Cheng et al. BMC Bioinformatics (2015) 16:192

DOI 10.1186/512859-015-0626-9
BMC

Bioinformatics

METHODOLOGY ARTICLE Open Access

CrossMark

BitMapper: an efficient all-mapper based ®
on bit-vector computing

Haoyu Cheng', Huaipan Jiang'#, Jiaoyun Yang?, Yun Xu'?" and Yi Shang*’

Abstract

Background: As the next-generation sequencing (NGS) technologies producing hundreds of millions of reads every
day, a tremendous computational challenge is to map NGS reads to a given reference genome efficiently. However,
existing methods of all-mappers, which aim at finding all mapping locations of each read, are very time consuming.
The majority of existing all-mappers consist of 2 main parts, filtration and verification. This work significantly reduces

solutions.

http://home.ustc.edu.cn/%7Echhy.

verification time, which is the dominant part of the running time.

Results: An efficient all-mapper, BitMapper, is developed based on a new vectorized bit-vector algorithm, which
simultaneously calculates the edit distance of one read to multiple locations in a given reference genome.
Experimental results on both simulated and real data sets show that BitMapper is from several times to an order of
magnitude faster than the current state-of-the-art all-mappers, while achieving higher sensitivity, i.e., better quality

Conclusions: We present BitMapper, which is designed to return all mapping locations of raw reads containing
indels as well as mismatches. BitMapper is implemented in C under a GPL license. Binaries are freely available at

Keywords: Read alignment, Edit distance, Multiple locations, Simultaneously calculating, Bit-vector algorithm

Background

Recently, DNA sequencing has become a powerful tool for
researches in biology and medicine. The decreasing cost
and improving speed of the next-generation sequencing
(NGS) technologies generate massive reads every day.
However, a disadvantage of NGS technologies is that
they produce sequenced reads of relatively short length.
For instance, the HiSeq2500 platform of Illumina usually
produces 150 bp reads. The first step of many genomic
researches is finding the mapping locations of these short
NGS reads in a given large reference genome.

For this mapping issue, two classes of methods have
been developed. One class, including Bowtie [1], Bowtie2
[2], BWA [3], GEM [4], etc., is referred to as best-mappers
for trying to identify one or a few best mapping loca-
tions for each read. The other class, including RazerS

*Correspondence: xuyun@ustc.edu.cn; ShangY@missouri.edu

1 Key Laboratory on High Performance Computing, Hefei, Anhui 230027, P.R.
China

4Department of Computer Science, University of Missouri-Columbia,
Columbia MO 65203, USA

Full list of author information is available at the end of the article

() BiolVled Central

3 [5], Hobbes2 [6], and mrFAST [7, 8], is referred to
as all-mappers for finding all mapping locations. Gener-
ally, the selection of different mappers depends on the
needs of down-stream applications. Finding one or a few
best mapping locations for each read using best-mappers
is enough in most cases (e.g., mapping DNA-protein
interactions, whole-transcriptome sequencing and whole
genome expression profiling). However, for some specific
applications, such as ChIP-seq experiments, CNVs (copy
number variation) calling and detecting structural vari-
ants, it is necessary to identify all mapping locations using
all-mappers.

Due to the different purposes, identifying all mapping
locations using all-mappers is usually much slower than
finding one or a few best locations using best-mappers. An
important reason is that all-mappers have to enumerate
all possible locations, while best-mappers can use some
heuristic methods to select the most likely one. There are
a lot of matches for some reads due to huge numbers
of segmental duplications and common repeats in refer-
ence genomes. Thus, finding all mapping locations is still
a computationally very expensive problem.

© 2015 Cheng et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0626-9-x&domain=pdf
http://home.ustc.edu.cn/%7Echhy
mailto: xuyun@ustc.edu.cn
mailto: ShangY@missouri.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cheng et al. BMIC Bioinformatics (2015) 16:192

To solve this problem, many all-mappers have been
developed. Most of them consist of two parts, filtration
and verification. Filtration reduces the number of the
locations that need to be verified (called candidates), espe-
cially when a reference genome is extremely large. For
example, Hobbes [9] uses a dynamic programming algo-
rithm to select several g-grams with the lowest frequency,
where g-grams are the subsequences with length of g.
Therefore, the number of candidates is minimal. Another
filter proposed by Hobbes 2 chooses k + 2 g—grams
instead of k + 1 and only verifies the locations that appear
at least two times. Recently, Masai [10] improved the per-
formance of filtration by generating candidate locations
of multiple reads simultaneously and using approximate
seeds. Compared with filtration, verification used for edit
distance is the dominant part of the whole running time
in current mappers [8]. Several algorithms have been
proposed to speedup verification. A bit-vector algorithm
proposed by Myers [11] uses bit representation contained
in a machine word to calculte edit distance. RazerS 3 [5]
implements a banded version of Myers’ algorithm [12],
which only calculates several consecutive diagonals rather
than the whole dynamic programming matrix. Although
the current banded method of verification is quite quick,
it only calculates the edit distance of a read to one location
rather than multiple locations.

In this paper, we present BitMapper, an efficient read
mapper which is designed to return all mapping locations
of raw reads containing indels as well as mismatches. It
includes a new vectorized bit-vector algorithm using a
single machine word to represent several bit vectors and
simultaneously calculates the edit distance of a read to
multiple locations in a given reference genome. A vector-
ized verification scheme is also proposed to work with the
new bit-vector algorithm. Experimental results show that
the running time of BitMapper is from several times to
an order of magnitude faster than the best existing all-
mappers, including Hobbes 2, RazerS 3, mrFAST (with
FastHASH) [8], Masai and Yara [13].

Methods
First, we define the read mapping problem and related
concepts.

Definition 1. Given a set of reads R and a reference
genome S, find all locations in S where the hamming or edit
distance of each read in R is at most k.

Hamming and edit distance are two common distance
metrics for sequence alignment. Hamming distance only
includes the substitutions of the corresponding symbols
between two strings of equal length, while edit distance
consists of substitutions, insertions and deletions. Calcu-
lating hamming distance is relatively easy and has been

Page 2 of 16

well solved. On the other hand, calculating edit distance
efficiently is still difficult, which is the focus on this article.

Similar to existing short reads mappers, BitMapper
mainly consists of two parts: filtration and verification.
In the following, we first briefly describe the proce-
dure of existing approaches and then present and analyze
BitMapper in detail.

Filtration

Filtration is an important phase for sequence alignment,
especially if a reference genome is extremely large. Only
the regions consisting of potential mapping locations can
be reserved after filtration. Currently, the basic princi-
ple of nearly all g-gram-based filtration strategies is that
the number of g-grams shared between two sequences
should exceed a certain threshold if they are poten-
tially similar. Next, we briefly summarize commonly used
q-gram-based approaches.

