full core model used in P7Viterbi stage eliminates
the “Delete” states that induce sequential dependen-
cies between the cells of the dynamic programming
matrix within each row. The “Insert” states that induce
dependencies to the previous rows are also eliminated,
leaving only the “Match” states that induce a diagonal
dependency to cells in the previous row. SSV model,
additionally removes the “J” state which eliminates a
portion of heavy workload within the computationally
intensive innermost loop. However, most of existing work
with coarse-grained parallelization ignore the overhead
caused by synchronization within the MSV/SSV and
P7Viterbi kernels on GPU, which forces active threads
to enter idle state and wait for other threads to com-
plete. The problem is further amplified by the fact

that the total number of alignment, each with multi-
ple synchronizations, is equal to the total number of
collective residues contained within all sequences (typ-
ically billions of residues), which can severely limit the
performance. Further optimization attempt must avoid
unnecessary synchronization or totally eliminate them if
possible.

Warp-synchronous execution
With the current SIMT mechanism of CUDA-enabled
GPUs, we exploit the fact that every 32 threads within
a thread-warp are always executed synchronously by the
current CUDA programming model. Thus, we make each
warp processes a sequence residue by covering a single
row of the DP matrix moving on to the successive row
(next residue) of the sequence until the entire sequence is
scored. Hence by having a single warp update all the cells
within each row, the need for synchronizations can be
eliminated. Moreover, in order to avoid data dependency
between warps, each thread-warp processes a different
sequence and continues to process the next sequence
in the database independent of other warps within the
SMX or the device. This again eliminates need for any
block-level coordination or stalling due to synchroniza-
tion, and helps keep active threads always busy and maxi-
mize kernel throughput. This achieves true independence
between warps and completely eliminates the demand

Fig. 2 Heuristic pipeline of HMMER 3.x. A sample benchmark with query model of 400 length and the Env-nr database consisting of 6.5 million
protein sequences

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 5 of 16

of synchronization throughout the course of entire
execution.

CUDA-SIMD based parallellization
In addition to CUDA C/C++, CUDA-enabled GPUs
also support a low-level programming model via parallel
thread execution (PTX) virtual machine with instruction
set architecture (ISA) [30], for efficient data-parallel com-
puting. Since PTX ISA version 3.0, a set of SIMD (Single
Instruction Multiple Data) video instructions has been
introduced for intra-word operations such as quads of
8-bit values and pairs of 16-bit values. Table 1 lists all
SIMD video instructions that are hardware accelerated for
Kepler architecture and only available on devices of com-
pute capability 3.0 or higher [31]. In this work, we increase
the parallel throughput by embedding SIMD intrinsics
within warp-based, self-synchronous SIMTmechanism of
GPUs. Similar to the SSE (Streaming SIMD Extensions)
instruction set on CPU, which supports 128-bit registers
with 16-lane parallelism, the SIMD video instructions on
the GPU enable 4-lane data parallelism per thread. This
increases the available parallelism within a single-warp
from 32 to 128, all of which are executed without any
synchronization overhead. By assigning each sequence to
individual warps, both the parallel throughput as well as
hardware resource utilization are greatly enhanced. This
finer-grained parallelism helps obtain augmented speed-
up on CUDA-enabled GPUs and introduces a new tier of
parallelization.

GPU runtime compilation
In compiled programs the parameters defined at
compile-time via macro constants make various compiler
optimizations possible. However, most of values of those
parameters are only known at runtime, thus disabling the
compiler to optimize kernel as much as possible at offline
compile-time. Runtime compilation enables programmer
to take advantage of improved performance due to pre-
defined macro parameters but in run-time. In addition,
it also enables application driven construction of the
kernel dynamically at runtime. Based on the knowledge

of the problem data, it is possible to dynamically con-
struct various parts of the kernel from a repertoire of
subparts, optimized for the current problem. In this work
the advantage offered by NVIDIA Runtime Compilation,
NVRTC, was leveraged in order to define the HMM and
database parameters at runtime so as to enable compiler
optimizations such as loop unrolling, as well as switch-
able kernels, to increase data locality and pursue better
performance.

Four-tiered parallelism
On a single GPU, Multi-tiered Parallel Framework (CUD-
AMPF) is organized into four tiers of parallelism,
comprising of SIMT and SIMD execution. The top three
tiers, derive from our previous work [32], are based on
SIMTmechanism and the last tier is built on SIMD intrin-
sics. Figure 3 gives a overview of the framework: the
first tier of parallelism is built on the multiple SMXs
that work concurrently; the second tier is composed of
multiple resident warps within each SMX, that process
different sequences and are independently driven by mul-
tiple warp schedulers; the third tier is due to the warp
synchronism, where all threads of the same warp com-
pute alignment scores of the same sequence concurrently;
the fourth tier is built on SIMD intrinsics, where every
thread operates on quads of 8-bit values forMSV and pairs
of 16-bit Viterbi scores (cells of the dynamic program-
ming matrix) respectively. The multiple tiers are oblivious
to the CUDA version and are only related to hardware
resources and device properties such as the number of
SMXs, warp size and bit-width of registers that are sim-
ply queried at runtime and provided as built-in constants.
This kind of hardware-aware optimization makes the par-
allelization scalable and portable thus fully utilizing the
computational capability of CUDA-enabled GPUs.
There is no demand of explicit thread-synchronization

to keep the threads consistent within the same thread-
block. Across all SMX units, warps process their own
sequences proceeding to the next target upon completion,
independently. The index of next sequence for each warp
is calculated as:

Table 1 Integer half-word/quad-byte SIMD video instructions

Intrinsic PTX assembly Semantics Operands and
Optional operations

vadd2, vsub2, vadd4, vsub4 Addition/Substraction .u32 .s32 .sat .add

vmax2, vmin2, vmax4, vmin4 Maximum/Minimum .u32 .s32 .sat .add

vset2, vset4 Comparison .u32 .s32 .cmp .add

vavrg2, vavrg4 Average .u32 .s32 .sat .add

vabsdiff2, vabsdiff4 Absolute value of difference .u32 .s32 .sat .add

Respectively, u32 and s32 represent unsigned and signed values of 32-bit; sat is used to clamp the range of operand based on its bit-width; add is for accumulation; cmp
consists of 6 comparison operators: eq, ne, lt, le, gt, ge

