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Abstract 

Background  Resistance to HER2-targeted therapies, including the monoclonal antibody trastuzumab and tyrosine 
kinase inhibitor lapatinib, frequently occurs and currently represents a significant clinical challenge in the manage-
ment of HER2-positive breast cancer. We previously showed that the trastuzumab-resistant SKBR3-pool2 and BT474-
HR20 sublines were refractory to lapatinib in vitro as compared to the parental SKBR3 and BT474 cells, respectively. 
The in vivo efficacy of lapatinib against trastuzumab-resistant breast cancer remained unclear.

Results  In tumor xenograft models, both SKBR3-pool2- and BT474-HR20-derived tumors retained their resistance 
phenotype to trastuzumab; however, those tumors responded differently to the treatment with lapatinib. While lapa-
tinib markedly suppressed growth of SKBR3-pool2-derived tumors, it slightly attenuated BT474-HR20 tumor growth. 
Immunohistochemistry analyses revealed that lapatinib neither affected the expression of HER3, nor altered the levels 
of phosphorylated HER3 and FOXO3a in vivo. Interestingly, lapatinib treatment significantly increased the levels of 
phosphorylated Akt and upregulated the expression of insulin receptor substrate-1 (IRS1) in the tumors-derived from 
BT474-HR20, but not SKBR3-pool2 cells. 

Conclusions  Our data indicated that SKBR3-pool2-derived tumors were highly sensitive to lapatinib treatment, 
whereas BT474-HR20 tumors exhibited resistance to lapatinib. It seemed that the inefficacy of lapatinib against 
BT474-HR20 tumors in vivo was attributed to lapatinib-induced upregulation of IRS1 and activation of Akt. Thus, the 
tumor xenograft models-derived from SKBR3-pool2 and BT474-HR20 cells serve as an excellent in vivo system to test 
the efficacy of other HER2-targeted therapies and novel agents to overcome trastuzumab resistance against HER2-
positive breast cancer.
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Introduction
Amplification/overexpression of HER2 (also known as 
erbB2/neu) is significantly associated with poor progno-
sis in breast cancer (BC) patients [1, 2]. HER2-targeted 
therapies, including trastuzumab (Herceptin) and lapat-
inib (Tykerb) are commonly used in the clinic and have 
dramatically improved the survival of BC patients with 
HER2-overexpressing (HER2-positive) tumors [3, 4]. 
It is well-known that trastuzumab is a humanized anti-
HER2 monoclonal antibody (mAb) binding to the extra-
cellular domain of HER2, blocks its signaling. Lapatinib, 
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as a small molecule tyrosine kinase inhibitor (TKI), 
mainly inhibits the kinase activity of HER2 via target-
ing its intracellular domain. Although trastuzumab and 
lapatinib are effective for metastatic BC patients with 
HER2-positive tumors [5–8], both primary (de novo) and 
acquired resistance to the HER2-targeted therapies fre-
quently occur and currently represent a significant clini-
cal challenge for successful treatment of HER2-positive 
BC [9]. To date, we lack validated biomarkers to predict 
the response of HER2-positive BC to these therapies [4, 
10]. There is an unmet need to identify novel approaches/
agents to overcome the resistance with an aim to improve 
the survival of HER2-positive BC patients, especially 
those with advanced/metastatic diseases.