Pigeonhole principle

A simple and efficient filtration strategy is pigeonhole
principle: if / items are put into / + 1 boxes, then one
or more boxes would be empty. In its application on
sequence alignment, first each read is divided into k + 1
non-overlapping g-grams, where k is the threshold of edit
distance or hamming distance. If the distance between a
read and a candidate region is less than k, at least one in
k 4+ 1 non-overlapping g-grams of the read can be mapped
to the reference exactly, since a substitution, insertion
or deletion only affects a g-gram. A more general ver-
sion of pigeonhole principle is that if a read is able to
be cut into k + m non-overlapping g-grams, sharing at
least m of them with a read is necessary for each mapping
location.

Countfiltering

Compared with pigeonhole principle, a more involved
filtration strategy is count filtering. Given a sequence s,
there are [s|—g+1 overlapping g-grams that are obtained
by sliding a window of length g over s, where |s| is the
length of s. As in the explanation of pigeonhole principle,
a substitution only affects at most g overlapping g-grams.
Thus, no more than k x g g-grams could be affected with
hamming distance k. If the hamming distance between s
and another sequence r is less than &, then the number T
of shared g-grams is at least.

T=|s|—(k+1) xg+1 (1)

The lower bound T of edit distance is similar to that of
hamming distance. The first method of count filtering on
sequence alignment is a modified SWIFT algorithm [14]
used in RazerS [15].

Cheng et al. BMC Bioinformatics (2015) 16:192

Our implementation

Pigeonhole principle is faster than count filtering on
filtration phase, while the verification time of the
pigeonhole-principle-based mappers is more than that
of the count-filtering-based mappers. In fact, there is
a tradeoff between filtration and verification. Because
the proportion of verification time for the pigeonhole-
principle-based mappers is larger than that for the count-
filtering-based mappers, the former benefit more from the
improvement of verification than the latter. As our ver-
ification method is efficient, Bitmapper used pigeonhole
principle instead of count filtering.

Verification

The locations reserved after filtration are the candi-
dates for matches. During the verification phase, these
candidates should be verified by calculating their edit
distance or hamming distance to each read. Compared
with computing hamming distance, computing edit dis-
tance is extremely time-consuming. In the following, we
first describe the theoretical basis for our vectorized
Gene Myers’ bit-vector algorithm, and illustrate the algo-
rithm in detail. Then, we present a vectorized verification
scheme, which is designed to work with the vectorized
Gene Myers’ bit-vector algorithm.

Theoretical basis

For sequence alignment, the reads and the reference
genomes can be viewed as the strings including letters A,
C, G, T and N. Assume the length of read r is m, the
length of genome s is #, and the threshold of edit distance
is k. The dynamic programming algorithm proposed in
[16] is a classic method for this problem, which computes
a dynamic programming matrix C[0...m,0...n] of size
(m 4+ 1) x (n+ 1). The well-known recurrence formula is
as follows.

Page30f 16

Orizsj

E[i,j]: 1 ri;tésj

ie€[l,m],j€[1,n]
Cli,j—1]+1

Cli,jl = min iell,m],jell,n]

C[0,j/1=0,C[i0] =i i€[0,m],j€[0,n]

(2)

Its time complexity is O(m x n) and it is very slow
when a reference genome is large. Actually, calculating the
whole dynamic programming matrix is unnecessary when
the edit distance threshold & has been set in advance. As
stated in the following Lemma 1, the size of computing
area in dynamic programming matrix is related to k, which
has been proven in [17].

Lemma 1. Given a read of length m, a candidate
location d in a reference genome and an edit distance
threshold k, the start and end positions of potential
matches may be from d —k to d+k and fromd+m—k—1
tod + m + k — 1, respectively. In other words, the length
of the verification window, which would be calculated with
the read, is m + 2k.

Figure 1 shows an example for Lemma 1. Note that the
candidate location d is obtained by subtracting the offset
¢ from dq, where dgq is an exactly matched location of a g-
gram and c is the offset of this g-gram in the read. If there
are only at most k deletions, the segment starting at d — k
and ending at d + m + k — 1 needs to be computed. If there
are only at most k insertions, the segment range needing
to be considered is from d + k to d+m — k — 1. Combining
with these two intervals, the range of maximal verification
window is from d-k tod +m + k — 1.

A

matched q-gram

d dg

verification window >

Genomef
d+m-1

matched q-gram

Fig. 1 The verification window in reference genome. It includes the candidate mapping locations of the read with edit distance up to 3

Read

Cheng et al. BMIC Bioinformatics (2015) 16:192

According to Lemma 1, the length of verification win-
dow is m + 2k. Thus, only (m + 2k + 1) x (m + 1)
cells in dynamic programming matrix need to be cal-
culated. We define the diagonal which is shifted from
the main diagonal by k diagonals to the right as “base
diagonal” It corresponds to the situation that only substi-
tutions are considered, since the computing path moves
right down from the current cell in dynamic programming
matrix to the adjacent cell when a substitution occurs.
For a deletion in the reference genome, the computing
path goes right to the adjacent cell. For an insertion,
this path goes down to the adjacent cell. Thus, the right-
most and the leftmost diagonals are obtained by sliding
k diagonals from the “base diagonal” to its right and left,
respectively. In fact, the computing area in dynamic pro-
gramming matrix is a banded parallelogram, as shown
in Fig. 2.

An efficient solution for this problem is the bit-vector
algorithm proposed in [11], which is based on the obser-
vation that the difference of the values between adjacent
cells in dynamic programming matrix is at most 1. It
is able to encode a whole column in dynamic program-
ming matrix using bit vectors and compute a column by
bit operations rather than cell-by-cell. Banded versions of
Myers’ bit-vector algorithm have been implemented in [5]
and [12]. They encode a banded parallelogram in dynamic
programming matrix into columns for column-wise com-
putation, since only limited consecutive diagonals need
to be calculated rather than the whole dynamic program-
ming matrix, according to the analysis above. Figure 2
shows that at most 2k + 1 cells in each column need to
be calculated, so that the length of the bit vectors is also
2k + 1. If 2k 4 1 is less than the word size of computer, a
column could be processed in one step.

Page 4 of 16

Vectorized Gene Myers’ bit-vector algorithm

A significant characteristic of the NGS reads is that the
length of them is relatively short. For the down-stream
applications using all-mappers, the edit distance thresh-
old is usually set to 4% or 5% of the read length. Thus,
the edit distance threshold k& is usually low. It means that
a few bits are enough for banded bit-vector algorithms
to calculate edit distance. For example, the length of the
reads sequenced by Illumina platform is always under
150 so that the threshold k is set to 7. If k = 7, the
length of bit vectors is 15, while the word size of modern
computers is typically 64 and the Streaming SIMD Exten-
sions (SSE) instruction set has several 128-bit registers.
Therefore, it is possible to load multiple bit vectors into a
machine word or a 128-bit SSE register. Furthermore, the
problem can be converted to how to compute the edit dis-
tance between several patterns and a text. Based on these
observations, we propose a new vectorized Gene Myers’
bit-vector algorithm to simultaneously process a text with
multiple patterns.

