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Abstract 

Background:  Various regions of the chicken genome have been under natural and artificial selection for thousands 
of years. The substantial diversity that exits among chickens from different geographic regions provides an excellent 
opportunity to investigate the genomic regions under selection which, in turn, will increase our knowledge about 
the mechanisms that underlie chicken diversity and adaptation. Several statistics have been developed to detect 
genomic regions that are under selection. In this study, we applied approaches based on differences in allele or hap-
lotype frequencies (FST and hapFLK, respectively) between populations, differences in long stretches of consecutive 
homozygous sequences (ROH), and differences in allele frequencies within populations (composite likelihood ratio 
(CLR)) to identify inter- and intra-populations traces of selection in two Iranian indigenous chicken ecotypes, the Lari 
fighting chicken and the Khazak or creeper (short-leg) chicken.

Results:  Using whole-genome resequencing data of 32 individuals from the two chicken ecotypes, approximately 
11.9 million single nucleotide polymorphisms (SNPs) were detected and used in genomic analyses after quality 
processing. Examination of the distribution of ROH in the two populations indicated short to long ROH, ranging from 
0.3 to 5.4 Mb. We found 90 genes that were detected by at least two of the four applied methods. Gene annotation 
of the detected putative regions under selection revealed candidate genes associated with growth (DCN, MEOX2 
and CACNB1), reproduction (ESR1 and CALCR), disease resistance (S1PR1, ALPK1 and MHC-B), behavior pattern (AGMO, 
GNAO1 and PSEN1), and morphological traits (IHH and NHEJ1).

Conclusions:  Our findings show that these two phenotypically different indigenous chicken populations have 
been under selection for reproduction, immune, behavioral, and morphology traits. The results illustrate that selec-
tion can play an important role in shaping signatures of differentiation across the genomic landscape of two chicken 
populations.
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Background
Chickens are raised for different purposes, including 
meat and egg production, as well as for entertainment, in 
diverse geographical areas. Several studies have reported 
the multiple times when and multiple places where the 
domestication of chicken from the Jungle fowl species 

occurred. However, most of these studies suggested that 
domestic chicken originated from the Red Jungle fowl 
(Gallus gallus) in the south and Southeast Asia [1–4]. 
Selection pressures affect genome structure over time 
and leave signatures in specific regions of the genome, 
such as increased allele frequencies, extensive linkage 
disequilibrium, homozygous genotypes, and decreased 
local diversity [5–7]. In addition, forces such as genetic 
hitchhiking and background selection affect the genomic 
regions that are near the sites that are under selection [8]. 
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In order to identify such signatures of selection, differ-
ent statistical methods have been developed, which are 
generally categorized into two groups based on whether 
signatures of selection are investigated within popula-
tions (intra-population) or between populations (inter-
population). Among the methods for within-population 
studies of signatures of selection, some are based on runs 
of homozygosity (ROH) [9], pooled heterozygosity (Hp) 
[10], integrated haplotype scores (iHS) [11], and com-
posite likelihood ratio (CLR) [12]. Methods for between-
population studies are based on the fixation index (FST) 
[13], cross-population extended haplotype homozygosity 
(XP-EHH) [7, 14] and hapFLK [15]. Since each of these 
statistical tests identifies specific patterns of selection in 
the genome, the joint use of different statistical tests has 
been suggested to increase the power of detection of sig-
natures of selection along the whole genome [16, 17].

To decipher the genetic mechanisms that are involved 
in domestication and in the phenotypic differentiation of 
individuals belonging to the same species, detection of 
signatures of selection using different statistics has been 
performed in various species, including cattle [18, 19], 
sheep [20, 21], goats [22, 23], and chickens [24–26]. Most 
of the studies that explored selective footprints in chick-
ens have used the single-site differentiation statistic com-
monly known as the fixation index, FST, and have led to 
the identification of a range of candidates genes that con-
tribute to adaptation to hot climates, reproduction [27], 
immune response, tolerance to harsh local environments 
[25], fat deposition, growth, skeletal development, and 
energy metabolism [28]. However, the FST method does 
not account for the hierarchical structure of populations 
and assumes that the subpopulations have derived inde-
pendently from the same ancestral population [15]. To 
address this deficiency, the HapFLK method, an exten-
sion of the FLK statistic based on linkage disequilibrium 
(LD) [29], was introduced by Fariello et al. [15]. The Hap-
FLK statistic computes signatures of selection by inte-
grating both the hierarchical structure of populations and 
information on haplotype frequencies, which enhances 
the power of detection of signatures of selection. Appli-
cation of the hapFLK approach has led to the detection of 
signatures of selection related to production and growth 
traits and to adaptation to extreme environments in non-
commercial and commercial chickens [27, 30].

ROH are contiguous lengths of homozygous segments 
of the genome where the two identical haplotypes have 
likely been inherited from a common ancestor. Flem-
ing et al. [25] employed an approach based on assessing 
the consensus ROH sequences between two indigenous 
chicken populations and revealed that different envi-
ronments, as a driver of selective pressure, may play a 

role in the genomic divergence of populations. Another 
analysis of consensus overlapping ROH (cROH) identi-
fied genes that are involved in the immune system and 
homeostasis maintenance in a paternal broiler line [31]. 
ROH and FST mapping in African chicken breeds and 
indigenous ecotypes detected signatures of selection 
related to adaptation to heat, immunity, calcium ion 
binding, behavior, etc. [32].

Indigenous chickens are notable for their capacity to 
adapt to their respective climates and for their disease 
resistance and it is essential to preserve them as valu-
able genetic resources. Since Iranian indigenous chick-
ens have never been subjected to selection programs 
for production traits, mapping the genes and quantita-
tive trait loci (QTL) that are associated with such traits 
would be useful for future breeding programs. How-
ever, there is limited knowledge about the genomic 
regions and genes involved in economic traits of inter-
est and in adaptation to harsh environment conditions 
[33].