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 6 of 16

(a)

(c) (d)

(b)

Fig. 3 CUDAMPF: Multi-tiered Parallel Framework on CUDA-enabled GPU. (a) A single GPU consists of n SMXs withm concurrently mounted blocks
on each; (b) within each block, q resident warps are scheduled by x warp scheduler for processing assigned sequences; (c) a warp of threads score
alignment of all residues and model states in parallel (warp size is fixed to 32 currently); (d) based on 32-bit register and score ranges of different
algorithms, each thread processes multiple model states in a single step. The virtual boundary, block, is only regarded as the container of warps
rather than a separate tier

Inext = Owarp + Cwarp × Nwarp × Nsmx (1)

where Owarp is the ordinal ID of a warp across Nsmx
SMXs, Cwarp is a counter that records the number of
sequences processed by this warp, Nwarp is the total num-
ber of resident warps per SMX on the launched kernel.
Warps always keep selecting the next sequence as long as
the index Inext < TOTAL, the total amount of sequences
within database. Without any request of synchronization,
CUDAMPF avoids thread idling caused by unbalanced
length of sequences as well as correctness check across

boundary due to concurrency and racing hazard amongst
threads, which improves speed and throughput.

Implementation details
Striped layout vs. sequential layout
Although sequential layout of dynamic programming cells
is straightforward, it is not suitable for SIMD operations in
the presence of diagonal dependencies between DP cells
such as in MSV/SSV and Viterbi algorithm: Each thread is
dependent on the value computed by an adjacent thread
(as shown in Fig. 4(a)), in the previous iteration. This is

382

382

382

379 376 22 19 16 13 10 7 4 1382 373

380 377 23 20 17 14 11 8 5 2-inf 374

381 378 24 21 18 15 12 9 6 3-inf 375

1 2 3 4 5 6 7 8 129128 130 131 132

1 2 3 4 5 6 7 8 129128 130 131 132

1 2 3 4 5 6 7 8 129128 130 131 132

M

G

DP scoring matrix

thread 1thread 2thread 32

q = 0

One protein sequence

warp 1

378 375 21 18 15 12 9 6 3 -inf381 372

thread 1thread 2thread 1
warp 1

thread 32

warp 1

HMM model of
382 states

(a) Sequential layout (b) Striped layout

Ready for
next

residue

Left shift 8 bits (one cell) once

q = 1

q = 2

Fig. 4 Comparison of alignment with sequential and striped layout. An example of MSV score alignment with HMMmodel of Lhmm = 382. (a) 32
threads of warp1 concurrently calculate 128 8-bit scores at each iteration, and every 4 scores are stored together as one 32-bit datatype.
Orange-colored boundaries indicate private regions of different threads, where threads only take charge of cells within their own regions. (b) a warp
of threads process model states with striped interval Q = 3 that is also the number of iteration required for the current row. Yellow-colored cells
represent the result after one 8-bit shifting from q = Q − 1 = 2, which will be used to calculate q = 0 for next residue

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 7 of 16

because using per thread memory such as registers or
local memory will require extra instructions like shift-
ing and bitwise operations to exchange private data (i.e,
score of state 5 is private for thread 2) between threads.
Moreover, calculating score of the first cell (i.e, score of
state 129 needs state 128 in the previous iteration) after
each iteration imposes additional sequential overhead.
These overmuch instructions and thread idling result in
weak parallelism that will be further ampilified within the
innermost loop.
In order to avoid pitfalls of sequential layout on per-

formance, a striped layout similar to the SSE imple-
mentation in HMMER is adopted, but across all threads
within the entire warp. This proposed layout of scor-
ing alignment for GPU kernel is shown in Fig. 4(b),
which does not impose any dependencies between
cells. Each thread calculates four or two scores (cells)
concurrently with striped intervals Q that is defined
as:

Q = max
(

(Lhmm − 1)
αalgor. × Swarp

+ 1, 2
)

(2)

where Lhmm is the length of query model, Swarp is the
size of warp and αalgor. indicates lanes of parallelism for
specific algorithm (i.e. αmsv/ssv = 4, αviterbi = 2). By
coupling SIMD instructions and SIMT mechanism, each
thread handles multiple striped sub-words concurrently
(i.e, states 1, 4, 7 and 10 are stored together as a 32-
bit datatype and are always calculated by thread 1, as
shown in Fig. 4(b)). In contrast with hmmsearch ran on
the SSE-supported CPU which achieves only 16-fold and
8-fold [2] parallelism, our proposed layout achieves 128-
fold parallelism for MSV/SSV and 64-fold parallelism for
Viterbi algorithm on a GPU: each warp calculates 128 or
64 scores in parallel and iterates Q times to finish each
row of the DP matrix. After Q iterations, only one parallel
reordering across a warp of threads is needed to satisfy the
diagonal dependency for the next DP row, which guaran-
tees every thread always process same states of the query
model. Private registers and local memory of each thread
are able to be frequently reused for scoring alignment in
the case.
In addition, the transition and emission parameter

matrices are also pre-formatted to be the same striped
layout (either as four 8-bit scores or two 16-bit scores
packed in one) and are stored contiguously for the index-
ing by a warp of threads during iterations of inner-
most loop. As the number of cells per DP row is fixed
(i.e, 128 or 64 cells, totally 128B width), any query
model with the size that is not an integral multiple of
128 or 64 will be padded with the initial value, −inf
(0, –128 or –32768). This results in coalesced access to
off-chip memory with only one transaction per memory
request.