First we briefly introduce the current bit-vector algo-
rithm proposed in [12], which is the basis of our vec-
torized algorithm. It uses delta encoding in dynamic
programming matrix C[0...m,0...#n]. Specifically, for
column j, the bit delta vectors are.

HPj[i]= (Cli,j] —Cli,j — 1] = +1)
HNj[i]= (Cli,j] =Cli,j — 11 = =1)
VPjli]l = (Cli,j1 —Cli — 1,j]= +1)
VNj[i] = (Cli,j) —Cli—1,j]= —1)
DO;li]= Clij] -Cli—1,j —1]
Peq;[s] [i] = (pattern[i] = s)

i€[1l,m],je[l,n]

s€{A,T,G,C}
(3)

Genome

D initial cell

D computing cell

Read

D ignored cell

. base diagonal

start locations of potential matches can not be known in advance

Fig. 2 The computing area in dynamic programming matrix with the edit distance threshold k = 2. The initial cells should be set to 0 because the

Cheng et al. BMC Bioinformatics (2015) 16:192

where HP;, HNj, VP, VNj, DO; and Peg; are the jth element
of HP, HN, VP, VN, D and Peq, respectively. And the nota-
tion HP;[i], HNj(i], VP;[i], VNj[i], DO;[i] and Peg;(s] []
denote the ith bit of HP;, HN;, VP;, VN;, DO; and Peq;] s],
respectively.

If the values of these bit vectors in column j — 1 have
already been known, then the bit vectors in column j can
be computed as following.

Algorithm 1: Computing jth column from j-1th
column

| X < Pegiltlpl]] VN1

2 DO; < ((VPi—1 + (X & VPj_1)) & VPi_1) | X
3 HN; < VP;_1 & DO;

4 HP; <~ VN1 |~ (VP;—1 | DOy)

5 X <D0 > 1

6 VN; < X & HP;

7 VP < HN; |~ (X | HP))

where [p] is the pth element of text. Because the length
of each column in computing area is 2k + 1, so the length
of these bit vectors is also 2k + 1.

Based on the Algorithm 1, we developed the vectorized
Gene Myers’ bit-vector algorithm. Briefly, it packs multi-
ple bit-vectors of different patterns into a machine word
so that these patterns are able to be processed with one
text simultaneously. The calculating of each bit-vector is
similar to the previous banded bit-vector algorithm [12].
However, some problems would occur when multiple bit-
vectors are processed as a whole. From Algorithm 1, only
six operations have been used: ‘@, /[, ‘&, >, ‘~" and ‘4.
They can be divided into two groups. The first group con-
sists of ‘®’, ‘[, ‘& and ‘~’, while >’ and ‘4’ belong to the
second group. Using the operations of the first group in
a machine word including multiple bit vectors does not
have any difficulty, because the bit vectors in it cannot

Page 50f 16

be affected with each other. However, implementing the
operations of the second group as a whole would influence
each other. For operation ‘+) the carries resulted from
addition of lower bit vectors would affect the nearly upper
bit vectors. For operation >, the lowest bit in upper bit
vector would move right to influence the nearly lower bit
vector.

To solve the problem about operation ‘+’, the data struc-
tures of the variables used in our vectorized Gene Myers’
bit-vector algorithm have been redesigned. For the pre-
vious banded bit-vector algorithm [12], 2k + 1 bits are
enough for each variable. Intuitively, for the vectorized
algorithm, the length of each variable, which represents n
bit vectors, is (2k + 1) x n. However, if multiple bit vec-
tors are loaded into a machine word as this, the problem
above could not be solved. Our solution is to use one more
bit between two bit vectors as a buffer, so that the carries
resulted from the operation ‘+’ among the lower bit vec-
tors would not affect the upper bit vectors. For example,
VP, which represents the difference of values between the
vertical cells for pattern /, is a part of VP, starting from
(2k + 2) x Ith bit and ending at (2k +2) x (/ + 1) — 1th
bit. For / patterns, the bit vectors of them are assem-
bled together so that the length of variables including VP,
VN,HP, HN, DO and Peq is not less than(2k + 2) x 4,
as shown in Fig. 3. And the problem about operation
“>’ has been solved in our vectorized Gene Myers’ bit-
vector algorithm by using an extra ‘&’ operation with a
predefined bitmask.

Our vectorized Gene Myers’ bit-vector algorithm pro-
ceeds column-by-column through the dynamic program-
ming matrix. If the length of patterns is less than that
of the text, it returns the optimal end location for each
pattern on text. Otherwise, it returns the optimal end
locations for the text on each pattern. As an example,
we present the outline of the algorithm for the second
situation as follows.

é« —— pattern 2's —}« —— pattern 1's —}« —— pattern 0's —}

—— 2kt1 —

buffer bit buffer bit buffer bit

Fig. 3 The data structure for the variables containing several bit vectors. Each pattern needs (2k+2) bits to represent itself

Cheng et al. BMIC Bioinformatics (2015) 16:192

1. Preprocess the variables for column 0.

e Set the Peq array for the first 2k 4+ 1 symbols in
each pattern.

e Set VP, VN and E to 0, where E contains the
edit distances for h patterns.

2. Scan and compute the banded parallelogram in the
dynamic programming matrix from left to right by
column.

e Compute HP, HN and DO of column j from VP
and VN of column j-1.

e Compute VP and VN of next column using HP,
HN and DO.

e Set Peq for next column by shifting to the right
of the current Peq.

e Update E for this column using DO.

3. Output the locations with the lowest edit distance as
the optimal end location on each pattern, separately.
The range in E from (2k + 2) x jth bit to
(2k +2) x (j + 1) — 1th bit denotes the edit distance
of pattern j.

All of the patterns have to be processed one by one in
step 3, while step 1 and step 2 can process multiple pat-
terns simultaneously. Fortunately, unlike step 1 and step 2,
step 3 is not always necessary due to two reasons: a) the
number of matched locations is much less than that of the
candidate locations, and b) a simple branch-cut strategy
is used in step 2 to stop algorithm earlier, as described in
[5]. More details of the vectorized Gene Myers’ bit-vector
algorithm can be found in the Additional file 1: Section S5.