There is a worldwide diversity of domesticated chick-
ens that differ in morphology, physiology, and behavior 
[10]. Lari and Khazak are two indigenous ecotypes that 
are generally maintained in rural areas of Iran. Lari is 
known as a cockfighting bird and is generally distrib-
uted in different regions of Iran and has been selected 
for fighting characteristics by the locals. In the current 
study, the Lari samples were collected from the Fars 
province, situated in the Southern part of Iran, where 
the Lari ecotype is adapted to a hot and semi-dry cli-
mate. It is famous for some morphological and behavio-
ral characteristics such as its large body size, pugnacity, 
high stamina, and aggressive behavior. Its body shape 
is unique and different from all other indigenous Ira-
nian ecotypes. The standing posture, long neck (average 
neck length of 17 cm), and long legs (on average 16 cm) 
make it look larger. Its mature body weight is about 3 to 
4 kg. Lari chicken produce only 65 to 70 eggs per year. 
The Khazak ecotype lives in southeastern Iran (Zabol 
Province), where the climate is hot and dry. It is mostly 
raised for egg production. Its distinctive feature is its 
short legs (on average 4 cm), such that it is known as a 
creeper chicken in the local language. Its mature body 
weight is around 1.2 to 1.5 kg. The Khazak ecotype pro-
duces 120 to 130 eggs per year [34, 35]. Comparison of 
the body weight and egg production between these two 
ecotypes indicates that Lari is more like a broiler while 
Khazak is more like a layer. The aim of this study was 
to explore the genomic differences between these two 
indigenous ecotypes by detecting the regions or sites 
under natural or artificial selection using resequencing 
data and four statistical approaches, i.e. FST, ROH, hap-
FLK, and CLR.
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Methods
Sampling and genome sequencing
Thirty-two chickens were sampled from the south and 
southeastern regions of Iran (15 Lari and 17 Khazak). 
Each ecotype was sampled in multiple village flocks in 
order to minimize family structure or high levels of co-
ancestry between individuals. Extraction of genomic 
DNA from blood collected in EDTA-coated tubes was 
carried out using the standard phenol–chloroform pro-
tocol [36]. Quantity and quality of each DNA sample 
were evaluated using an ultraviolet spectrophotometer 
and agarose gel electrophoresis, respectively. Ten µg of 
genomic DNA were used to construct libraries with a 
350-bp insert size according to the Illumina library prep-
aration pipeline and sequenced on the Illumina Hiseq 
2000 platform to generate 125-bp paired-end reads (Illu-
mina Inc., USA). Before analysis, the raw sequences were 
checked by the FastQC tool [37] and low-quality reads 
and adaptors were trimmed out using the Trimmomatic 
software [38], with default parameters.

Sequence alignment and single nucleotide polymorphism 
calling
Paired-end reads were aligned to the chicken refer-
ence genome (Galgal6.101) using the mem algorithm 
in the Burrows-Wheeler Aligner (BWA) software [39], 
the resulting files were sorted using SAMtools [40], and 
PCR duplicates that were created during the prepara-
tion of genomic libraries were marked and removed by 
Picard tools (http://​broad​insti​tute.​github.​io/​picard/). In 
order to improve the accuracy of downstream process-
ing steps, local alignment of the sequences around InDels 
was performed by RealignerTargetCreator and IndelRea-
ligner in the GATK software [41]. To adjust and improve 
the base quality scores, we applied BaseRecalibrator and 
PrintReads, and finally, single nucleotide polymorphism 
(SNP) calling and hard-filtering were performed using 
"UnifiedGenotyper" and "VariantFiltration" arguments, 
respectively, in GATK. We removed the SNPs that were 
located on sex chromosomes and those that were not 
assigned to a specific linkage group. The multisampling 
VCF file was converted to Plink format and the Plink 1.9 
software [42] was used to remove individuals with 10% 
missing genotypes (zero), and SNPs with a Hardy–Wein-
berg equilibrium test P-value below the 10e−6 thresh-
old (16,143 SNPs), a genotyping rate lower than 90% 
(1,020,648) and a minor allele frequency less than 5% 
(4,377,724 SNPs).

Population structure
To investigate the genetic structure and differentiation 
of the target populations, a phylogeny tree was created 
by the maximum likelihood method using the PHYLIP 

package in SNPhylo [43]. A principal component analysis 
(PCA) was implemented on the filtered SNP data using R 
functions in the SNPRelate package [44].

Intra‑population signatures of selection
Composite likelihood ratio (CLR)
The CLR test detects differences in allele frequencies 
along a chromosome between a neutral and a selec-
tive sweep model, which is able to detect variants that 
are close to fixation [45]. We performed a genome-wide 
scan using Sweepfinder2, which implements a likelihood-
based method [46] to calculate the CLR statistic for each 
site with a 20-kb grid size across the genome in each pop-
ulation. Putative regions under selection were obtained 
by dividing the genome into windows of 200 kb. Follow-
ing a previous approach [47], the maximum CLR was 
applied as the test statistic and the top 1% regions of the 
empirical distribution were deemed significant selective 
sweeps.

Run of homozygosity (ROH)
Putative genomic regions under selection within each 
population were detected by the “Runs of homozygosity” 
function of the Plink software. The parameters were set 
according to Ceballos et  al. [48], such that a minimum 
number of 50 SNPs was set to determine ROH. To pre-
vent the underestimation of long ROH regions and also 
considering genotyping errors, three heterozygous posi-
tions and five missing SNPs were allowed per window. 
The length of the sliding window was set to  300  kb. A 
minimum density of 1 SNP per 50  kb was required to 
consider a ROH and the proportion of homozygous 
overlapping windows was set to 0.05. The parameter 
homozyg-group in the Plink software was used to iden-
tify overlapping ROH (pools) based on the threshold of 
an allelic match with 95% identity. When a homozygous 
consensus sequence was detected in more than five indi-
viduals of each ecotype within the same region of the 
genome in a pool, it was considered as a putative region 
under selection and gene annotation and enrichment 
analysis were performed for the genes located in these 
regions.

ROH distribution and inbreeding coefficients
The frequencies and length of ROH across the genome 
can differ between individuals. For instance, a longer 
ROH implies recent inbreeding, while a shorter ROH 
indicates more ancient common ancestors in the pedi-
gree [48, 49]. We calculated ROH and inbreeding coef-
ficients for different classes of ROH length: short (0.3 to 
1.0 Mb), medium (1.0 to 1.5 Mb), and long (> 1.5 Mb) per 
animal using the runs of homozygosity parameter in the 

http://broadinstitute.github.io/picard/
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Plink software and the method defined by McQuillan 
et al. [9]:

where LROH is the sum of the genomic lengths covered 
by ROH per animal and Lauto is the autosomal genome 
length covered by SNPs.