MSV/SSV and Viterbi algorithmwith SIMD
Algorithm 1 outlines the main structure of MSV ker-
nel with three loops. Loop A (Tier 2) iterates over the
different target sequences for each warp and Loop B
(Tier 3) iterates over all residues of current sequence.
In order to decrease the latency of sequence read, the
sequence data is pre-fetched from global memory into
the shared memory buffer of size Swarp × 4 per warp,
where each thread fetches 4 residues packed into a 32-bit
word as shown in line 4. As a result, every iteration of
Loop B process up to 128 residues with only one coa-
lesced global memory transaction. The innermost loop,
Loop C (Tier 4), is the last tier with embedded SIMD
instructions within the SIMT mechanism. The under-
scored SIMD instructions, vmaxu4, vaddus4 and vsubus4,
represent per-byte unsignedmaximum, saturated addi-
tion and subtraction with values clamped to 0 and 255.
SSV algorithm, as shown in Algorithm 2, is easily imple-
mented under the proposed framework like MSV kernel.
However, it removes all calculations related to xJ and xB
which allows significant speedup inside Loop C.
Algorithm 3 shows the outline of the P7Viterbi segment,

which follows the same general framework. However the
presence ofMatch(M) and Insert(I) states introduces addi-
tional dependencies between successive iterations and the
presence of Delete(D) states imposes sequential depen-
dencies within the same iteration. The D-D dependencies
imposed by the Delete state is resolved via the Lazy-F
method introduced in [33], also implemented in hmm-
search and is shown from lines 26–42. The value of regis-
ter Rdcv will be sent to Loop E after re-ordering to check
for potentially higher scores across Q cells (the column
of striped layout). By coupling SIMD and SIMT on GPU,
compared to 8-fold parallelism of SSE based hmmsearch,
a 64-fold parallelization per warp is achieved to acceler-
ate parallel D-D checking of Lazy-F in a finer-grained way
that largely eliminates sequential overhead.

Reordering andmax-reduction for SIMD& SIMT
In order to implement the striped layout with SIMD &
SIMT, a parallel reordering of all 8-bit or 16-bit val-
ues amongst intra-warp threads is necessary at the last
iteration step q = Q−1. As illustrated in Fig. 5(a), we pro-
posed an inline function of PTX assembly, reorder_uint8
(line 6 in Algorithm 1), that extracts one sub-word
value from private memory of each thread, exchanges
it through intra-warp shuffling as a closed cycle (i.e.
thread32 sends its private data to thread1) and then
merges this exchanged value into private memory space
again. This procedure is completely concurrent for each
warp in which case all threads inside are active, and
the details of this inline function are depicted in Fig. 6.
Proposed SSV algorithm shares the same idea but needs
shift in 0 × 80 instead of 0 as −inf .

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 8 of 16

Algorithm 1: Pseudo-code of MSV kernel with embedded SIMD instructions
Input: 8-bit Emission score Emsv, Sequence Seqi, Length of packed sequence Li
Output: P-Values for all sequences pi
Loop A: while i ≤ TOTAL do

2 MMX[Q]← 0x00000000 /* Initialize scores of all states to −inf */
Loop B: while Ires ≤ Li do

4 Bufferwarp
[
Swarp

] ← Seqi(Ires) /* Cache Swarp packed residues per warp */
repeat res ← Unpack residues from Bufferwarp

6 Rmmx ← reorder_uint8
Loop C: for q = 0; q < Q; q+ = 1 do

8 Rtemp = vmaxu4(Rmmx, xB)

9 Rtemp = vaddus4(Rtemp,Rbias)
10 Rtemp = vsubus4(Rtemp,Emsv(res,Q, q, threadid))

11 xE = vmaxu4(xE,Rtemp)
12 Rmmx ← Load previous data for next q
13 MMX ← Rtemp Updates new score

end
15 xE ← maxred_uint8
16 xE, xJ , xB ← Update special states by SIMD instructions

until Finish this bufferORmeet stop residue then goto Endseq
18 Ires + = 32

end
20 Endseq:
21 pi ← Calculate P-value by xJ

end
return P-Values for all sequences

Algorithm 2: Pseudo-code of SSV kernel with embedded SIMD instructions
Input: 8-bit Emission score Essv, Sequence Seqi, Length of packed sequence Li
Output: SSV scores (in nats) for all sequences sci
Loop A: while i ≤ TOTAL do

2 MMX[Q] , xE ← 0x80808080 /* Initialize begin values to signed -128 */
Loop B: while Ires ≤ Li do

4 Bufferwarp
[
Swarp

] ← Seqi(Ires) /* Cache Swarp packed residues per warp */
repeat res ← Unpack residues from Bufferwarp

6 Rmmx ← reorder_uint8_ssv /* Make sure shifting in 0x80 */
Loop C: for q = 0; q < Q; q+ = 1 do

8 Rtemp = vsubss4(Rtemp,Essv(res,Q, q, threadid))

9 xE = vmaxu4(xE,Rtemp)
10 Rmmx ← Load previous data for next q
11 MMX ← Rtemp Updates new score

end
13 xE ← maxred_uint8

until Finish this bufferORmeet stop residue then goto Endseq
15 Ires + = 32

end
17 Endseq:
18 sci ← Calculate SSV score by final xE with overflow check

end
return SSV scores for all sequences

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 9 of 16

Algorithm 3: Pseudo-code of P7Viterbi kernel with embedded SIMD instructions
Input: 16-bit Emission score Evit , 16-bit Transition score T , Sequence Seqi, Length of packed sequence Li
Output: P-Values for all sequences pi
Loop A: while i ≤ TOTAL do

2 M/I/DMX[Q]← 0x80008000 /* Initialize scores of all states to −inf */
Loop B: while Ires ≤ Li do

4 Bufferwarp
[
Swarp

] ← Seqi(Ires) /* Cache Swarp packed residues */
repeat res ← Unpack residues from Bufferwarp

6 Rmmx,Rimx,Rdmx ← reorder_int16
Loop C: for q = 0; q < Q; q+ = 1 do

8 Rtemp = vaddss2(xB,TBM(q, threadid))

9 Rtemp = vmaxs2(Rtemp, vaddss2(Rmmx,TMM(q, threadid)))

10 Rtemp = vmaxs2(Rtemp, vaddss2(Rimx,TIM(q, threadid)))

11 Rtemp = vmaxs2(Rtemp, vaddss2(Rdmx,TDM(q, threadid)))

12 Rtemp = vaddss2(Rtemp,Evit(res, q, threadid))

13 xE = vmaxs2(xE,Rtemp)
14 Rmmx,Rimx,Rdmx ← Load scores of previous row for next q
15 MMX ← Rtemp Update newM score
16 DMX ← Rdcv Partially update the new D score
17 Rdcv = vaddss2(Rtemp, vaddss2(Rmmx,TMD(q, threadid)))