Influence of the number of patterns
We have already implemented the vectorized Gene Myers’
bit-vector algorithm using 64-bit machine word and 128-
bit SSE2 register. It can calculate the edit distance of a
text with n patterns. In order to figure out the influ-
ence of different n, we selected a 100 bp read from
specimen HGO00096 as a text and regarded 1 thousand
subsequences of human genome starting at the candi-
date locations of this read as patterns. The threshold
k of edit distance was set to 4. Because the length of
each bit vector is 2k + 2 = 10 and the length of
a SSE register is 128, the vectorized Gene Myers’ bit-
vector algorithm can process at most 12 patterns with
a text simultaneously. Figure 4 shows the running time
of the algorithm with different n. Although the per-
formance was improved until # = 12, we found that
the running time decreased rapidly fromn = 1ton = 8,
while it only decreased a little from n = 9 to n = 12.

The reason is that for the original banded bit-vector
algorithm which calculates the edit distance between a
text and a pattern, algorithm stops once it meets the

Page 6 of 16

3.0 4

—m— verification time

2.5 n

g
=}
1

3
1

e

verification time (ms)

0.5

0.0 T T T T T T T T T T T T 1

Fig. 4 Performance for the vectorized Gene Myers' bit-vector
algorithm according to different n

requirement of the branch-cut strategy. For our vectorized
Gene Myers’ bit-vector algorithm, calculating stops until
all of the patterns meet the requirement. It is difficult
when # is large and would result in extra cost. Therefore,
we set # to 8 in most cases. For higher edit distance thresh-
old, n is set to 4 since a 128-bit register cannot load 8 bit
vectors.

Vectorized verification scheme

In order to make full use of the vectorized algorithm,
the patterns used to compare with a same text should
be collected. The traditional verification scheme, which
only selects a read and a subsequence in given reference
genome as input every time, is not suitable for our vec-
torized Gene Myers’ bit-vector algorithm. It is necessary
to propose a vectorized verification scheme that consid-
ers multiple reads as patterns and a subsequences in given
reference genome as text, or vice versa. In other words,
multiple reads may correspond to one location in given
reference genome, or multiple locations correspond to
one read.

Figure 5a shows the vectorized verification scheme A,
which considers multiple reads as patterns and a subse-
quence in given reference genome as a text. All of the
four reads have a matched 3-gram ATG in the reference
genome and share the same candidate location d. Gen-
erally, this scheme needs to build a reads index in order
to collect the reads sharing the same locations efficiently.
Figure 5b shows vectorized verification scheme B that
considers a read as a text and multiple subsequences start-
ing at the candidate locations of the read as patterns.
The read here corresponds to two subsequences sharing
a 2-gram AT. These two subsequences are obtained by
looking up the index of the reference genome using the
non-overlapping g-grams of the read.

Cheng et al. BMC Bioinformatics (2015) 16:192 Page 7 of 16
Genome Genome
d d+m-1 d; d;+m-1 d; d>+m-1
LT[« T TP - P A PR -
ek ek ek —k— ek ek ko ok ek ke k- ek
Z7 S | fDag 0 0 |
Read2 DI TR a(r[cT T TTT]
Read3 LA I" e T T T Read
rRead+ [EIL T[T ELEI- D]
a b
Fig. 5 Two vectorized verification schemes for the vectorized Gene Myers' bit-vector algorithm. a A location in a reference genome corresponds to
four reads. b A read corresponds to two locations in the reference genome

According to the analysis above, we found that scheme
A takes advantage of the repeatability of the reads,
while B takes advantage of the repeatability of the refer-
ence genomes. In the experimental results presented in
Additional file 1: Section S2, the repeatability of genomes
is much more than that of reads. Therefore, scheme B
suits the vectorized Gene Myers’ bit-vector algorithm bet-
ter than A. Another advantage of scheme B is that it does
not need an extra index of reads. For the reasons outlined
above, BitMapper is implemented as scheme B.

Results and discussion

BitMapper was compared with five state-of-the-art all-
mappers, including mrFAST (with FastHASH), Hobbes
2, RazerS 3, Masai and Yara, and three popular best-
mappers, Bowtie 2, GEM and BWA in our experiments.
The default configurations of these mappers were used
except stated otherwise, and the results were output in
the SAM format. For a fair comparison, all mappers ran
on the same computer with an Intel(R) Core(TM) i7-
4770 processor and 24GB of RAM running 64-bit Ubuntu
14.04.

The distance metric used in our experiments was edit
distance with threshold 5 %. The reference genomes were
the whole genome of human (NCBI HG19), caenorhabdi-
tis elegans (WormBase WS201) and arabidopsis thaliana
(assembly TAIR10). In the following, mapping time and
sensitivity on both real and simulated data sets were
presented.

Sensitivity comparison using Rabema results

In this experiment, 100 k simulated 100 bp reads of human
were generated by a simulator tool Mason [18] using
default profile setting. And we also selected a real data
set consisting of 1 million 100 bp reads from specimen
HGO00096 of the 1000 Genome project [19]. To com-
pare the sensitivity of single-end alignment in different
genomes, we used the first 1 million 100 bp reads of the
data sets SRX026594 and the first 1 million 101 bp reads
of SRR1604937, which were obtained from the DNA Data

Bank of Japan (DDBJ) repository [20] and National Center
for Biotechnology Information (NCBI) repository [21],
respectively.

To compare the sensitivity of different mappers fairly,
Rabema benchmark [22] was used to evaluate them. It has
been widely used in recent articles, such as [5, 6] and [10].
The categories of sensitivity scores provided by Rabema
benchmark include all, all-best, and any-best, which are
designed to denote the mapped fraction of all, all of the
best, and any of the best matches. And to measure these
scores, Rabema benchmark defines two metrics: normal-
ized found interval and found interval. For normalized
found interval, each read is given at most one point no
matter how many mapping locations it has. For found
interval, each mapping location is given one point [see
Additional file 1: Section S4 for more detailed illustra-
tion]. Note that we only presented the Rabema scores
(normalized found interval) in the following, and pre-
sented the Rabema scores (found interval) in Additional
file 1: Section S4 due to the limited space. Because Rabema
benchmark needs a baseline of mapping locations to build
a gold standard, we implemented RazerS 3 in full sensitiv-
ity mode, which can report 100 % of mapping locations for
each read.