Several mechanisms of resistance to HER2-targeted 
therapy have been proposed in the treatment of HER2-
positive BC [3, 9]. Among them, activation of compensa-
tory signaling pathways-triggered by alternative receptor 
tyrosine kinases (RTKs), including HER3 and the insulin-
like growth factor-1 (IGF-1R), plays an important role 
in attenuating the efficacy of an HER2-targeted therapy 
[11–13]. Whether HER2-positive BC cells utilize simi-
lar or different mechanisms to create resistance to tras-
tuzumab and lapatinib remains an open question in our 
understanding of the molecular basis of HER2-targeted 
therapy resistance. Some studies have shown that acti-
vation of the signaling pathways initiated by other HER 
family members, such as EGFR and HER3, or non-HER 
receptors, including AXL, limits the response of HER2-
positive BC cells to both trastuzumab and lapatinib 
[14–18]. Other reports suggest that the two agents may 
not share common mechanisms of resistance. While the 
PI-3K/Akt signaling pathway has been implicated as a 
major determinant of trastuzumab resistance [19], its role 
in lapatinib resistance remains elusive. Loss of PTEN-
triggered PI-3K/Akt signaling has been shown to result 
in lapatinib resistance, which can be overcome by NVP-
BEZ235, a dual inhibitor of PI-3K/mTOR [20]. Yet, other 
studies indicate that activation of the PI-3K/Akt signaling 
confers resistance to trastuzumab, but not lapatinib [21, 
22], and lapatinib potently suppresses tumor growth of 
HER2-positive BC in a PTEN-independent manner [23].

The PI-3K/Akt signaling is one of the major down-
stream signaling pathways-initiated by HER3 and IGF-
1R, and critically contributes to trastuzumab resistance 
[24–26]. We investigated the relationship of HER3 and 
IGF-1R in HER2-positive BC cells with acquired resist-
ance to trastuzumab. Our data showed that both HER3 
and IGF-1R directly interacted with HER2 in the trastu-
zumab-resistant BC sublines SKBR3-pool2 and BT474-
HR20, which were derived from the parental BC cell 
lines SKBR3 and BT474, respectively [27]. In the resistant 
cells, HER2, HER3, and IGF-1R formed a heterotrimeric 

complex, which was responsible for enhanced activation 
of multiple downstream pathways, including the PI-3K/
Akt signaling and Src kinase [27]. We next wondered 
whether the trastuzumab-resistant sublines would retain 
their resistant phenotypes to lapatinib. Our data showed 
that SKBR3-pool2 and BT474-HR20 cells as compared 
to their sensitive counterparts were relatively refrac-
tory to lapatinib treatment under our cell culture condi-
tions [28]. Further examination revealed that HER3 and 
IGF-1R initiated distinct signaling pathways altering 
the responses of SKBR3-pool2 and BT474-HR20 cells 
to lapatinib in vitro [28]. In the current studies, we took 
advantage of the tumor xenograft models established 
with SKBR3-pool2 or BT474-HR20 cells in nude mice 
to determine the in  vivo antitumor activity of lapatinib 
against trastuzumab-resistant BC.

Results
Trastuzumab‑resistant breast cancer sublines maintain 
their resistance phenotypes in vivo
We previously reported that trastuzumab-resistant 
BT474-HR20 cells formed tumors in nude mice with 
a much shorter latency than parental BT474 cells [29]. 
Moreover, BT474-HR20-derived tumors were signifi-
cantly less sensitive to trastuzumab treatment [29]. To 
determine if all trastuzumab-resistant BC cells would 
display aggressive characteristics and retain resistant 
phenotypes to trastuzumab in vivo, we performed simi-
lar experiments with the tumor xenograft models estab-
lished from the trastuzumab-resistant SKBR3-pool2 cells 
in comparison with that established from the parental 
SKBR3 cells. We found that the tumors derived from 
SKBR3-pool2 cells grew significantly faster than that 
derived from SKBR3 cells (Fig.  1A). Treatment with 
trastuzumab had no significant effect on the growth 
of SKBR3-pool2 tumors at all-time points examined 
(Fig. 1B). The experiment was terminated at day 45 post 
cell injection. Our data indicated that although BT474-
HR20 and SKBR3-pool2 were originally obtained via 
in  vitro cell culture studies, they both maintained their 
trastuzumab resistance phenotypes in  vivo. The aggres-
siveness of BT474-HR20 and SKBR3-pool2 cells to form 
tumors in nude mice enabled them to serve as excellent 
in vivo models to examine the efficacy of other therapeu-
tic agents against trastuzumab-resistant BC.