18 Dmax = vmaxs2(Dmax,Rdcv)
19 Rtemp = vaddss2(Rmmx,TMI(q, threadid))

20 Rtemp = vmaxs2(Rtemp, vaddss2(Rimx,TII(q, threadid)))

21 IMX ← Rtemp Updates new I score
end

23 xE ← maxred_int16
24 Dmax ← maxred_int16
25 xC, xJ , xB ← Update special states by SIMD instructions
26 if Dmax + DD_Bound > xB then /* Lazy-F: Check D-D score or not */
27 Rdcv ← reorder_int16

Loop D: for q = 0; q < Q; q+ = 1 do
29 DMX

[
q
] = vmaxs2

(
Rdcv,DMX

[
q
])

30 Rdcv = vaddss2
(
DMX

[
q
]
,TDD (Q, q, threadid)

)
end

32 do Check higher D-D scores on boundary
33 Rdcv ← reorder_int16

Loop E: for q = 0; q < Q; q+ = 1 do
35 if __any(vsetgts2

(
Rdcv > DMX

[
q
])

) == 0 then
36 break out this loop and continue on next res
37 DMX

[
q
] = vmaxs2

(
Rdcv,DMX

[
q
])

38 Rdcv = vaddss2
(
DMX

[
q
]
,TDD(Q, q, threadid)

)
end

while q == Q
else /* No demand of calculating D-D scores */

42 DMX[0]← reorder_int16

until Finish this bufferORmeet stop residue then goto Endseq
44 Ires + = 32

end
46 Endseq:
47 pi ← Calculate P-value by xC

end
return P-Values for all sequences

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 10 of 16

(a) (b)

Fig. 5 Illustrations of proposed reordering and maximum functions for CUDAMPF. Assuming x4 > x3 > x2 > x1 after intra-warp reductions in (b)

Another function of PTX assembly formaximum reduc-
tion,maxred_uint8 (line 15 in Algorithm 1), across all the
threads within the warp is required to compute the ter-
minal cost, xE of each row of the DP matrix. As shown
in Fig. 5(b), butterfly shuffling and quad-lane SIMDmaxi-
mizing make sure that large values always be broadcasted
to all threads at each step. After five reductions due to
Swarp = 32 fixed by current CUDA model, every thread
then keeps four largest values (1st, 2nd, 3rd and 4th) that
are packed with 32-bit datatype. And the last step is intra-
word shifting with the SIMD maximum instructions to
obtain and broadcast the maximum value (the largest one
of 128 or 64 xEs). Figure 7 gives pseudo PTX assemblies
for this maximum reduction.
As to Viterbi algorithm, functions with int16 suffix

shown in Algorithm 3 indicates the width of sub-word
is increased to 16-bit that reduces the number of reduc-
tions as well as shifting bits. These inline functions of
PTX assemblies enable Tier 4 in CUDAMPF to be feasi-
ble with our proposed striped layout, and also eliminate
the overhead of accessing shared memory compared to
intra-register operation.

Hardware-aware resource allocation
Although the multi-tiered parallelization is designed to
take advantage of the execution model on massively par-
allel processors, in order to fully leverage the power of

the underlying hardware, it is necessary to maintain and
optimize the device resources, like the on chip and off
chip memory/cache system, with full awareness of their
capabilities and performance. Any improper allocation
strategy would not only impair performance but also limit
the scalability with respect to the data size.
In the previous work [32] we evaluated the performance

by using sharedmemory and global memory to store score
matrices of model and alignment scores, where both of
them met limited speedup with large query model that
reduced the number of resident warps on each SMX. To
solve the trouble of scalability, present work uses register
and local memory to store all alignment scores likeMMX,
IMX, DMX in Algorithms 1 and 3. This benefits from
Kepler architecture that supports available local memory
space for each thread Nlocal = 512KB at most [28], which
enables Lhmm upto

(
(Nlocal×1024)

4B×3 − 1
)

×αviterbi ×Swarp +1
theoretically. Although local memory is off-chip mem-
ory, it is naturally organized as a layout of consecutive
32-bit words accessed by consecutive threads [31], that is
well consistent with our striped layout of scoring align-
ment since all threads within a warp access their score
arrays M/I/DMX[i] with same index. This enable our
warp-based operations (at 3rd tier) always archieve coa-
lesced access to local memory with 128-bytes memory
transactions, which is the optimal accessing pattern.

Fig. 6 Pseudo PTX assemblies of inline reordering function. An example of reordering 128 unsigned values of 8-bit for MSV kernel whereas P7Viterbi
kernel will process 64 signed values of 16-bit

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 11 of 16

Fig. 7 Pseudo PTX assemblies of inline maximum reduction function. An example of maximum reduction for MSV kernel. s is an auxiliary register
used with vmax instruction

As this strategy leaves most of the memory on-chip
unused, 48KB of it can be configured to serve as L1 cache,
thus improving cache hit ratio and performance. Further-
more, the HMM model parameters such as the emission
and transition scores, Emsv/ssv, Evit and T, can be stored
in the global memory and cached by the 48KB of Read-
Only cache, as the parameter values are fixed throughout
the course of the application. The use of on-chip shared-
memory for storing the HMMparameters is not beneficial
because (a) large models cannot fit within limited size
of the memory and (b) the indeterminate access pattern
to the parameter matrix stored in the shared memory
as dictated by current residue will lead to bank conflicts
and loss of performance. However, the case of register
spill and cache hit ratio become impact factors of perfor-
mance now. For the register-intensive kernel, more active
threads will tighten the amount of available registers to
each thread that leads to severe register spill. Escpecially
for P7Viterbi kernel, much more local memory and reg-
isters are consumed in comparison to MSV/SSV kernel,
that is not only caused by additional D and I scores but
also due to instruction complexity of Loop C. An effec-
tive solution is properly reducing the quantity of threads
that makes each of them obtains more assigned regis-
ters clamped by compiling option “-maxrregcount”. We
empirically launched 32 resident warps per SMX for both
MSV/SSV and P7Viterbi kernels, and it obtained good
trade-off with high performance.
This work also examines the performance of using on-

chip shared memory to store alignment scores. Given
two built-in parameters Sshared and Sthread as maximum
amount of shared memory and resident threads per SMX
respectively, the relationship between optimal occupancy
P and the usage of shared memory per SMX, Umsv/ssv/vit ,
can be described as:

Umsv/ssv = (Q + 1) × Swarp × 4 × N̂warp

Uvit = (3 × Q + 1) × Swarp × 4 × N̂warp

P = N̂warp × Swarp
Sthread

× 100%

(3)

with two constraints: N̂warp × Swarp ≤ Sthread and
Umsv/ssv/vit ≤ Sshared where N̂warp is the maximum
amount of resident warps can be launched. Increasing the
length of model, P decreases rapidly due to N̂warp.