Rabema benchmark results on simulated data

Table 1 shows the results of mapping 100k simulated
reads to the reference genome of human. The Rabema
all, all-best and any-best scores were presented here. Each
Rabema category has a large number and 6 small numbers
representing the total score and the scores for mapping
locations with (gig) errors, respectively. Best-mappers
including Bowtie 2, GEM and BWA were implemented in
both high and default sensitivity mode. In high sensitivity
mode, the Rabema all-scores (normalized found interval)
for Bowtie 2, BWA and GEM were 99.73 %, 97.80 % and
96.02 %, respectively. It seems that these best-mappers can
achieve nearly full sensitivity. However, the Rabema all-
scores (found interval) of BWA and GEM, which can be
found in in Additional file 1: Table S3, were 86.67 % and

Table 1 Rabema benchmark results (normalized found interval) for 100 k simulated reads

Time Benchmark category
Mapper
[min:sec] All[%] All-best[%] Any-best[%]
) 97.68 96.60 9225 96.46 96.14 94.48 100.00 99.49 97.51
Bowtie2® 0:18 90.18 95.87 99.26
78.95 52.71 2113 93.69 92.76 9227 96.63 96.27 95.38
100.00 99.81 96.75 100.00 99.80 99.40 100.00 99.86 99.50
BWAP 0:49 92.28 98.84 98.89
79.47 4491 16.65 93.61 7842 70.67 93.70 78.61 7117
98.25 97.65 95,69 9827 98.21 97.97 99.42 99.42 99.24
GEM® 0:14 92.75 98.15 99.36
88.44 67.06 3344 98.11 96.87 95.87 99.42 98.74 97.33
) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Bowtie 2 — 99.73 99.97 99.97
99.96 99.53 9545 99.95 99.67 97.89 99.95 99.67 97.89
100.00 99.97 99.62 100.00 99.97 99.62 100.00 99.97 99.62
BWA 40:32 97.80 98.95 98.95
94.26 83.53 7530 93.82 79.03 70.93 93.82 79.16 7117
98.25 98.24 98.09 98.27 98.18 98.01 99.42 99.41 99.24
GEM 3:15 96.02 98.15 99.35
95.92 87.02 66.35 98.17 97.02 95.94 99.44 9868 97.17
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Masai 17:43 99.86 99.96 99.97
99.87 99.54 97.87 99.85 99.29 98.59 99.85 98.34 98.70
99.98 99.97 99.97 99.98 99.97 99.97 100.00 99.99 99.98
Hobbes 2 7:51 99.82 99.97 99.99
99.98 99.87 97.20 99.97 99.98 99.80 99.97 100.00 99.92
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mrFAST 12:32 99.32 99.42 9943
100.00 99.96 87.51 100.00 100.00 53.69 100.00 100.00 54.09
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 34 41:33 99.92 99.99 99.99
100.00 99.84 98.62 100.00 99.95 99.92 100.00 99.95 99.92
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 3 54:59 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Yara 3:06 — N - o — N - o — o - -
) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
BitMapper 2:57 99.99 100.00 100.00
100.00 99.99 99.98 100.00 100.00 100.00 100.00 100.00 100.00

Bowtie2?, BWAP, and GEMC represent the results in default sensitivity mode, while Bowtie2, BWA, and GEM represent the results in high sensitivity mode. The RazerS 3¢ and RazerS 3 represent the results of RazerS 3 in default and full
sensitivity mode, respectively. Note that in default mode, RazerS 3 is designed to find 99 % of mapping locations, while Bowtie2, BWA, and GEM are designed to find the best mapping locations for each reads

T61:91 (S5107) sonpwiojulolg JNG ‘b 12 Buayd

91 jo g abeq

Cheng et al. BMC Bioinformatics (2015) 16:192

61.46 %, respectively. For Bowtie 2, although the Rabema
all-scores (found interval) was still more than 98 %, it was
extremely slow using one thread. Thus, we implemented
Bowtie 2 with 16 threads and did not present its running
time here. This means that the best-mappers are not suit-
able for applications requiring full or nearly full sensitivity.
It is mainly because the best-mappers are designed specif-
ically for identifying the best mapping locations of each
read.

Compared to the best-mappers, all-mappers usually
achieve higher sensitivity. For mrFAST, it is interest-
ing that its Rabema any-best and all-best scores were
53.69 % and 54.09 % at edit distance 5, which were much
lower than other all-mappers. Masai and Hobbes 2 lost
a few mapping locations due to their heuristic methods.
BitMapper and RazerS 3 were the only two mappers iden-
tifying 100 % all of the best and any of the best mapping
locations. Note that the all, all-best and any-best scores
of RazerS 3 in full sensitivity mode were 100 %, since
we used the output of RazerS 3 in full sensitivity mode
as the baseline for Rabema benchmark. However, it was
extremely slow. The Rabema all-score for BitMapper was
nearly 100 %, which was the best except RazerS 3 in full
sensitivity. We did not present the sensitivity of Yara in
Table 1, since it could not generate CIGAR strings for
suboptimal alignments, which led to incorrect output of
Rabema benchmark.

Rabema benchmark results on real data

According to the results above, we found that the sensitiv-
ities of GEM and BWA on both high and default sensitivity
modes were not high enough for the applications need-
ing all or nearly all mapping locations. For Bowtie 2,
although the sensitivity on high sensitivity mode has been
improved, it spent much more time and memory than all-
mappers. Thus, we would not present the results of them
in the following.

To compare the sensitivity of all-mappers on real data
sets, we also measured the Rabema scores using 1 mil-
lion 100 bp reads of human, as shown in Table 2. And to
evaluate the sensitivity for different genomes, the Rabema
scores for caenorhabditis elegans genome and arabidop-
sis thaliana genome were presented in Tables 3 and 4,
respectively. According to these results, we fonud that
the sensitivity of Bitmapper was also best among all of
the all-mappers except RazerS 3 in full sensitivity, which
generated the baseline of Rabema benchmark. As the
results in Table 1, the Rabema scores of Yara were not
included in Tables 2, 3 and 4 due to the absence of CIGAR
strings.

Performance comparison on large data sets
In order to compare the performance of BitMapper with
other mappers on large data sets, we selected a single-

Page 9 0of 16

end data set consisting of 10 million 100 bp reads from
specimen HG00096 of the 1000 Genome project. And
to compare the performance in different genomes, we
used the first 10 million 100 bp reads of the data sets
SRX026594 and the first 10 million 101 bp reads of
SRR1604937, which were obtained from the DNA Data
Bank of Japan (DDBJ) repository and National Center
for Biotechnology Information (NCBI) repository, respec-
tively. The first 10 million read pairs of these data sets
were also used to measure the performance of paired-end
alignment. Moreover, to demonstrate that Bitmapper also
works well for longer reads, a real data set and two simu-
lated data sets were used. The real data set consists of the
first 10 million 151 bp reads of human in the HiSeq 2500
NA12878 demo data set in [23], while the two simulated
data sets include 10 million 300 bp reads of caenorhab-
ditis elegans and arabidopsis thaliana, respectively. All of
these data sets with 100 bp, 151 bp and 300 bp reads were
mapped to their reference genomes using edit distance
threshold 5, 7 and 15, respectively.