SKBR3‑pool2 and BT474‑HR20‑derived tumors show 
distinct sensitivity to lapatinib in in vivo xenograft models
To test whether lapatinib would exert its antitumor effect 
on trastuzumab-resistant BC in  vivo, we again used 
SKBR3-pool2 or BT474-HR20 cells to establish tumor 
xenograft models in nude mice. The tumor-bearing 
mice were treated with either vehicle control (DMSO) 
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or lapatinib via intraperitoneal injection. At the end of 
the experiments, all tumors were photographed and 
weighted. Treatment with lapatinib profoundly sup-
pressed SKBR3-pool2 tumor growth (Fig.  2A). The 
tumors obtained from lapatinib-treated mice were much 
smaller and significantly lighter than that obtained from 
controls (Fig.  2B & C). In contrast, the tumors-derived 
from BT474-HR20 cells were less sensitive to lapatinib 

treatment. Lapatinib slightly, but not significantly inhib-
ited BT474-HR20 tumor growth (Fig. 3A). The size of the 
tumors obtained from lapatinib-treated mice was similar 
to those obtained from controls (Fig. 3B). There was no 
significant difference in the tumor weight between the 
two groups (Fig.  3C). Collectively, these data demon-
strated that both SKBR3-pool2 and BT474-HR20 main-
tained their trastuzumab resistance phenotypes in  vivo 

Fig. 1  SKBR3-pool2 cells as compared to the parental SBKR3 cells grew tumors in nude mice with a significantly faster rate and retained 
trastuzumab resistance phenotype in vivo. A SKBR3 or SKBR3-pool2 cells (5 × 106) were injected s.c into the flanks of 5-week-old female nude mice 
(n = 8/group). Mice were observed three times and tumor formation was measured twice a week. Tumor volume was calculated and expressed as 
cubic millimeters (mean ± SD). B When tumor volumes reached ~ 80mm3, the mice bearing tumors-derived from SKBR3-pool2 cells were treated 
with either control (PBS) or trastuzumab (20 mg/kg) twice a week for seven times (n = 5/group). Tumor volume was expressed as cubic millimeters 
(mean ± SD). Treatment with trastuzumab had no significant effect on SKBR3-pool2 tumor growth at all-time points examined. Statistical analyses 
were performed with two-sided student’s t tests
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( Fig. 1 and [29]), and they also were refractory to lapa-
tinib treatment in in vitro cell culture experiments [28]. 
However, lapatinib exhibited different antitumor activity 
in xenograft models established from SKBR3-pool2 or 
BT474-HR20 cells. While lapatinib markedly inhibited 
SKBR3-pool2 tumor growth, it had little effect on BT474-
HR20 tumor growth. Our studies suggest that some, but 
not all trastuzumab-resistant BCs respond well to lapat-
inib in in vivo tumor xenograft models.

Lapatinib differentially regulates the levels 
of phosphorylated Akt (p‑Akt) and IRS1 expression 
in SKBR3‑pool2‑ and BT474‑HR20‑derived tumors
We observed an enhanced activation of multiple sign-
aling pathways, including PI-3K/Akt and Src kinase in 
SKBR3-pool2 and BT474-HR20 cells because of the tri-
meric complex formed by HER2, HER3, and IGF-1R [27]. 
Specific inhibition of either Akt or Src reversed the resist-
ant phenotypes of both SKBR3-pool2 and BT474-HR20 
cells [27]. This was consistent with other reports which 
indicated that PI-3K/Akt signaling and Src kinase played 
a pivotal role in the development of trastuzumab resist-
ance [19, 30, 31]. Our studies also showed that HER3 
induced activation of both PI-3K/Akt signaling and Src, 
whereas IGF-1R mainly activated Src kinase in SKBR3-
pool2 and BT474-HR20 cells [28]. Further defining the 
underlying mechanisms of HER3-/IGF-1R-initiated sign-
aling in trastuzumab resistance, we recently discovered 
elevated levels of phosphorylated FOXO3a (p-FOXO3a) 
in the trastuzumab-resistant cells due to transcriptional 
suppression of PPP3CB, which is a subunit of the ser-
ine/threonine-protein phosphatase 2B (PP2B) [32]. The 
increased p-FOXO3a disrupted a negative feedback 
inhibition loop formed by FOXO3a and several IGF2-
/IRS1-targeting miRNAs (miR-193a-5p, miR-128-3p, 
and miR-30a-5p). This, thereby, increased the expres-
sion of both IGF2 and IRS1 [32]. Thus, we hypothesized 
that the distinct antitumor activity of lapatinib against 
SKBR3-pool2 and BT474-HR20 in vivo might be attrib-
uted to its differential effects on the aberrant activation 
of HER3 (phosphorylation) and/or the IGF2/IGF-1R/
IRS1 signaling in the resistant tumors. To this end, we 
took advantage of the SKBR3-pool2 and BT474-HR20 
tumors obtained from the animal experiments and per-
formed immunohistochemistry (IHC) assays on HER3, 
p-HER3, p-FOXO3a, p-Akt, and IRS1. For both SKBR3-
pool2 and BT474-HR20 tumors, we found no apparent 