Selective kernel compilation and loop optimizations via
NVRTC
In CUDA 7.0, a runtime compilation library NVRTC is
introduced to dynamically compile CUDA kernel source
against offline static compilation [34]. This is greatly ben-
eficial to optimizing compilation of nvcc for complex
kernel with multi-loop hierarchy, where the innermost
loop is related to variables that are known at runtime
only. Like Loop C in MSV/SSV and Viterbi algorithm,
Q is calculated as loop-count by Eq. 1 and can be pre-
defined as a constant value in runtime compilation. As
shown in Fig. 8, compiler is able to entirely unroll the
Loop C with #pragma unroll Q to boost the perfor-
mance. This is mainly because variables within innermost
loop will be calculated and assigned to registers dur-
ing compilation. However, for register-intensive kernel
like P7Viterbi, loop unrolling leads to undesirable register
spill. Thus, in contrast with MSV/SSV kernel, the loop-
count Q is not passed as pre-defined constant to runtime
compilation.
Furthermore, in order to obtain optimal performance,

it is essential to dynamically switch between kernels best
suited for the input problem. For smaller input query
models, it is possible to store DP rows (alignment scores)

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 12 of 16

Fig. 8 CUDAMPF program with NVRTC. After obtaining query model
size and device properties, program dynamically makes decisions on
unrolling innermost loop and selects the proper kernel file with
compiler options

within shared memory without sacrificing occupancy
whereas for larger model sizes local memory is an optimal
choice. Hence the application dynamically selects between
the Shared and local memory implementation, the kernel
with best configuration, to compile and run at runtime.
This not only takes advantage of computing resources
on device but also avoids performance degradation due
to static configurations. Only the best suited kernel for
the input problem is ever compiled and run, thus avoid-
ing needless compilation of all kernels at compile-time
with higher overhead. The cost of runtime compilation
via NVRTC is listed in Table 2. As shown in the table,
the maximum cost of compilation at runtime is around
800ms which is negligible compared to total runtime of
the application and may very well be completely hidden
via multi-threading.

Results and discussion
Benchmark environment
In order to evaluate proposedMSV and Viterbi algorithms
in CUDAMPF comprehensively, the benchmark analysis
is composed of two parts: (1) the intrinsic comparison
of different configurations in order to study the relation-
ship between GPU kernel performance (GCUPS: GigaCell
Update Per Second), cache hit ratio, kernel occupancy
and the length of query models; (2) the extrinsic compar-
ison of performance between CUDAMPF on GPU and
hmmersearch from HMMER 3.1b2 on CPU.
In order to evaluate the scalability and performance, 24

different Hidden Markov Models of sizes ranging from
100 to 2405 were selected from 27.0 (released on May
2013) [35] with following accession numbers: PB000229,
PB000603, PB002467, PB001249, PB000838, PB000131,
PB001355, PB005588, PB014599, PB000340, PB000123,
PB000768, PF05788.7, PB000358, PB001476, PB000744,
PB000352, PB002016, PB000062, PB000265, PB003051,
PF06317.6, PB000137, PB003055. As to protein sequence
database, Swissprot database (released on July 2015) that
contains 461414 protein sequences with totally 172 mil-
lion residues were selected.
CUDAMPF running on single NVIDIA Tesla K40 with

15 SMXs (2880 CUDA cores) and 12 GB memory [36]
was compared against HMMERMSVFilter, SSVFilter and
ViterbiFilter running on a desktop workstation with an
Intel i5-3570K quad-core 3.4GHZ CPU, Intel i7-2600
octa-core 3.4GHZ and on the single node of a compute
cluster with an Intel Xeon E5620 octa-core 2.4 GHz server
CPU, running 64-bit Linux operating system. Sequence
scores of all three stages obtained from our implementa-
tion are completely identical to results of hmmersearch,
and the number of sequences that pass through each filter
is also matched.

Intrinsic performance: NVRTC vs. static compilation
Tables 3 and 4 present various intrinsic parameters such
as L1 Cache-hit ratio (for scoring DP matrix), Read-Only
Cache-hit ratio (for model parameters) and register usage
per thread and the overall performance (GCUPS) for
HMM sizes ranging between 200 and 2405 and two differ-
ent run-cases: static and NVRTC based compilation. The
models were scored against the Swissprot database. The

Table 2 Benchmark of elapsed time (ms) for each steps of runtime compilation

Steps of Runtime MSV/SSV kernel P7Viterbi kernel

Compliation Intel i5a Intel Xeonb Intel i5 Intel Xeon

Read .cu .cuh file into string 0.05/0.04 0.07/0.08 0.05 0.09

Create and compile nvrtcProgram 450/431 855/812 422 836

Get PTX string and kernel handle 0.35/0.77 5.38/5.63 0.27 7.64

aIntel i5-3570K quad-core 3.4 GHz CPU and 64-bit Ubuntu Linux
bIntel Xeon E5620 octa-core 2.4 GHz CPU and 64-bit Centos Linux

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 13 of 16

Table 3 Performance comparison of static and runtime compilation for MSV/SSV kernel