Because the Rabema benchmark cannot be imple-
mented in such large data sets, we used the percentage of
mapped reads and the number of mapping sites to mea-
sure the sensitivity, instead of Rabema scores. For running
time comparison, the results of different mappers with
single and eight threads were presented in Tables 5, 6, 7
and 8. Note that since Masai and mrFAST do not support
multi-threading, the results of them with eight threads
were omitted. In addition, peak memory consumption
was also compared.

Sensitivity and running time comparison

Table 5 shows the results of mapping 10 million 100 bp
and 151 bp single-end reads to the whole human genome.
Results of the best-mappers including GEM, Bowtie 2 and
BWA were left out, because the sensitivity of them is usu-
ally substantially less than that of all-mappers and the
running time is usually longer, as shown in Table 1 and
Additional file 1: Table S3. The results in Table 5 show
that BitMapper was the best in terms of sensitivity and
running time on the human genome data sets. For 10 mil-
lion 151 bp reads, it was nearly 3 times faster than the
second fastest read mapper Yara, and achieved highest
sensitivity with 940.16 million mapping locations identi-
fied and 93.8487 % reads mapped in the human genome.
Compared to Masai, BitMapper was more than 4 times
faster and found more mapping locations. For 10 million
100 bp reads, Bitmapper also presented the best perfor-
mance among all read mappers. The results of RazerS 3
were not shown, since the memory requirement of RazerS
3 was larger than the memory capacity of our computer.
Similarly, BitMapper was superior in mapping 10 million
single-end reads against the genomes of caenorhabditis
elegans and arabidopsis thaliana, as shown in Table 6. And

Table 2 Rabema benchmark results (normalized found interval) for 1 million 100 bp real reads of human

Time Benchmark category
Mapper
[min:sec] All[%] All-best[%] Any-best[%)]
) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Masai 42:50 99.94 99.99 99.99
100.00 99.97 98.93 100.00 99.99 99.70 100.00 99.99 99.80
99.99 99.97 99.97 99.98 99.98 99.99 99.99 99.99 100.00
Hobbes 2 60:05 99.89 99.98 99.99
99.96 99.91 9843 99.99 99.99 99.91 100.00 100.00 99.99
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mrFAST 98:06 99.79 99.91 99.92
100.00 99.97 96.45 100.00 99.96 9361 100.00 99.97 93.88
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 3? 372:21 99.90 99.99 99.99
100.00 99.80 9845 100.00 99.90 99.47 100.00 99.91 99.70
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 3 512:46 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Yara 2925 — - o - — - o - — o o o
. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
BitMapper 17:03 99.99 99.99 99.99
100.00 99.99 99.98 100.00 100.00 99.98 100.00 100.00 99.99

RazerS 39: the result of RazerS 3 in default sensitivity mode (i.e, finding 99 % of mapping locations); RazersS 3: the result of RazerS 3 in full sensitivity mode (i.e., finding 100 % of mapping locations)

T61:91 (S5107) sonpwiojulolg JNG ‘b 12 Buayd

91Jo 0l abeq

Table 3 Rabema benchmark results (normalized found interval) for 1 million 100 bp real reads of caenorhabditis elegans

Time Benchmark category
Mapper
[min:sec] All[%] All-best[%] Any-best[%)]
_ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Masai 3:02 99.93 99.99 99.99
99.92 99.67 98.14 99.98 99.93 99.78 99.99 99.95 99.89
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Hobbes 2 2:01 99.94 99.99 99.99
99.99 99.86 98.18 99.99 99.96 99.72 99.99 99.99 99.97
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mrFAST 3:40 98.89 99.95 99.96
99.99 99.99 96.50 99.99 100.00 9343 99.99 100.00 93.89
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 32 718 99.95 99.99 99.99
99.99 99.79 98.64 99.99 99.89 99.61 99.99 99.95 99.84
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 3 7:53 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Yara 1:25 — - - B — B - B — B - -
) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
BitMapper 0:32 99.99 99.99 99.99
100.00 99.99 99.98 100.00 99.99 99.98 100.00 99.99 99.98

RazerS 3°: the result of RazerS 3 in default sensitivity mode (i.e, finding 99 % of mapping locations); RazerS 3: the result of RazerS 3 in full sensitivity mode (i.e., finding 100 % of mapping locations)

761191 (SL07) SompuLiojuiolg DG ‘b 12 Budyd

91 jo || abed

Table 4 Rabema benchmark results (normalized found interval) for 1 million 101 bp real reads of arabidopsis thaliana

Time Benchmark category
Mapper
[min:sec] All[%] All-best[%] Any-best[%)]
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Masai 3:05 99.96 99.99 99.99
99.97 99.96 99.25 99.98 99.96 99.27 99.98 99.96 99.53
100.00 100.00 99.99 100.00 100.00 99.99 100.00 100.00 99.99
Hobbes 2 1:52 99.92 99.99 99.99
99.97 99.88 98.72 99.98 99.99 99.64 99.99 100.00 99.98
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mrFAST 2:30 99.88 99.98 99.99
99.99 99.99 97.94 99.99 100.00 97.70 100.00 100.00 98.50
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 32 8:30 99.88 99.98 99.99
99.99 99.70 98.12 99.98 99.70 98.63 99.99 99.84 99.27
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RazerS 3 9:06 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Yara 125 — o o o — o o o — o o o
) 100.00 100.00 99.99 100.00 100.00 99.99 100.00 100.00 99.99
BitMapper 0:32 99.99 99.99 99.99
99.98 100.00 99.99 99.99 100.00 99.99 99.99 100.00 99.99

RazerS 3°: the result of RazerS 3 in default sensitivity mode (i.e,, finding 99 % of mapping locations); RazerS 3: the result of RazerS 3 in full sensitivity mode (i.e., finding 100 % of mapping locations)

T61:91 (S5107) sonpwiojulolg JNG ‘b 12 Buayd

91 Jo 71 abed

Table 5 Results for mapping 10 million 100 bp and 151 bp single-end reads against human genome

100 bp reads 151 bp reads

Mapper Time[min:sec] Peak Mapping Mapped Time [min:sec] Peak Mapping Mapped

1 thr 8 thr memory sites[million] reads[%] 1 thr 8 thr memory sites[million] reads[%]
Masai 361:35 — 20.1GB 1371.18 922736 602:06 — 21.3GB 939.89 93.8483
Hobbes 2 587:04 135:10 14.0GB 1368.86 922767 694:53 151:52 14.5GB 936.42 93.8481
mrFAST 921:46 — 4.9GB 1374.76 92.2572 795:59 — 6.5GB 939.48 93.7376
Razers 32 — — >24GB — — — — >24GB — —
RazerS 3 — — >24GB — — — — >24GB — —
Yara 278:09 7810 9.0GB 1367.42 92.2658 389:56 93:15 9.3GB 939.44 93.8480
BitMapper 158:57 32:59 17.9GB 1375.68 922771 135:06 27:56 19.2GB 940.16 93.8487
RazerS 32: the result of RazerS 3 in default sensitivity mode (i.e,, finding 99 % of mapping locations); RazerS 3: the result of RazerS 3 in full sensitivity mode (i.e., finding 100 % of mapping locations)
Table 6 Results for mapping 10 million 100 bp single-end reads against caenorhabditis elegans and arabidopsis thaliana