Inter‑population genetic differentiation
Wright’s fixation index (FST)
We compared two indigenous chicken populations that 
were phenotypically different. The FST statistic, which is 
a method based on the differentiation in allele frequen-
cies between populations, was used to identify genomic 
footprints of selection between the two populations. This 
approach has been applied in numerous studies to inves-
tigate the underlying genomic mechanism of variation 
between populations [26, 50]. To calculate the per-site 
FST statistic between the two populations, we used the 
VCFtools software [51], based on Weir and Cockerham’s 
FST estimator [52]. Pairwise FST values were estimated in 
50-kb sliding windows along each chromosome, with a 
step size of 25 kb. The degree of genetic divergence and 
differentiation between populations (FST) ranges from 0 
to 1, where values close to 0 refer to a low genetic differ-
entiation, i.e. the two populations have no genetic differ-
entiation and share many fixed loci and values close to 1 
refer to a stabilized difference between populations [53]. 
In this study, negative FST values were set equal to zero 
because negative values do not have a biological inter-
pretation [54]. We considered the top 1% of the empirical 
distribution of mean FST (mFST) values as divergent selec-
tion footprints.

hapFLK test
The hapFLK statistic which is a haplotype-based 
approach, was calculated according to the methodol-
ogy described by Fariello et  al. [15] using the hapFLK 
software that is available at https://​forge-​dga.​jouy.​inra.​
fr/​proje​cts/​hapflk. We used 10 clusters (-K 10) for the 
fastPHASE cross-validation procedure to obtain haplo-
type diversity [55]. The hapFLK statistic was assessed as 
the average across 15 expectation–maximization runs 
(-nfit = 15) to fit the linkage disequilibrium model.

Since hapFLK values for each SNP along the genome 
approximately follow a normal distribution, to robustly 
evaluate the normal distribution parameters, hapFLK 
values were standardized to evaluate the p-value for each 
SNP using the formula:

FROH =

LROH

Lauto
, as implemented in the rlm function of the R MASS pack-

age, where Mean(hapFLK ) and SD(hapFLK ) refer to the 
mean and the standard deviation of hapFLK values across 
the genome, respectively. To limit the number of false 
positives, the false discovery rate (FDR) was estimated 
using the R Bioconductor qvalue package [56]. SNPs that 
reached an FDR threshold of 1% were considered signifi-
cant (− log10(P-value) = 5.19).

Gene set enrichment analysis
To control and avoid the detection of likely false posi-
tives by different methods, we focused on signatures of 
selection that were identified by at least two of the four 
approaches and on those that were found in peak points 
in the hapFLK analysis as putative signatures of selection. 
The genes located in these regions were determined by 
the Variant Effect Predictor tool (release 101) [57] and 
functional annotation of the candidate genes, molecular 
functions, and biological processes was carried out using 
the Database for Annotation Visualization and Integrated 
Discovery (DAVID) [58]. Applying the Fisher exact sta-
tistics, a P-value < 0.05 was considered for the statistical 
significance of GO term enrichments.

Overlap of signatures of selection with reported 
QTL
In order to examine the overlap of the putative genomic 
regions under selection with previously known QTL, we 
downloaded the QTL data from the chicken QTL data-
base (http://​www.​anima​lgeno​me.​org/​cgi-​bin/​QTLdb/​
GG/​index). Then, we used the regioneR [59] package 
and the given region coordinates (chromosome, start 
and end) to identify reported QTL that were located in 
the putative regions under selection. However, because 
of the limited resolution of the QTL localizations, many 
overlaps are expected to occur by chance. Thus, we used 
a permutation test (n = 1000) to identify statistically sig-
nificant associations between putative regions and the 
QTL regions that were repeatedly sampled by the permu-
tation test.

Results
Sequence alignment and SNP calling
After quality control and trimming, ~ 64 million reads 
per individual remained. A high percentage (98.0%) of 
the short reads were properly mapped to the chicken ref-
erence genome (galgal6). The average sequencing depth 

hapFLKadj =
hapFLK −Mean(hapFLK )

SD(hapFLK )
,

https://forge-dga.jouy.inra.fr/projects/hapflk
https://forge-dga.jouy.inra.fr/projects/hapflk
http://www.animalgenome.org/cgi-bin/QTLdb/GG/index
http://www.animalgenome.org/cgi-bin/QTLdb/GG/index
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for the 32 individuals was 7.1 (6.9 for Khazak and 7.3 
for Lari). In total, 17,287,526 SNPs were detected from 
the whole-genome data in the initial SNP calling. After 
quality control, 11,873,011 SNPs across all individuals 
were retained. Of those, about 6.5 million SNPs were 
shared between the two ecotypes, and 2.9 and 2.8 mil-
lion SNPs were specific to the Lari and Khazak ecotypes, 
respectively.

Population structure analysis
Using the 11,873,011 SNPs, a maximum likelihood phy-
logenic tree was constructed and the evolutionary diver-
gence of populations was visualized. Although there were 
sub-clusters in each population, the two populations 
segregated into two distinct clusters (Fig. 1a). Population 
structure, which was evaluated by principle component 
analysis based on genetic relationships between indi-
viduals, classified the birds into two distinct populations, 
i.e. Lari and Khazak. The PCA results (Fig. 1b) validated 
those obtained by the phylogenic tree.

Runs of homozygosity and inbreeding
In the ROH analysis, 3362 ROH segments were found, 
with an average of 105.1 ROH per animal (see Addi-
tional file 1: Table S1). The average genomic length cov-
ered by ROH per animal was 50.416 Mb and 74.233 Mb 
for the Khazak and Lari ecotypes, respectively. Consecu-
tive lengths of homozygous genotypes were observed on 
all chromosomes, except chromosomes 16, 30, 31, 32, 

and 33. About 70% of the ROH segments were located 
on macro-chromosomes, while ROH that were more 
than 5  Mb long were on chromosome 4 (71,896,991–
77,295,695 bp and 61,312,016–66,772,831 bp). The aver-
age ROH coverage was generally higher for short ROH 
segments (i.e. shorter than 1.0 Mb), with a mean cover-
age of 45.717  Mb per animal, than for long ROH seg-
ments (i.e. longer than 1.0  Mb), with a mean coverage 
of 16.730  Mb per animal (Fig.  2). The number of long 
ROH (> 1.0  Mb) per animal was smaller than the num-
ber of short ROH (< 1.0 Mb) for both ecotypes (Fig. 2a). 
The average number of ROH segments per individual was 
larger for the Lari ecotype (126.0 ROH per individual) 
than for the Khazak ecotype (89.5 ROH). Consequently, 
the Lari showed a higher inbreeding coefficient (FROH) 
than the Khazak ecotype (Fig. 2b). For both ecotypes, the 
highest genomic inbreeding coefficient was found for the 
0.3–1 Mb ROH category (Fig. 2b).

The values of genome-wide inbreeding coefficients dif-
fered between the two ecotypes, with the highest, mean 
and lowest individual FROH values equal to 0.28, 0.078, 
and 0.049, respectively, for the Lari ecotype, and 0.125, 
0.056, and 0.015 for the Khazak ecotype.