GCUPS L1(%) Read-only(%) Register(64)b

Model length static nvrtc static nvrtc static nvrtc static nvrtc

200 70/81 79/113 100/100 bypass/bypassa 100/100 100/100 42/33 32/30

600 118/146 165/235 100/100 bypass/bypass 98.3/98.3 98.1/98.1 42/33 44/30

1001 138/162 209/317 100/100 bypass/bypass 82.9/82.9 83/82.9 42/33 44/44

1400 146/165 239/367 99.9/100 bypass/bypass 74.3/74.3 74.2/74.2 42/33 45/44

2050 139/134 261/392 62.7/62.7 bypass/bypass 65.5/65.6 65.5/65.6 42/33 62/63

2405 139/138 277/440 58.3/58.7 bypass/bypass 63.6/63.5 63.7/63.9 42/33 63/62

aSufficient private registers for each thread and no demand of local memory access
bThe maximum number of available registers per thread

three intrinsic parameters, L1, Read-only cache hit ratio
and register usage per thread, indicate the device memory
utilization that impacts kernel performance directly. The
maximum allowable number of registers per SMX (64KB)
was utilized bymounting 32 resident warps (1024 threads)
where each thread was allocated 64 private registers. As
shown in Table 3, for the MSV/SSV segment, NVRTC
compiled kernels yield upto 2x and 3.2x faster in terms of
GCUPS compared to statically compiled kernels respec-
tively, due to the loop optimizations that utilize available
registers asmore as possible. The register usage per thread
is always under 64 thus avoiding any register spill and the
use of local memory.
On the other hand, the complexity of P7Viterbi kernel

requires higher number of registers per thread. Hence any
loop optimizations performed by NVRTC causes severe
register spill and limits the overall performance. The L1
cache-hit ratio degrades to 43.4% even for short model
length of 200 due to the use of local memory. Hence,
for the P7Viterbi kernel the loop optimizations were not
performed by keeping the inner-most loop count a run-
time variable, thus achieving equivalent performance of
statically compiled P7Viterbi kernel.

Intrinsic performance: local memory vs. shared memory
The performance was evaluated for implementations of
Shared memory vs. Local memory based storage of DP

scoring matrix row. As mentioned in earlier sections,
shared memory allocation limits number of active warps
and the device occupancy as evidenced by Figs. 9, 10 and
11 for MSV, SSV and P7Viterbi respectively. The occu-
pancy of MSV kernel declines from 100% for a HMM size
of 600 to 29.7% eventually, which obviously degrades the
performance. However, the local memory implementation
exhibits a steady increase in performance while main-
taining a constant device occupancy at 50% irrespective
of the size of the query model. Based on the bench-
mark (Swissprot database vs. 24 query models), only three
smallest models of size 100, 200 and 300 showed slight
advantage of shared memory over local memory, which
are 40.86(vs. 39.28), 81.72(vs. 78.56) and 107.35(vs. 103.7)
GCUPS respectively. SSV kernel has similar behaviours on
performance between shared and local memory oriented
implementations in which case larger models gain more
speedup through using local memory (i.e, 1.87x faster
than shared memory on model of 2405).
More pronounced performance gaps between two

implementations were observed in P7Viterbi kernel. Since
the usage of shared memory for P7Viterbi (due to M/I/D
states) is about 3x that of MSV kernel, occupancy in this
case degrades much more rapidly as does the perfor-
mance. On the other hand, the local memory implemen-
tation yields upto 14.3 GCUPS for a model size of 300
and roughlymaintains the performance at 10GCUPSwith

Table 4 Performance comparison of static and runtime compilation for P7Viterbi kernel

GCUPS L1 Read-only Register

Model length static nvrtc static nvrtc static nvrtc static nvrtc

200 9.7 8.7 99.9% 43.4% 99.1% 99.1% 62/64 spilla

600 12.3 4.9 55.9% 3.9% 85.7% 86.3% 62/64 spill

1001 10.4 4 52.4% 2.9% 74.5% 75.2% 62/64 spill

1400 9.6 3.3 50.3% 1.8% 68.6% 69.8% 62/64 spill

2050 9.3 2.9 49.4% 0.5% 62.7% 62.6% 62/64 spill

2405 10 2.9 49.5% 0.4% 61% 61.4% 62/64 spill

aAssigned private registers are exhausted. Registers spill to local memory

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 14 of 16

Fig. 9 Performance comparison between MSV kernels of local
memory and shared memory

increasing query model sizes. However, for small models
with the length of 200 and below, shared memory kernel
achieves slightly better performance.

Extrinsic performance comparison: GPUs vs other
processors
The original work [2] yields 12 GCUPS on MSVFilter
and 1.6 GCUPS on ViterbiFilter by single core of an
Intel processor. Acceleration via high-end FPGA designs
in [15] yields upto 81 GCUPS for MSV and 3.6 GCUPS
for P7Viterbi; GPUHMMER [6], an outdated acceleration
with roughly 1.48 GCUPS, was modified by Lin [17] to
accelerate MSVFilter in HMMER 3.x, which yields upto
32.8 GCUPS on a Quadro K4000 GPU. [20] implements
cache-oblivious strategy to accelerate ViterbiFilter, that
yields a roughly constant performance of 3 GCUPS on an
Intel i7 processor and 1.7 GCUPS on AMDOpteron Bull-
dozer processor. [21] claims the first acceleration attempt
for SSVFilter based on HMMER 3.1, which gains upto
372.1 GCUPS on a GTX570 GPU.
The current implementation is compared to the

latest version of hmmsearch in HMMER 3.1b2 on
different processors. The comparison was performed by
extracting and executing only the relevant methods of

Fig. 10 Performance comparison between SSV kernels of local
memory and shared memory. The slight drop of occupancy curve for
local memory is caused by NVRTC compilation

Fig. 11 Performance comparison between P7Viterbi kernels of local
memory and shared memory

p7_pipeline for MSV, SSV and P7Viterbi segments.
In order to monitor the execution time and CPU usage
strictly, Intel Vtune Amplifier’s [37] hotspot profiler was
used to measure the execution time of p7_MSVFilter,
p7_SSVFilter and p7_ViterbiFilter separately
for the entire sequence database. The baseline is measured
in wall clock time, Tlast − Tfirst , where Tlast is time point
after the last function call and Tfirst is time point before
the first function call. Three high-end CPUs, Intel i5, i7
and Xeon, were evaluated with multiple cores as shown
in Figs. 12, 13 and 14 for MSV, SSV and P7Viterbi stages
respectively. On Intel Xeon, the average performances by
utilizing single-, quad- and octa-cores are 7.7 (19.9), 27.2
(70.2) and 38.5 (103.7) GCUPS for MSVFilter (SSVFilter),
meanwhile ViterbiFilter shows 1.1, 4.5 and 7.8 GCUPS.
Similarly, Intel i7 gains 13.7 (29.1), 44.4 (80.4) and 50.5
(95.5) GCUPS for MSVFilter (SSVFilter) and 2.3, 7.4 and
8.6 GCUPS for ViterbiFilter, repectively. As to Intel i5,
for MSVFilter (SSVFilter), we observed 14.5 (33.5) and
50.6 (98.8) GCPUS, and ViterbiFilter yields 2.3 and 8.6
GCUPS by employing single- and quad-cores. It can be
seen that the performance of CUDAMPF clearly exceeds
that of all implementations on CPUs and achieves a