difference in the levels of HER3, p-HER3, and p-FOXO3a 
between lapatinib-treated mice and controls (Fig.  4A & 
B), i.e. lapatinib treatment had little effect on HER3 pro-
tein expression and activation in  vivo. In contrast, the 
levels of p-Akt and IRS1 were markedly increased in the 
BT474-HR20 tumors obtained from lapatinib-treated 
mice as compared to that from controls (Fig.  5A left). 
Since lapatinib treatment generally had no effect on Akt 
expression, we focused our studies on p-Akt. Quantifica-
tion analyses of both p-Akt and IRS1 were significantly 
different between the two groups (Fig.  5A right). Taken 
together, our data suggest that lapatinib’s inefficacy 
against BT474-HR20 tumors in xenograft models is likely 
due to its capability to induce Akt activation (phospho-
rylation) and/or enhance IRS1 expression in vivo.

Discussion
Lapatinib is an orally bioavailable reversible TKI with 
dual targeting function against both EGFR and HER2 
[33]. Its combination with capecitabine is indicated to 
treat patients with advanced/metastatic HER2-positive 
BC whose diseases have progressed after prior therapy 
with trastuzumab plus chemotherapy [33, 34]. Despite 
lapatinib’s success in HER2-positive BC patients being 
observed, both primary (de novo) and acquired resist-
ances to lapatinib frequently occur in the clinical setting 
[35, 36]. Among those potential mechanisms of lapat-
inib resistance, reactivation of the downstream signaling 
pathways, especially the PI-3K/Akt signaling has been 
shown to play an important role in the development of 
resistance to lapatinib [34, 37]. In the current studies 
using tumor xenograft models established with the tras-
tuzumab-resistant BC sublines, we observed a marked 
increase of p-Akt in BT474-HR20-derived tumors 
(Fig.  5A left), which were refractory to lapatinib treat-
ment (Fig.  3A). In contrast, lapatinib exerted profound 
suppression on SKBR3-pool2 tumor growth (Fig.  2A), 
and there was no increase in p-Akt levels in the SKBR3-
pool2 tumors of lapatinib-treated mice as compared 
to controls (Fig.  5B left). Collectively, our data suggest 
that enhanced activation of Akt (evidenced by increased 
p-Akt) likely contributes to the inefficacy of lapatinib 
against BT474-HR20 tumor growth in vivo.

The underlying mechanisms resulting in increased 
p-Akt in the BT474-HR20 tumors after lapatinib treat-
ment remain unclear. Accumulating evidence indicates 
that compensatory induction of HER3 potently activates 

Fig. 2  Lapatinib exhibited potent inhibitory effects on SKBR3-pool2 tumor growth in vivo. SKBR3-pool2 cells (8 × 106) were injected s.c into the 
flanks of 5-week-old female nude mice. When tumor volumes reached ~ 80 mm3, mice were treated with vehicle control (DMSO) or lapatinib 
(80 mg/kg, i.p.) every other day (n = 4/group). A Tumor growth curves were plotted using average tumor volume within each group at the indicated 
time points. Bars, SD. B & C at the end of the experiment, all mice were sacrificed. The tumors were dissected, imaged as indicated (B) and measured 
for weight (C). Two-sided student’s t tests were used for statistical analyses