Intra‑population signatures of selection
CLR statistic
We computed the CLR test to detect recent selective 
sweeps in the Lari and Khazak ecotypes. The distribu-
tion of CLR values is illustrated in Fig.  3 and revealed 

Fig. 1  a Maximum likelihood tree based on the genotype data, in which the clusters of the Khazak and Lari ecotypes are separated by red and 
green lines, respectively, and b principal component analysis of the genotype data from the two populations
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significant genomic positions in the top 1% CLR scores 
detected in the Lari (CLR > 4.54) and Khazak (CLR > 8.47) 
ecotypes. The most significant CLR value in the Lari 
ecotype (98.56) was observed on chromosome 2, in a 
region between 27.6 and 27.8  Mb, which harbors the 
DGKB (diacylglycerol kinase beta) gene (Fig.  3a), while 
the most significant CLR value in the Khazak ecotype 
(124.43) was observed on chromosome 1 between 117.6 
and 117.8 Mb (Fig. 3b).

We obtained 342 candidate genes for both ecotypes, 
of which 225 were protein coding genes (see Additional 
file 2: Table S2). Only seven genes were shared between 
the two ecotypes. Twenty six and eight genes were 
shared with the annotated genes in the FST and ROH 
analyses, respectively (Table 1) and (see Additional file 3: 
Table S3). Some of the candidate genes identified in the 
Khazak ecotype have functional relevance to reproduc-
tion (ELF3, ESR1, and CALCR), biosynthesis of fatty acid 
and abdominal fat deposition (ELOVL2 and MAOA), and 

Fig. 2  a The mean of runs of homozygosity number and b distribution of inbreeding coefficients (FROH) values in the short, medium, and long 
categories

Fig. 3  Distribution of composite likelihood ratio values along the autosomal chromosomes of the Lari (a) and Khazak (b) chickens. The red line 
corresponds to the top 1% of the empirical distribution of CLR values
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immune traits (DOCK2, LCP2, PTPN2 and IL1RAPL1), 
while those identified in the Lari chickens are involved 
in regulation of energy homeostasis (AGRP), immune 
(APBB1IP), muscle development (HDAC9), wound heal-
ing (MMP13), metabolic regulation and reproduction 
(TSHR), and behavioral traits (AGMO and PSEN1). In 
the CLR test, enriched GO terms were revealed for the 
biological process, cellular components, and molecular 
functions categories. Functional terms included those 
involved in epithelial cell proliferation, Golgi organi-
zation, and cell differentiation (see Additional file  4: 
Table S4).

Consensus ROH
In each ecotype, ~ 87% of the consensus ROH were 
shared among two to five animals, while 176 consensus 
ROH pools that were common to at least five individuals 
(more than 30% of the individuals in each ecotype) were 
identified (110 in the Lari and 65 in the Khazak popu-
lation) (see Additional file  5: Table  S5). The consensus 
ROH were located on chromosomes 1, 2, 3, 4, 5, 7, 8, 9, 
11, 15, 17, 19 and 20 in the Khazak and on chromosomes 
1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15 in the Lari chickens.

Annotation analysis of consensus ROH revealed 282 
protein coding genes (see Additional file 6: Table S6), of 
which 30 were shared between the two ecotypes (Table 1) 
and (see Additional file 3: Table S3). One consensus ROH 
on chromosome 2 (~ 347 kb: 27,726,057–28,073,095 bp), 
was shared by 11 of the 15 individuals of the Lari ecotype 
and included the AGMO (alkylglycerol monooxyge-
nase) gene. For the Khazak population, one consen-
sus ROH was identified on chromosome 8 (~ 84  kb: 

654,688–738,425 bp) that was common to 16 individuals 
and included long non-coding RNA transcripts.

Seven biological process GO terms were significantly 
enriched among the genes located in consensus ROH 
regions (3 in Lari and 4 in Khazak), of which some con-
tained the terms axonogenesis (GO: 0007409), visual 
perception (GO: 0007601), blood vessel maturation (GO: 
0001955), and response to hypoxia (GO: 0001666) (see 
Additional file 4: Table S4). Several other genes that were 
annotated in consensus ROH were involved in muscle 
tissue development and regeneration, osteoblast differ-
entiation, breast muscle development, cardiac muscle 
tissue growth involved in heart morphogenesis, and car-
diac muscle contraction. We also observed many genes 
in the consensus ROH that have a role in the innate 
and adaptive immune system, B cell differentiation, T 
cell activation involved in immune response, interleu-
kin-17 production, toll-like receptor 3 signaling pathway, 
and interleukin-4 production regulation, regulation of 
the interleukin-6 biosynthetic process, and inflamma-
tory response. Some of the genes in the consensus ROH 
analysis were linked to behavioral traits, including feed-
ing, social, and aggressive behavior, and productive traits 
such as spermatogenesis, ovarian follicle development, 
and spermatogenesis (see Additional file 4: Table S4).

Inter‑population genetic differentiation
FST statistic
Using 25-kb sliding windows, 374 regions with an mFST 
higher than 0.24 were in the top 1% of the empirical dis-
tribution. These regions were located across most of the 
chicken chromosomes. The highest FST values belonged 

Table 1  Summary of the genes that were identified by at least two of the four methods used FST, hapFLK, composite likelihood ratio 
and run of homozygosity

Chr: chromosome number

Chr Gene ID Gene symbol Gene start (bp) Gene end (bp) Method

1 ENSGALG00000011274 DCN 44,050,178 44,202,174 FST, ROH-L

1 ENSGALG00000012559 LARGE1 52,678,868 52,954,337 FST, CLR-L

1 ENSGALG00000016288 IL1RAPL1 117,527,572 11,8143,733 CLR-K, ROH-L-K

2 ENSGALG00000008591 CACNB2 19,119,896 19,343,839 hapFLK, CLR-L

2 ENSGALG00000009509 CALCR 23,060,807 23,197,789 FST, CLR-K

2 ENSGALG00000010792 AGMO 27,838,091 28,021,352 FST, CLR-L, ROH-L

2 ENSGALG00000010794 MEOX2 28,039,372 28,092,164 FST, CLR-L, ROH-L

2 ENSGALG00000010854 HDAC9 29,076,224 29,386,193 FST, CLR-L

2 ENSGALG00000013817 SPIRE1 97,073,307 97,195,740 FST, CLR-K

3 ENSGALG00000012973 ESR1 49,053,965 49,241,576 CLR-K, ROH-K

4 ENSGALG00000012074 ALPK1 57,133,859 57,167,350 FST, ROH-L

5 ENSGALG00000009320 PSEN1 26,593,233 26,614,911 FST, CLR-L

8 ENSGALG00000005208 S1PR1 12,067,120 12,071,019 FST, ROH-L

20 ENSGALG00000008010 PTPN1 13,537,599 13,576,469 FST, CLR-K
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to an intergenic region on chromosome 8 (875,001–
925,000  bp) (mFST = 0.541) and a protein-coding region 
on chromosome 2 (27,825,001–27,875,000 bp) that spans 
the AGMO gene (FST = 0.538) (Fig. 4). Enrichment analy-
sis of the genes covered significant GO terms related to 
biological functions, molecular processes, and cellular 
components related to double-strand break repair, devel-
opmental process, vocal learning, transcriptional activa-
tor activity, RNA polymerase II core promoter proximal 
region sequence-specific binding, nucleoplasm and Golgi 
apparatus (see Additional file 4: Table S4).