Fig. 12 Evaluations of CUDAMPF with Intel Xeon, i5 and i7 on
MSVFilter

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 15 of 16

Fig. 13 Evaluations of CUDAMPF with Intel Xeon, i5 and i7 on SSVFilter

speedup of upto 37.5-fold (23.1-fold) over single core and
5.1-fold (3.2-fold) over multi-cores for MSVFilter (SSV-
Filter). Although P7Viterbi algorithm is more complex
with strong dependencies, our method still runs 11.64x
and 1.7x faster than single and multiple cores of CPUs,
respectively.

Conclusion
In this paper, we proposed a novel parallel framework
CUDAMPF that embeds SIMD intrinsics within SIMT
mechanism onCUDA-enabled GPUs, which greatly accel-
erate MSV/SSV and P7Viterbi stages of latest HMMER
with 100% accuracy, and the overall performance exceeds
all other existing optimizations. In addition to the largely
enhanced kernel throughput caused by synchronize-free
execution, a finer-grained parallelism is achieved by this
framework that could be also adopted to other similar
problems in high-throughput sequence search. Based on
the characteristics of the current algorithms, this work
also presents an architecture-aware strategy to make opti-
mal utilization of memory and cache system on the
Kepler architecture for parallel efficiency and scalability.

Fig. 14 Evaluations of CUDAMPF with Intel Xeon, i5 and i7 on
ViterbiFilter

Moreover, CUDA Runtime Compilation (NVRTC) is
incorporated to enable further optimization on kernel
that wisely unrolls computational loops for performance
boost, and it also support switchable kernels without com-
pilation overhead in static. The strict performance evalua-
tions illustrate that CUDAMPF gains significant speedup
over CPU implementations: comparing with three differ-
ent high-end CPU, our framework yields the maximum
speedup of 37.5x (23.1x) and 5.1x (3.2x) over single and
eight cores forMSV (SSV) kernel, and the P7Viterbi kernel
gains 11.6x and 1.7x speedup, respectively.
Future work: The high-throughput sequence processing

schema presented here will be integrated with heteroge-
neous computing enabled big-data processing framework
runningNoSQL database for indexed storage and retrieval
of large omics data. The integrated framework will also be
available for remote access via the world-wide-web.

Availability and requirements
Project name: CUDAMPF
Project home page: https://github.com/Super-Hippo/
CUDAMPF
Operating system(s): Linux
Programming language(s): CUDA C/C++, PTX assembly
Other requirement(s): CUDA 7.0 or later, GCC/G++
4.4.7 or later, CUDA-enabled GPUs with Compute Capa-
bility of 3.5 or higher
License:MIT License

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HJ proposed the idea of SIMD embedded SIMT framework, programmed the
algorithm, designed the benchmark tests, evaluated the performance and
drafted the manuscript. NG programmed the algorithm, collected and
analyzed the results and drafted the manuscript. Both authors read, revised
and approved the final manuscript.

Acknowledgements
The authors would like to thank the NVIDIA-Professor partnership and Xilinx
University Program (XUP) for their generous donation in carrying out this
research.

Received: 12 August 2015 Accepted: 15 February 2016

References
1. Eddy S. Profile hidden markov models. Bioinformatics. 1998;14:755–63.
2. Eddy S. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10).

doi:10.1371/journal.pcbi.1002195.
3. Eddy S. A probabilistic model of local sequence alignment that simplifies

statistical significance estimation. PLoS Comput Biol. 2008;4(5).
doi:10.1371/journal.pcbi.1000069.

4. Lindahl E. Altivec HMMer, version 2.3.2. http://csb.stanford.edu/~lindahl/
altivec/. Retrieved February 19, 2016.

5. Horn DR, Houston M, Hanrahan P. ClawHMMER: A streaming
HMMer-search implementation. In: Proceedings of the ACM/IEEE
Supercomputing Conference. IEEE; 2005.

6. Walters JP, Balu V, Kompalli S, Chaudhary V. Evaluating the use of GPUs
in Liver Image Segmentation and HMMER Database Searches. In:

https://github.com/Super-Hippo/CUDAMPF
https://github.com/Super-Hippo/CUDAMPF
http://dx.doi.org/10.1371/journal.pcbi.1002195
http://dx.doi.org/10.1371/journal.pcbi.1000069
http://csb.stanford.edu/~lindahl/altivec/
http://csb.stanford.edu/~lindahl/altivec/

Jiang and Ganesan BMC Bioinformatics (2016) 17:106 Page 16 of 16

International Symposium on Parallel & Distributed Processing (IPDPS).
Rome: IEEE; 2009. p. 1–12.

7. Ganesan N, Chamberlain RD, Buhler J, Taufer M. Accelerating HMMER on
GPUs by implementing hybrid data and task parallelism. In: Proceedings
of the First ACM Int. Conf. on Bioinformatics and Computational Biology
(ACM-BCB). Buffalo: ACM; 2010. p. 418–21.

8. Maddimsetty RP, Buhler J, Chamberlain R, Franklin M, Harris B.
Accelerator design for protein sequence HMM search. In: Proc. 20th ACM
International Conference on Supercomputing; 2006.

9. Oliver T, Yeow LY, Schmidt B. Integrating FPGA acceleration into HMMer.
Parallel Comput. 2008;34(11):681–91.

10. Takagi T, Maruyama T. Accelerating HMMER search using FPGA. In:
International Conference on Field Programmable Logic and Applications
(FPL). Prague: IEEE; 2009. p. 332–7.

11. Meng X, Ji Y. Modern computational techniques for the HMMER
sequence analysis. ISRN Bioinforma. 2013;(252183).
doi:10.1155/2013/252183.

12. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403–10.