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Lapatinib slightly attenuated the growth of BT474-HR20-derived tumors in xenograft models. BT474-HR20 cells (8 × 106) were injected 
s.c into the flanks of 5-week-old female nude mice. When tumor volumes reached ~ 80 mm3, mice were treated with vehicle control (DMSO) or 
lapatinib (80 mg/kg, i.p.) every other day (n = 6/group). A Tumor growth curves were plotted using average tumor volume within each group at the 
indicated time points. Bars, SD. B & C at the end of the experiment, all mice were sacrificed. The tumors were dissected, imaged as indicated (B) and 
measured for weight (C). Two-sided student’s t tests were used for statistical analyses
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the PI-3  K/Akt signaling pathway, thereby leading to 
resistance to a wide variety of therapeutic agents [12, 38], 
including lapatinib [15]. However, we did not detect 

apparent alterations in either HER3 protein levels or its 
phosphorylation (p-HER3) in both BT474-HR20 and 
SKBR3-pool2 tumors upon lapatinib treatment (Fig.  4). 

Fig. 4  No significant changes of p-HER3, HER3, and p-FOXO3a were observed between DMSO- and lapatinib-treated tumors derived 
from SKBR3-pool2 or BT474-HR20 cells. The tumors derived from either SKBR3-pool2 (A) or BT474-HR20 (B) cells were formalin-fixed and 
paraffin-embedded (FFPE) and sectioned into five-micron-thick slides. The FFPE slides were analyzed with IHC staining assays for p-HER3 (Y1289), 
HER3, or p-FOXO3a (Ser253) following the procedures described in the materials and methods. Two individuals independently evaluated the IHC 
staining. The levels of p-HER3, HER3, and p-FOXO3a showed no apparent differences between control and lapatinib-treated groups
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This suggest that reactivation of Akt in lapatinib-treated 
BT474-HR20 tumors is likely, via a mechanism inde-
pendent of HER3 upregulation and activation. We pre-
viously showed that increased p-FOXO3a and elevated 
expression of IGF2 and IRS1 were critical for the devel-
opment of trastuzumab resistance in HER2-positive 
BC. This occurred via disruption of a negative feedback 
inhibition loop of FOXO3a and several IGF2-/IRS1-
targeting miRNAs [32]. Here, our IHC analyses found 
little change in p-FOXO3a levels between control and 
lapatinib-treated BT474-HR20 and SKBR3-pool2 tumors 
(Fig. 4), whereas the expression of IRS1 was significantly 
increased upon lapatinib treatment only in BT474-HR20 

tumors (Fig. 5). Interestingly, recent investigation showed 
that the expression of IRS4, a closely related member of 
the IRS family (consisting of IRS1, IRS2, and IRS4) acti-
vated the PI-3K/Akt signaling without significant acti-
vation of the upstream RTKs, and subsequently caused 
resistance to HER2-targeted therapy [39, 40]. Nonethe-
less, whether the elevated expression of IRS1 is respon-
sible for the increased p-Akt levels in lapatinib-treated 
BT474-HR20 tumors remains unknown. It is also unclear 
if lapatinib treatment may upregulate IRS4 in the BT474-
HR20 tumors. Alternatively, the increased p-Akt may be 
due to activation of the non-receptor tyrosine kinase Src 
[41], which functions as a key mechanism of trastuzumab 