In total, 184 protein-coding genes were detected in the 
putative regions under selection (see Additional file  7: 
Table S7), among which 54 and 26 genes were common 
to the annotated genes in the ROH and CLR analyses, 
respectively (Table 1) and (see Additional file 3: Table S3). 
The results derived from the gene annotation analysis 
showed that multiple genes were involved in the immune 
system, such as TRIM13 (tripartite motif-containing 13), 
ALPK1 (alpha kinase 1), S1PR1 (sphingosine-1-phos-
phate receptor 1), and ITK (IL2-inducible T-cell kinase), 
which mapped to chromosomes 1, 4, 8, and 13, respec-
tively. Furthermore, our results indicate that several 
genes in the detected regions are associated with growth 
and reproductive traits, such as DCN (decorin), MEOX2 
(mesenchyme homeobox 2), HDAC9 (histone deacetylase 
9), SGCZ (sarcoglycan, zeta), LARGE (like-glycosyltrans-
ferase), and CITED4 (Cbp/p300-interacting transactiva-
tor, with Glu/Asp-rich carboxy-terminal domain, 4) (see 
Additional file 7: Table S7).

hapFLK statistic
Results of the hapFLK test are shown in Fig.  5 and 
Table  2. A threshold of P-value < 6.3 × 10–6 was used to 
declare genomic regions that have been under selection. 
We observed signatures of selection on all the autosomes 
except 15, 21, and 24. The strongest signals were detected 
on chromosomes 7 (22.05–22.35 Mb), 27 (6.48–7.69 Mb), 
and 16 (2.40–2.75 Mb).

In total, 305 protein-coding genes, 14 pseudogenes, 12 
miRNA, 10 lncRNA, and one snoRNA were detected in 
putative regions under selection (see Additional file  8: 
Table  S8). Several functional genes were located within 
the regions that displayed the strongest signals, includ-
ing genes involved in the immune system (BF1, TAP1, 
DMB2, BLB1, BLB2, TAPBP, BRD2, BLEC1, C4, IKZF3, 
DMB1, and IL4I1) and in morphological traits such as the 
creeper (IHH and NHEJ1) and comb traits (MNR2). In 
addition, important genes relevant to growth and repro-
ductive traits (CACNB1, STAT5B, STAT5A, BCL2L1, 
GNRHR, FANCA and NTRK1) were detected in several 
other significant regions (see Additional file 8 : Table S8). 
The results of the GO enrichment analyses revealed inter-
esting terms related to basic metabolic activities, such as 
hyaluronan catabolic process, transport, and hyaluronan 
biosynthetic process (see Additional file 4: Table S4).

QTL overlapping with signatures of selection
Quantitative trait loci associated with 179 traits that 
overlapped with detected signatures of selection were 

Fig. 4  Distribution of FST values, showing signatures of differentiation 
between the Lari and Khazak chickens. The dashed black line 
corresponds to the top 1% of the empirical distribution of mean FST 
values

Fig. 5  Distribution of hapFLK values along autosomal chromosomes 
of the Lari vs. the Khazak chickens. The red line shows the FDR 
threshold < 0.01
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Table 2  Summary of the regions of putative signatures of selection detected by hapFLK analysis