Caenorhabditis elegans Arabidopsis thaliana

Mapper Time [min:sec] Peak Mapping Mapped Time [min:sec] Peak Mapping Mapped

1 thr 8 thr memory sites[million] reads[%)] 1 thr 8 thr memory sites[million] reads[%)]
Masai 22:28 — 3.2GB 54.61 90.4140 21:06 — 3.3GB 57.83 98.2578
Hobbes 2 16:51 4:42 0.9GB 55.40 90.4150 16:05 342 1.0GB 57.76 98.2616
mrFAST 35:15 — 4.2GB 55.60 904119 23:12 — 4.3GB 57.94 98.2609
RazerS 32 69:24 59:39 12.0GB 55.24 904118 86:39 72:31 10.3GB 57.49 98.2551
RazerS 3 75:27 61:40 12.6GB 5561 904154 89:31 75:26 10.4GB 57.96 98.2622
Yara 1342 3:37 1.1GB 54.65 904150 15:13 401 1.2GB 57.87 98.2608
BitMapper 5:08 1:25 4.5GB 55.63 904159 5:24 1:30 4.5GB 57.94 98.2631

RazerS 3°: the result of RazerS 3 in default sensitivity mode (i.e,, finding 99 % of mapping locations); RazerS 3: the result of RazerS 3 in full sensitivity mode (i.e., finding 100 % of mapping locations)

761191 (SL07) SompuLiojuiolg DG ‘b 12 Budyd

91 jo g1 abed

Table 7 Results for mapping 10 million 300bp single-end reads against caenorhabditis elegans and arabidopsis thaliana

Caenorhabditis elegans

Arabidopsis thaliana

Mapper Time [min:sec] Peak Mapping Mapped Time [min:sec] Peak Mapping Mapped
1 thr 8 thr memory sites[million] reads[%] 1 thr 8 thr memory sites[million] reads[%]
Masai 48:54 — 11.5GB 17.44 99.9894 46:26 — 11.8GB 14.83 99.9884
Hobbes 2 66:38 13:12 0.9GB 2.14 0.5327 64:25 12:50 1.0GB 0.01 0.0219
mrFAST 80:56 — 9.9GB 16.71 96.1888 47:00 — 10.0GB 14.27 96.2356
RazerS 32 195:07 182:34 11.9GB 1743 99.9894 172:21 155:48 12.0GB 14.82 99.9884
RazerS 3 209:30 185:29 12.6GB 17.44 99.9894 185:05 160:02 12.0GB 14.83 99.9884
Yara 34:20 7:43 2.1GB 1733 99.9894 29:44 6:34 2.1GB 14.72 99.9884
BitMapper 12:26 4:57 10.1GB 1743 99.9894 12:10 4:55 10.2GB 14.83 99.9884
RazerS 37: the result of RazerS 3 in default sensitivity mode (i.e, finding 99 % of mapping locations); RazerS 3: the result of RazerS 3 in full sensitivity mode (i.e., finding 100 % of mapping locations)
Table 8 Results for mapping 10 million paired-end reads
Human Caenorhabditis elegans Arabidopsis thaliana

Mapper Time [min:sec] Peak Mapped Time [min:sec] Peak Mapped Time [min:sec] Peak Mapped

1 thr 8 thr memory pairs[%] 1 thr 8 thr memory pairs[%] 1 thr 8 thr memory pairs[%]
Masai 464.07 — 16.8GB 84.8984 31:.07 — 11.3GB 65.8674 29:40 — 11.6GB 64.9149
Hobbes 2 439:.05 105:29 14.6GB 87.3945 80:04 22:41 0.9GB 67.1739 23:59 6:21 1.0GB 68.1224
RazerS 3? — — >24GB — 61:15 47:11 16.4GB 67.1841 51:25 41:31 14.9GB 68.1250
RazerS 3 — — >24GB — 66:28 50:13 17.4GB 67.189%4 5533 42:38 17.1GB 68.1473
Yara 489:58 117:40 13.2GB 87.1614 2343 547 2.0GB 67.1058 28:09 6:52 2.2GB 66.8150
BitMapper 177:47 39:39 21.5GB 87.4233 11:16 3:15 8.0GB 67.1883 6:47 2:20 8.1GB 68.1500

RazerS 3°: the result of RazerS 3 in default sensitivity mode (i.e,, finding 99 % of mapping locations); RazerS 3: the result of RazerS 3 in full sensitivity mode (i.e., finding 100 % of mapping locations)

T61:91 (S5107) sonpwiojulolg JNG ‘b 12 Buayd

91 jJo 7| abed

Cheng et al. BMC Bioinformatics (2015) 16:192

for longer 300 bp reads, Bitmapper was still more efficient
than others, as shown in Table 7.

Finally, Table 8 shows the experimental results for
paired-end alignment, where three data sets consisting of
10 million read pairs from different genomes were used
to evaluate the performance. Again, BitMapper was the
best, 2.5 times faster than Hobbes 2, nearly 3 times faster
than Masai and Yara in human genome. Note that the
results of the human genome using RazerS 3 are not
shown here, because the memory requirement of RazerS 3
was larger than the memory capacity of our computer. For
caenorhabditis elegans and arabidopsis thaliana, BitMap-
per was also several times faster than the existing all-
mappers. In addition, BitMapper still showed great perfor-
mance in sensitivity comparison. We did not present the
results of mrFAST, since it reported many extra locations.
Thus, the running time was extremely long.

Memory usage comparison

If a reference genome is large, the memory usage of most
mappers mainly depends on the size of the genome and
the index for it. For instance, the human genome could
be regarded as a long string including 3.15 billion sym-
bols so that 3GB is required to store them. For hash table
index, the locations for each g-gram should be saved and a
location is represented by a 32-bit integer. Thus, BitMap-
per and Hobbes 2, which both index the reference genome
using hash tables, require more than 14GB to load the
index and genome. Similarly, Masai requires large mem-
ory space and uses about 20GB to map 10 million reads
to human genome. Although the hash table index is also
used in mrFAST, only 7GB is used since it splits the whole
human genome and index into several segments and loads
one of them at a time. Yara is another read mapper which
requires small memory space, since it uses the BWT and
FM-index. The memory usage of RazerS 3 mainly depends
on the number of mapping locations. It needs more than
24GB to map 10 million 151 bp reads of human.