Fig. 5  Lapatinib treatment markedly increased p-Akt levels and enhanced IRS1 expression in the tumors-derived from BT474-HR20, but not 
SKBR3-pool2 cells. The FFPE slides of BT474-HR20 (A) or SKBR3-pool2 (B) tumors were analyzed with IHC staining assays for p-Akt (Ser473) or IRS1. 
The IHC staining was evaluated by two individuals independently and quantified with ImageJ and ImageJ plugin IHC profiler. The average staining 
intensity of three random field of each slide was plotted and shown as bar graphs on the right. The data were statistically analyzed with two-sided 
student’s t tests. Bars, SD. ns, not significant. ** p < 0.01, *** p < 0.005
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resistance and indicates poor prognosis in HER2-posi-
tive/ER-negative BC [42]. Src activation has been shown 
to cause resistance to lapatinib in HER2-positive BC cells 
[43, 44]. Our studies of SKBR3-pool2 and BT474-HR20 
cells revealed that IGF-1R-initiated Src activation did not 
influence the efficacy of lapatinib under in vitro cell cul-
ture conditions [28]. Currently, we are performing IHC 
analysis of Src and p-Src to examine if lapatinib treatment 
in vivo may alter Src expression and/or activation in the 
tumors derived from BT474-HR20 or SKBR3-pool2 cells.

In 2010, lapatinib was approved for use with an aro-
matase inhibitor (letrozole) in the treatment of post-
menopausal women with metastatic BC co-expressing 
hormonal receptors (estrogen receptor (ER) and pro-
gesterone receptor (PR)) and HER2 [34, 36]. ER expres-
sion and/or activation have been shown to contribute to 
the development of different mechanisms of resistance 
to trastuzumab and lapatinib [45, 46]. BT474 cells are 
also ER-positive, a typical luminal B subtype of BC cells, 
whereas SKBR3 cells do not express ER/PR. Whether 
the expression of ER may play a role in the resistant phe-
notype of BT474-HR20 tumors to lapatinib treatment 
in  vivo remains to be determined. It would be interest-
ing and clinically relevant to test whether the combina-
tions of lapatinib and letrozole may synergistically inhibit 
BT474-HR20 tumor growth in our xenograft models.

In summary, we demonstrate that trastuzumab-resist-
ant BCs exhibit distinct sensitivity to the treatment of 
lapatinib in tumor xenograft models. Enhanced activa-
tion of Akt (evidenced by increased p-Akt) and the ele-
vated expression of IRS1 seem to be associated with the 
resistance of BT474-HR20 tumors to lapatinib treatment 
in vivo. Our data support that SKBR3-pool2- and BT474-
HR20-derived tumor xenograft models serve as an excel-
lent in vivo system to test the antitumor activity of other 
HER2-targeted therapies, including lapatinib against 
trastuzumab-resistant BC. The model system may also 
be used to determine the potential of novel therapeutic 
agents to overcome trastuzumab resistance in HER2-pos-
itive BC.

Materials and methods
Reagents and antibodies
Trastuzumab (Herceptin) was purchased from Roche 
(Basel, Switzerland). Lapatinib (HY-50898) were pur-
chased from MedChemExpress (Princeton, NJ, USA). 
Primary antibodies used for immunohistochemistry 
(IHC) assays were the following: Rabbit mAb against 
p-Akt (Ser473) (Cat. #4060, 1:100 dilution), rabbit mAb 
against p-HER3 (Y1289) (Cat. #4791, 1:100 dilution), and 
rabbit mAb against HER3 (cat# 12708, 1: 400 dilution) 
from Cell Signaling Technology (Beverly, MA, USA); 
Rabbit polyclonal Ab against p-FOXO3a (Ser253) (Cat. 

#PA5-36816, 1:50 dilution) and mouse mAb against IRS1 
(Cat. #MA5-36222, 1:50 dilution) from Thermo Fisher 
Scientific Inc. (Waltham, MA, USA).

Cells and cell culture
Human BC cell lines SKBR3 and BT474 were obtained 
from the American Type Culture Collection (Manassas, 
VA). The trastuzumab-resistant sublines SKBR3-pool2 
and BT474-HR20, derived from SKBR3 and BT474, 
respectively, were described previously [26, 27]. They 
were routinely maintained in the presence of 20μg/ml of 
trastuzumab. Cell line authentication was confirmed by 
Short Tandem Repeat (STR) analysis with PowerPlex® 
18D System from Promega (Madison, WI, USA). All cell 
lines were free of mycoplasma contamination, deter-
mined by the MycoAlert™ Mycoplasma Detection Kit 
(Lonza Group Ltd. Basel, Switzerland) every six months. 
Cells were cultured with DMEM/F-12 (1:1) medium 
(Thermo Fisher Scientific) containing 10% fetal bovine 
serum (FBS) (Thermo Fisher Scientific) in a 37°C humidi-
fied atmosphere containing 95% air and 5% CO2 and split 
twice a week.