Chr Position (Mb) Number of significant 
SNPs

Peak P-value Peak Q-value Number 
of genes

1 434,470–434,352 5 4.27 × 10–6 8.11 × 10–3 –

1 15,481,982–15,485,698 59 8.56 × 10–8 9.62 × 10–4 2

1 195,604,292–195,605,428 19 2.52 × 10–6 6.11 × 10–3 3

2 320,222–905,567 318 7.26 × 10–9 2.5 × 10–4 19

2 19,149,170–19,168,337 9 4.90 × 10–6 8.74 × 10–3 1

3 4,315,154–4,316,471 28 2.40 × 10–6 5.89 × 10–3 1

4 592,005–1,129,104 33 1.36 × 10–6 4.73 × 10–3 2

4 1,793,886–2,540,113 162 7.05 × 10–7 2.98 × 10–3 6

4 11,848,194–11,848,517 11 3.72 × 10–6 7.53 × 10–3 1

4 63,734,725–63,735,252 10 3.03 × 10–6 6.72 × 10–3 1

5 352,470–658,990 128 1.56 × 10–7 1/39 × 10–3 11

5 17,260,400–17,270,064 72 5.24 × 10–7 2.57 × 10–3 5

5 36,923,176–57,911,202 58 2.02 × 10–6 5.32 × 10–3 2

6 23,492,639–24,056,037 45 1.49 × 10–7 1.36 × 10–3 3

7 22,056,870–22,351,378 471 9.51 × 10–14 2.84 × 10–7 15

8 4,089,299–4,679,692 91 2.07 × 10–8 4.27 × 10–4 16

8 20,142,893–25,633,392 73 6.23 × 10–7 2.80 × 10–3 4

9 5,048,355–5,294,874 36 2.14 × 10–7 5.52 × 10–3 3

9 15,117,357–15,127,879 48 4.01 × 10–7 2.26 × 10–3 2

10 3,181,235–3,276,403 55 5.29 × 10–7 2.57 × 10–3 1

10 20,424,930–20,531,639 105 1.72 × 10–7 1.48 × 10–3 10

11 543,196–552,444 76 3.91 × 10–7 2.24 × 10–3 4

11 17,670,561–18,929,198 393 5.41 × 10–8 6.79 × 10–4 23

12 1,844,142–3,584,210 297 4.13 × 10–8 5.99 × 10–4 21

13 1,681,154–1,716,546 56 3.46 × 10–7 2.13 × 10–3 2

13 9,215,174–9,262,342 61 8.65 × 10–7 3.29 × 10–3 4

14 4,527,908–4,542,487 148 1.03 × 10–7 1.01 × 10–3 2

14 13,457,733–13,466,285 36 1.14 × 10–6 3.83 × 10–3 4

16 503,770–637,134 55 2.77 × 10–7 1.91 × 10–3 5

16 2,405,643–2,750,127 1333 4.31 × 10–10 6.35 × 10–5 38

17 5,162,885–6,250,543 8 2.16 × 10–6 5.56 × 10–3 5

18 9,029,424–9,781,214 357 8.04 × 10–8 9.20 × 10–4 21

19 6,101,292–6,102,285 19 1.50 × 10–6 4.52 × 10–3 1

20 9,895,217–9,899,561 16 3.11 × 10–6 6.83 × 10–3 3

20 10,004,382–10,590,764 100 2.78 × 10–9 1.64 × 10–4 5

22 1,480,237–1,486,672 20 3.37 × 10–6 7.14 × 10–3 1

22 3,734,510–3,835,387 116 8.65 × 10–7 3.29 × 10–3 8

22 5,266,531–5,268,855 21 2.89 × 10–6 6.56 × 10–3 3

23 2,341,704–2,342,263 18 3.01 × 10–6 6.71 × 10–3 1

23 6,082,331–6,085,084 25 7.15 × 10–3 3.00 × 10–3 2

25 258,310–296,757 77 1.44 × 10–7 1.33 × 10–3 6

25 1,537,552–1,537,977 18 1.61 × 10–6 4.70 × 10–3 1

25 2,210,263–3,017,751 531 3.38 × 10–8 5.72 × 10–4 24

25 3,699,556–3,707,549 51 5.03 × 10–7 2.52 × 10–3 3

26 1,166,789–1,182,684 56 5.17 × 10–7 2.55 × 10–3 1

27 5,189,796–5,371,260 43 2.47 × 10–6 6.36 × 10–3 2

27 6,481,778–7,699,113 871 2.31 × 10–11 8.41 × 10–6 36

28 2,456,294–3,326,745 99 4.13 × 10–7 2.30 × 10–3 8
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retrieved from the chicken QTL databases (see Addi-
tional file 9: Table S9). Analysis of the overlaps between 
signatures of selection and reported QTL indicated that 
most of the detected regions contained a QTL (see Addi-
tional file 10: Figure S1). Some QTL for traits of economic 
interest, such as breast muscle weight and percentage, 
body weight, abdominal fat weight, feed conversion ratio 
and etc., overlapped significantly with putative regions of 
signatures of selection (permutation P-value < 0.05). We 
also found significant overlaps of QTL related to behav-
ioral, morphological, and immune traits (such as feather 
pecking, drumstick and thigh weight, tibia features, anti-
body titer to SRBC antigen) with putative regions.

Discussion
Since the domestication of chickens from the red jungle 
fowl about 10,000 years ago, evolutionary processes, such 
as population bottlenecks, migration, inbreeding, and 
founder effects, have led to a large diversity of chicken 
populations. A relatively wide range of this diversity 
is found in the chicken populations of the Iranian pla-
teau and, in this study, we focused on two Iranian native 
chicken ecotypes, the Lari and Khazak ecotypes. It seems 
that the Lari ecotype has derived from the Malay breed 
in the Lar region of the Fars province, Southwest of Iran, 
in the seventeenth century [35]. According to narrations, 
the British brought numerous Malay chickens to Iran 
due to trading between the British and the Iranians on 
the Persian Gulf shores [35]. The physical similarity of 
the body shape between the Lari ecotype (long legs and 
upright posture) and the Malay breed and its dissimilar-
ity with other indigenous ecotypes in Iran support this 
hypothesis. In contrast, there is no information about the 
origin of the Khazak ecotype [35, 60].

Through natural selection, local chickens have adapted 
to harsh environmental conditions, such as heat stress 
and poor nutrition. In addition, such local chickens are 
known to represent interesting genetic resources for 
resistance to local diseases and environments [27, 32]. 
Muir et al. [61] indicated that pure commercial lines have 
lost 50% or more of the genetic diversity (especially rare 
alleles related to resistance to infectious diseases) that 
existed in their ancestral breeds and consequently, the 
poultry industry may have to face unforeseen production 
challenges such as new virulent diseases. Accordingly, 
native chicken populations are essential for the poultry 
breeding programs as sources of rare alleles, to main-
tain the level of genetic diversity in commercial poultry 
[61]. In addition, these gene resources could be used as 
an excellent genetic base in genomic selection and cross-
breeding programs to develop meat-type and egg-type 
chickens in local regions. This could be an important 

source of income for small-holder farmers who raise such 
indigenous chickens.

Mapping runs of homozygosity and inbreeding
Analysis of the distribution of ROH and of their length 
and abundance along the genome can provide valu-
able information about a population’s history, genomic 
inbreeding, and signatures of selection [48, 62, 63]. It 
has been suggested that the higher resolution of whole-
genome sequence data than that of SNP chip data could 
lead to the identification of ROH shorter than 1 Mb [26]. 
In our study, the relatively low coverage of the whole-
genome sequence data may have led to the identification 
of some incorrect ROH segments. However, Ceballos 
et  al. [48] indicated that SNP chips and low coverage 
WGS data can achieve equivalent results for ROH call-
ing. Examination of the distribution of ROH in the two 
indigenous chicken populations showed short to long 
ROH sizes, ranging from 0.3 to 5.4 Mb. ROH shorter than 
1 Mb predominated. Most of the continuous homozygous 
genotypes were located on macro-chromosomes, while 
the ROH on microchromosomes were shorter and less 
numerous, which confirms previous studies in chickens 
[26, 32, 63]. It should be noted that recombination rates 
and nucleotide diversity are much higher for the micro-
chromosomes than for the macrochromosomes [64]. In 
the future, availability of a precise genetic map of the 
chicken genome based on whole-genome sequence data 
would allow the distribution of ROH by recombination 
rates to be appropriately scaled to better interpret the dif-
ference in the ROH distribution between the micro- and 
macrochromosomes.