Conclusion

BitMapper is designed to find all mapping locations for
each read based on bit-vector computing. In experiments
on both simulated and real data sets, it achieved nearly
full sensitivity and superior speed, outperforming existing
state-of-the-art all-mappers.

The verification of edit distance constitutes a significant
portion of the whole running time. We propose a new
vectorized Gene Myers’ bit-vector algorithm, which cal-
culates the edit distance of a read to multiple locations in
a given genome. To make full use of the algorithm, the tra-
ditional verification scheme is redesigned in BitMapper.

Recently, a new SIMD instruction set AVX2 has been
applied to many CPUs. Thus, the performance of our
vectorized Gene Myers’ bit-vector algorithm will be

Page 15 0f 16

improved further by using AVX2 in the future. The
vectorized bit-vector computing approach can also be
used to accelerate filtration, which is a future research
direction in BitMapper.

BitMapper is implemented in C under a GPL license and
is able to download at http://home.ustc.edu.cn/%7Echhy.

Additional file

Additional file 1: Supplementary material. This file consists of the
configuration of each read mapper and the analysis of the two vectorized
verification schemes. Besides, we present the pseudo code of our
vectorized bit-vector algorithm and the performance comparison between
it and other existing implementation of the Gene Myers' algorithmin in the
additional file.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HC developed the vectorized Gene Myers' bit-vector algorithm, and
implemented the whole software. HC, JY and YX designed the strategies in the
software. HC,YX and YS drafted the manuscript. HJ tested the software and
revised the bugs of it. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank Yanan Zhao for her suggestions about our
article. This work was partially supported by the Key Project of The National
Nature Science Foundation of China under the grant No. 60533020 and the
Fund for Foreign Scholars in University Research and Teaching
Programs(B07033).

Author details

'Key Laboratory on High Performance Computing, Hefei, Anhui 230027, PR.
China. 2School of Computer Science, University of Science and Technology of
China, Hefei, Anhui 230027, P.R. China. 3School of Computer and Information,
Hefei University of Technology, Hefei 230009, China. “Department of
Computer Science, University of Missouri-Columbia, Columbia MO 65203, USA.

Received: 26 November 2014 Accepted: 22 May 2015
Published online: 11 June 2015

References

1. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and
memory-efficient alignment of short dna sequences to the human
genome. Genome Biol. 2009;10(3):25.

2. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2.
Nat Methods. 2012;9(4):357-9.

3. LiH, Durbin R. Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics. 2009;25(14):1754-60.

4. Marco-Sola’S, Sammeth M, Guigd R, Ribeca P. The gem mapper: fast,
accurate and versatile alignment by filtration. Nat Methods. 2012;9(12):
1185-8.

5. Weese D, Holtgrewe M, Reinert K. Razers 3: faster, fully sensitive read
mapping. Bioinformatics. 2012;28(20):2592-599.

6. KimJ, LiC, Xie X. Improving read mapping using additional prefix grams.
BMC Bioinformatics. 2014;15(1):42.

7. Hach F, Hormozdiari F, Alkan C, HormozdiariF, Birol |, Eichler EE, et al.
mrsfast: a cache-oblivious algorithm for short-read mapping. Nat
Methods. 2010;7(8):576-7.

8. XinH, Lee D, Hormozdiari F, Yedkar S, Mutlu O, Alkan C. Accelerating
read mapping with fasthash. BMC Genomics. 2013;14(Suppl 1):13.

9. Ahmadi A, Behm A, HonnalliN, LiC, Weng L, Xie X. Hobbes: optimized
gram-based methods for efficient read alignment. Nucleic Acids Res.
2012;40:41-1.

http://home.ustc.edu.cn/%7Echhy
http://www.biomedcentral.com/content/supplementary/s12859-015-0626-9-s1.pdf

Cheng et al. BMIC Bioinformatics (2015) 16:192 Page 16 of 16

10. Siragusa E, Weese D, Reinert K. Fast and accurate read mapping with
approximate seeds and multiple backtracking. Nucleic Acids Res.
2013;41(7):78-8.

11. Myers G. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. J ACM (JACM). 1999;46(3):395-415.

12. Hyyrd H. A bit-vector algorithm for computing levenshtein and damerau
edit distances. Nord J Comput. 2003;10(1):29-39.

13. Siragusa WD E, Reinert K. Yara: well-defined alignment of
high-throughput sequencing reads. http://www.segan.de/projects/yara/.

14. Rasmussen KR, Stoye J, Myers EW. Efficient g-gram filters for finding all
e-matches over a given length. J Comput Biol. 2006;13(2):296-308.

15. Weese D, Emde AK, Rausch T, Doring A, Reinert K. Razers-fast read
mapping with sensitivity control. Genome Res. 2009;19(9):1646-54.

16. Sellers PH. The theory and computation of evolutionary distances: pattern
recognition. J Algorithms. 1980;1(4):359-73.

17. Ukkonen E. Finding approximate patterns in strings. J Algorithms.
1985,6(1):132-7.

18. Holtgrewe M. Mason-a read simulator for second generation sequencing
data. Technical Report FU Berlin. 2010.

19. 1000 Genomes: a Deep Catalog of Human Genetic Variation. http://www.
1000genomes.org/data.

20. DNA Data Bank of Japan. ftp://ftp.ddbj.nig.acjp.

21. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.
gov/.

22. Holtgrewe M, Emde AK, Weese D, Reinert K. A novel and well-defined
benchmarking method for second generation read mapping. BMC
Bioinformatics. 2011;12(1):210.

23. BaseSpace Sequencing Data Sets. http://www.illumina.com/informatics/
research/sequencing-data-analysis-management/sequencing-data-
library.html.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at (-
www.biomedcentral.com/submit Bioled Central

http://www.seqan.de/projects/yara/
http://www.1000genomes.org/data
http://www.1000genomes.org/data
ftp://ftp.ddbj.nig.ac.jp
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.illumina.com/informatics/research/sequencing-data-analysis-management/sequencing-data-library.html
http://www.illumina.com/informatics/research/sequencing-data-analysis-management/sequencing-data-library.html
http://www.illumina.com/informatics/research/sequencing-data-analysis-management/sequencing-data-library.html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Filtration
	Pigeonhole principle
	Count filtering
	Our implementation

	Verification
	Theoretical basis
	Vectorized Gene Myers' bit-vector algorithm
	Influence of the number of patterns
	Vectorized verification scheme

	Results and discussion
	Sensitivity comparison using Rabema results
	Rabema benchmark results on simulated data
	Rabema benchmark results on real data

	Performance comparison on large data sets
	Sensitivity and running time comparison
	Memory usage comparison

	Conclusion
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