Tumor xenograft model
Athymic nu/nu female mice were purchased from 
Charles River Laboratories Inc. (Wilmington, MA) and 
maintained according to the procedures and guidelines 
approved by the Institutional Animal Care and Use Com-
mittee (IACUC). SKBR3 or SKBR3-pool2 cells were sus-
pended in 100μL of PBS, mixed (1:1) with Matrigel (BD 
Biosciences, Franklin Lakes, NJ) and inoculated subcu-
taneously into the right flank of female athymic mice to 
generate xenograft tumors. Tumor formation was meas-
ured with fine calipers twice a week. Tumor volume was 
calculated by the formula: Volume = (Length × Width2)/2, 
where length was the longest axis and width the measure-
ment at a right angle to the length. When SKBR3-pool2 
tumor volume reached ~ 80mm3, the tumor-bearing mice 
received intraperitoneal (i.p.) injections of PBS or tras-
tuzumab (20 mg/kg). Tumor growth curves were plotted 
using average tumor volume and followed by statisti-
cal analysis as described previously [29, 32]. To examine 
the antitumor activity of lapatinib against trastuzumab-
resistant BC, SKBR3-pool2 or BT474-HR20 cells were 
suspended in 100μL of PBS, mixed with Matrigel (BD 
Biosciences), and inoculated subcutaneously into the 
right flank of female athymic mice to generate xenograft 
tumors. When tumor sizes reached ~ 80 mm3, mice were 
randomly divided into 2 groups and treated with vehicle 
control (DMSO) or lapatinib (80mg/kg, i.p.). The treat-
ment was administered every other day. Tumor growth 
was measured every 3  days. At the end of treatment, 
mice were sacrificed, and the tumors were dissected and 
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measured for weight. All tumors were collected for fur-
ther analysis.

Immunohistochemistry (IHC) assay
IHC assays were performed as we described previously 
[47–49]. In brief, the tumors were formalin-fixed and par-
affin-embedded. Five-micron-thick sections were depar-
affinized in xylene and rehydrated with a series of graded 
alcohols. The slides were then treated with 3% hydrogen 
peroxide in methanol for 15 min. To exhaust endogenous 
peroxidase activity, the antigens were retrieved in 0.01 M 
sodium cirate buffer (pH 6.0) using a microwave oven. The 
slides were blocked with a blocking sniper (Biocare Medi-
cal, Pacheco, CA), and then incubated with a primary Ab 
described in the figure legends at 4°C overnight. After 
washing with Tris Buffer Saline (pH 8.0), the slides were 
incubated with a MACH 1 HRP Polymer detection kit 
(Biocare Medical) according to the manufacturer’s instruc-
tions. The staining colors were developed with a DAB 
Chromogen Kit (Biocare Medical). Finally, all sections were 
counterstained in Mayer’s hematoxylin, nuclei blued in 1% 
ammonium hydroxide (v/v), dehydrated, and then mounted 
with permanent aqueous mounting medium (Bio-Rad). 
Two individuals independently evaluated the IHC slides.

Quantification of IHC assays
Quantification of IHC assays was conducted as we 
reported using ImageJ and ImageJ plugin IHC profiler 
[47]. Briefly, the IHC images were imported into the soft-
ware and followed by color deconvolution with IHC pro-
filer. The images were then inverted into 8-bit grayscale 
type under the “Edit” menu of ImageJ. The “Measure” 
function of ImageJ was used to examine the mean inten-
sity of the IHC images. Three fields of each IHC slide 
were evaluated and followed by statistical analysis.

Statistical analysis
Experimental data were statistically analyzed using two-
sided student’s t tests. Significance was set at the P < 0.05. 
All values are reported at the mean ± SD.
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