The average length of the genome covered by ROH 
per animal (62.32  Mb) was smaller than the genomic 
ROH coverage reported for a commercial broiler line 
(130.9 Mb on average) [26], which could be the result of 
lower inbreeding and a wider gene pool in the Iranian 
indigenous chicken ecotypes than in commercial lines 
[32]. The frequency of ROH segments along the genome 
provides clues about the history and the management of 
these populations over time [48, 65]. It has been reported 
that the larger number of ROH in broiler lines could be 
due to the artificial selection pressure on traits of eco-
nomic interest [26]. Zhang et  al. [66] suggested that 
differences in FROH values observed between Chinese 
indigenous, game, and commercial chicken breeds could 
be due to differences in selection pressure over time. To 
test this hypothesis, we applied the FROH method to esti-
mate inbreeding within the two populations because it is 
likely to be the most powerful method to assess inbreed-
ing and it provides more accurate information about the 
levels of autozygosity than the inbreeding coefficient 
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calculated based on pedigree information [31, 67–69]. 
When the threshold for ROH size was set to less than 
1  Mb, both indigenous ecotypes indicated high levels 
of inbreeding. This likely reflects ancestral relationships 
and more ancient inbreeding. The length of the ROH 
decreases over time due to recombination events, and 
the presence of short ROH across the genome indicates 
more distant shared ancestors [49, 70]. The Lari ecotype 
showed a higher inbreeding levels for all ROH categories 
and generally a higher level of genome-wide inbreeding 
than the Khazak ecotype. This may be due to the fact 
that the local farmers select the Lari chickens mainly for 
fighting and game purposes, while they raise the Khazak 
ecotype for egg production, which has not been sub-
jected to any breeding program [34].

Identifying positive signatures of selection can provide 
valuable information about the influence of selection on 
adaptive, productive, and morphological characteristics. 
In this study, we applied four procedures, FST and hapflk 
(inter-population), and ROH and CLR (intra-population), 
to identify signatures of selection for two phenotypically 
different chicken ecotypes. Depending on the nature of 
the information, each of these statistics has its advan-
tages and disadvantages and may capture a specific pat-
tern of selection [16, 17, 71]. The FST statistic has been 
widely applied in various studies, is more powerful for 
the detection of complex events, but it does not take the 
hierarchical structure of subpopulations into account; 
this limitation has been fixed in the hapFLK statistic, 
which is robust with regard to evolutionary processes, 
such as bottlenecks and migration, and has the ability 
to uncover a hard selective sweep, i.e. a new beneficial 
mutation that rises in frequency and spreads quickly to 
complete fixation. The CLR statistic can detect selective 
sweeps that are close to fixation, whereas the short ROH 
(~ 1  Mb) that are detected by consensus ROH (cROH) 
analysis mostly arose through selective pressure on iden-
tical-by-descent genomic regions from distant ancestors 
[70]. However, short ROH can also result from other evo-
lutionary processes, such as bottlenecks and genetic drift 
[62, 68]. Therefore, considering ROH regions as signa-
tures of selection should be viewed with caution [72].

Genes related to growth and reproductive traits
The Lari fighting chickens are characterized by an amaz-
ing level of activity. Cockfighting is a form of exercise in 
which the chicken requires mighty muscle and skeletal 
structure to run and jump. Thus, we hypothesized that 
some candidate genes could be connected with muscle 
growth, hypertrophy, and limb development. Along that 
line, the two genes DCN (decorin) and MEOX2 (mesen-
chyme homeobox 2) were good candidates, as both were 
detected by three of the four applied methods. DCN 

encodes a connective tissue protein, i.e. a multifunctional 
proteoglycan that enhances skeletal muscle tissue prolif-
eration and differentiation by interfering with myostatin 
activity [73]. DCN is also involved in modulating collagen 
assembly and bone mineralization [74]. Previous studies 
have reported that DCN expression increases in response 
to exercise and muscle contraction, which contribute to 
muscle hypertrophy [75, 76]. Furthermore, the growth 
hormone (GH) positively regulates DCN in a gender-
dependent manner, resulting in greater impact in men 
than in women [77]. MEOX2 is a homeobox gene and is 
associated with skeletal muscle tissue and bone develop-
ment [78]. In mice, genetic deletion of MEOX2 reduces 
muscle mass and causes a developmental defect in the 
limb musculature [79]. It has been shown that MEOX2 
affects muscle fiber metabolism and muscle size in adult 
mice [80].

In meat-type chickens, breast muscle is the most valu-
able carcass component and is one of the most important 
economic traits. The Lari chickens, with their wide breast 
and heavy weight (3–4 kg), can be considered as a meat-
type chicken. In the haplotype-based analysis (hapFLK), 
we applied a stringent significant threshold to control 
false positive signals. One of the most striking signatures 
of selection was detected in a region that contained the 
CACNB1 (calcium voltage-gated channel auxiliary subu-
nit beta 1) gene on chromosome 27, with a P-value lower 
than 2.31 × 10–11. CACNB1 is known to be associated 
with body weight in broilers [81] and to play an impor-
tant role in skeletal muscle growth in mice [82].

Compared with meat-type chickens, the low weight 
of the Khazak chickens could be an asset because their 
energy consumption for maintenance will be lower and, 
thus, most of their feed intake will be dedicated to egg 
production. Gene annotation of the putative regions 
identified in the cROH and CLR analyses identified the 
ESR1 gene on chromosome 3 as a putative signature of 
selection for reproductive traits in the Khazak ecotype. 
In birds, the theca cells are responsible for the synthesis 
of estrogen in the ovarian follicles. Estrogen regulates the 
synthesis of egg white and yolk proteins, calcium mobi-
lization, and reproductive behavior, and is necessary for 
folliculogenesis. The effect of estradiol on folliculogen-
esis is mediated by the estrogen receptors α and β, which 
are encoded by the ESR1 and ESR2 genes, respectively 
[83]. In the chicken ovary, expression of the ESR1 gene is 
higher than that of the ESR2 gene. ESR1 is reported to be 
associated with ovarian functions, especially during fol-
licular development [83, 84], and to be one of the candi-
date genes for traits related to egg production in chicken 
and quail [85, 86]. This gene has also been be associated 
with reproductive traits in pigs and sheep [87, 88].
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Both the FST and CLR analyses for the Khazak ecotype 
revealed another gene that is involved in reproduction 
traits, CALCR (calcitonin receptor). The calcitonin recep-
tor binds to calcitonin, a polypeptide hormone, and is 
associated with regulation of follicular maturation in the 
chicken ovary [89]. In addition, CALCR is known to play 
a role in calcium homeostasis during pregnancy in mam-
mals to protect the maternal skeleton [90, 91].

In the putative regions of signatures of selection, sev-
eral QTL were previously detected for economically 
important traits, such as growth, abdominal fat weight, 
drumstick and thigh muscle weight, egg number, and 
egg production rate. Since no breeding program has ever 
been implemented to improve production traits in the 
Iranian indigenous chickens, the identification of genes 
and QTL that are associated with these traits in these 
populations may be important for designing breeding 
plans in the future.