13. Smith T, Waterman M. Identification of common molecular
subsequences. J Mol Biol. 1981;147:195–7.

14. HMMER V3.1b2 Source Code. 2015. https://svn.janelia.org/eddylab/eddys/
src/hmmer/branches/3.1/src/impl_sse/. Retrieved November 15, 2015.

15. Abbas N, Derrien S, Rajopadye S, Quinton P. Accelerating HMMER on
FPGA using Parallel Prefixes and Reductions. In: International Conference
on Field-Programmable Technology (FPT): 28-10 Dec. 2010. Beijing: IEEE;
2010. p. 37–44.

16. Li X, Han W, Liu G, An H, Xu M, Zhou W, Li Q. A speculative HMMER
search implementation on GPU. In: 26th IPDPS Workshop and PhD
Forum. Shanghai: IEEE; 2012. p. 73–4.

17. Cheng L, Butler G. Implementing and Accelerating HMMER3 Protein
Sequence Search on CUDA-Enabled GPU. PhD thesis, Concordia
University, The Department of Computer Science and Software
Engineering 2014.

18. Cheng L, Butler G. Accelerating search of protein sequence databases
using CUDA-enabled GPU. In: 20th International Conference on Database
Systems for Advanced Applications (DASFAA): April 20-23 2015. Hanoi:
IEEE; 2015. p. 279–98.

19. Quirem S, Ahmed F, Lee BK. CUDA acceleration of P7Viterbi algorithm in
HMMER 3.0. In: 30th International Performance Computing and
Communications Conference (IPCCC). Orlando: IEEE; 2011. p. 1–2.

20. Ferreira M, Roma N, Russo LM. Cache-Oblivious parallel SIMD Viterbi
decoding for sequence search in HMMER. BMC Bioinforma. 2014;15(165).

21. de Araújo Neto AC, Moreano N. Acceleration of Single- and
Multiple-Segment Viterbi Algorithms for Biological Sequence-Profile
Comparison on GPU. In: 21st International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA): July 27-30.
2015. Las Vegas: WORLDCOMP; 2015. p. 65–71.

22. Zhu X, Li K, Salah A, Shi L, Li K. Parallel implementation of MAFFT on
CUDA-enabled graphics hardware. IEEE/ACM Trans Comput Biol
Bioinforma. 2015;12(1):205–18.

23. Katoh K, Misawa K, Kuma K-i, Miyataa T. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Res. 2002;30(14):3059–66.

24. Hung CL, Lin YS, Lin CY, Chung YC, Chung YF. CUDA ClustalW: An
efficient parallel algorithm for progressive multiple sequence alignment
on Multi-GPUs. Comput Biol Chem. 2015;58:62–8.

25. Liu Y, Schmidt B. GSWABE: faster GPU-accelerated sequence alignment
with optimal alignment retrieval for short DNA sequences. Concurr
Comput Practive Experience. 2015;27:958–72.

26. Lindholm E, Nickolls J, Oberman S, Montrym J. NVIDIA Tesla: A Unified
Graphics and Computing Architecture. Micro. 2008;2:39–55. IEEE.

27. NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
2009. NVIDIA Corporation Whitepaper. http://www.nvidia.com/content/
pdf/fermi_white_papers/nvidia_fermi_compute_architecture_
whitepaper.pdf.

28. NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110/210. 2014. NVIDIA Corporation Whitepaper. http://international.
download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-
Architecture-Whitepaper.pdf.

29. NVIDIA. Tuning CUDA Applications for Maxwell. 2014. NVIDIA
Corporation Application Note. http://docs.nvidia.com/cuda/pdf/
Maxwell_Tuning_Guide.pdf.

30. NVIDIA. Parallel Thread Execution ISA. 2014. http://docs.nvidia.com/cuda/
pdf/ptx_isa_4.1.pdf.

31. NVIDIA. CUDA C Programming Guide. 2014. http://docs.nvidia.com/cuda/
pdf/CUDA_C_Programming_Guide.pdf.

32. Jiang H, Narayan G. Fine-Grained Acceleration of HMMER 3.0 via
Architecture-aware Optimization on Massively Parallel Processors. In: 14th
IEEE International Workshop on High Performance Computational
Biology (HiCOMB) in IPDPSW: May 25-29 2015. Hyderabad: IEEE; 2015.

33. Farrar M. Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics. 2007;23(2):156–61.

34. NVIDIA. NVRTC - CUDA Runtime Compilation. 2014. http://docs.nvidia.
com/cuda/pdf/NVRTC_User_Guide.pdf.

35. Pfam: Protein Family Database. 2013. ftp://ftp.ebi.ac.uk/pub/databases/
Pfam/releases/Pfam27.0/. Retrieved July 21, 2015.

36. NVIDIA. NVIDIA Tesla GPU Accelerators. 2013. http://www.nvidia.com/
content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf.

37. Intel Vtune Amplifier. 2015. https://software.intel.com/en-us/intel-vtune-
amplifier-xe.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1155/2013/252183
https://svn.janelia.org/eddylab/eddys/src/hmmer/branches/3.1/src/impl_sse/
https://svn.janelia.org/eddylab/eddys/src/hmmer/branches/3.1/src/impl_sse/
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/pdf/Maxwell_Tuning_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Maxwell_Tuning_Guide.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.1.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.1.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/NVRTC_User_Guide.pdf
http://docs.nvidia.com/cuda/pdf/NVRTC_User_Guide.pdf
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam27.0/
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam27.0/
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Previous work
	CUDA-enabled GPU architecture
	HMMER pipeline: MSV/SSV and P7Viterbi

	Methods
	GPU acceleration
	Warp-synchronous execution
	CUDA-SIMD based parallellization
	GPU runtime compilation

	Four-tiered parallelism
	Implementation details
	Striped layout vs. sequential layout
	MSV/SSV and Viterbi algorithm with SIMD
	Reordering and max-reduction for SIMD & SIMT
	Hardware-aware resource allocation
	Selective kernel compilation and loop optimizations via NVRTC

	Results and discussion
	Benchmark environment
	Intrinsic performance: NVRTC vs. static compilation
	Intrinsic performance: local memory vs. shared memory
	Extrinsic performance comparison: GPUs vs other processors

	Conclusion
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