Genes related to the immune system
Chickens raised in village regions are under different 
environmental conditions that can affect their produc-
tive performance. Natural selection pressure has led to 
genetic adaptations in village chickens that allow them 
to survive in the harsh and diverse environmental condi-
tions [25]. It has been demonstrated that ROH regions 
can harbor candidate genes associated with immune 
responses and adaptation to severe conditions [31, 63]. 
We identified several genes and previously detected 
QTL associated with immune traits in the consensus 
ROH regions that overlapped with the FST windows. For 
example, the S1PR1 (sphingosine-1-phosphate receptor 1) 
gene was identified on chromosome 8 and is known to 
encode a lipid regulator that is involved in processes such 
as immune response [92] and to contribute to immune 
response to viral infections, especially influenza infec-
tion [93]. Activation of S1PR1 can reduce morbidity and 
mortality in H5N6-infected chickens by suppressing the 
induction of cytokines, chemokines, and pattern recog-
nition receptors (PRR) [94]. It has also been shown that 
the S1PR1 gene plays an essential role in inflammatory 
responses to infection with the Newcastle disease virus 
[95, 96]. Another important gene that was detected is 
ALPK1 (alpha-kinase 1), which is a member of the group 
of atypical kinase genes [97]. It contributes to innate 
immune responses to invasive bacteria and influenza 
virus [98, 99].

In the hapFLK analysis, the strong selective sweep that 
was detected on chromosome 16 encompasses impor-
tant genes related to immune traits. Miller and Taylor Jr 
[100] reported that almost all the genes that are currently 
mapped to chicken chromosome 16 play a prominent 

role in immune response. These genes are defined in 
regional units, of which the best-known region is the 
major histocompatibility complex-B (MHC-B). The MHC 
is a group of polymorphic genes with a central role in the 
immune system, particularly in resistance to infectious 
diseases [101–104]. In our study, this haplotype was iden-
tified as a putative region under selection and contains 
the BF1, BF2, TAP1, DMB2, DMA, BLB1, BLB2, TAPBP, 
BRD2, BLEC1, C4, IKZF3, BZFP1, CENPA, CYP21A1, 
LTB4R, HEP21, TRIM7.2, ZNF692, TRIM7.1, TRIM27.1, 
TRIM27.2, TRIM39.2, TRIM41, TRIM39.1, and GNB2L1 
genes. MHC-B haplotypes are important for resistance or 
susceptibility to infectious diseases such as Marek’s dis-
ease, Russian sarcoma, and avian leukemia [105, 106].

The population differentiation analyses (FST and hap-
FLK) revealed potential candidate genes that are relevant 
to immune traits. This was expected because the Lari and 
Khazak ecotypes live in different eco-climates. Moreo-
ver, because the Lari chickens are used for entertainment 
and fighting purposes, they have a higher economic value 
than the Khazak chickens and thus, they probably receive 
more healthcare from their owners.

Genes related to morphological and behavioral traits
The Khazak chickens are characterized by a small body 
size and, compared to the Lari chickens, the length of 
their leg is much shorter (4 cm vs. 16 cm), such that in 
the local language, they are known as a creeper chicken. 
Within the identified putative regions of signatures 
of selection, two genes that are known to influence the 
creeper trait were detected in the whole-genome scan 
using the haplotype differentiation analysis. The strong-
est signal was observed on chromosome 7 between 22.29 
and 22.32  Mb, which included 79 SNPs. This region 
spans two important genes, IHH (Indian hedgehog) and 
NHEJ1 (non-homologous end-joining factor 1), and has 
been documented to be the causal genes of the creeper 
trait in chickens [107, 108]. The creeper trait is deter-
mined by a single autosomal gene in chickens that results 
in shortened legs [109]. Recently, Kinoshita et  al. [107] 
demonstrated that a 25-kb deletion that harbors the IHH 
and NHEJ1 genes on chromosome 7 has a significant role 
in the Cp phenotype of Japanese chickens.

Aggressive behavior has been evolutionarily conserved 
during chicken domestication [110] and is preserved and 
reinforced in the Lari chicken, which have been bred and 
trained to fight. Three approaches (FST, CLR, and ROH) 
identified the same signature of selection on chromo-
some 2, which has the highest mFST value (0.541) and a 
significant CLR value (8.80). This consensus ROH region 
was present in 73.3% of the Lari population analyzed. 
This region includes the AGMO (alkylglycerol monooxy-
genase) gene, which encodes the only enzyme that cleaves 
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the O-alkyl bond of ether lipids and plays a role in the 
disabilities and neurodevelopmental disorders in humans 
[111, 112]. Luo et  al. [113] highlighted the presence of 
strong selective sweeps for the AGMO gene that are asso-
ciated with behavioral patterns in the Chinese gamecock 
chickens. We also detected the GNAO1 gene in a cROH 
region on chromosome 11 that was present in 47% of the 
Lari chickens. It has been shown that the GNAO1 gene is 
involved in the aggressive behavior of the Xishuangbanna 
fighting chicken and is under selection in that popula-
tion [114, 115]. Another identified candidate gene related 
to behavioral traits was PSEN1 (presenilin 1), which is 
located on chromosome 5 and was detected in the FST 
and CLR analyses of the Khazak ecotype. The PSEN1 
gene has a role in neuropsychiatric diseases in humans 
[116] and may contribute to feather pecking behavior 
[117].

Since each statistical approach is able to detect spe-
cific signatures of selection across the genome, it is pos-
sible that they do not detect the same region for a given 
signature of selection [27]. However, Almeida et al. [26] 
reported that about half of the detected FST windows 
overlapped with the detected cROH across the genome. 
In our study, we detected several putative regions of 
signatures of selection and genes that were shared by 
at least two of the four methods used, but we did not 
observe overlapping regions between the FST and hap-
FLK approaches because these two methods recognize 
specific different patterns of signatures of selection. The 
detection of shared regions under selection by different 
methods could provide persuasive evidence about the 
effect of selection on a specific region in the genome, 
which may be associated with critical functional traits. 
In addition, the putative regions of signatures of selec-
tion that overlap with known QTL can enhance the accu-
racy of detected signatures of selection [28]. However, to 
validate these regions, more evidence is required, such as 
from scanning replicated populations, functional analy-
sis, and positional cloning.

Conclusions
We implemented four intra and inter-population meth-
ods to detect signatures of selection using whole-genome 
resequencing data in two indigenous chicken ecotypes. 
Our results revealed several putative footprints of selec-
tion that harbor candidate genes associated with disease 
resistance, growth, reproductive, morphological, and 
behavioral traits. Although indigenous chicken ecotypes 
are not always considered for large-scale commercial 
purposes, they have good potential to survive in harsh 
environmental conditions. Our findings enhance our 

understanding of the relationships between phenotype 
differentiation and genotypes among different breeds.
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