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Abstract 

Background  Tissue engineering for cartilage regeneration has made great advances in recent years, although there 
are still challenges to overcome. This study aimed to evaluate the chondrogenic differentiation of human adipose-
derived mesenchymal stem cells (hADSCs) on three-dimensional scaffolds based on polyglycerol sebacate (PGS) / 
polycaprolactone (PCL) / gelatin(Gel) in the presence of Nanohydroxyapatite (nHA).

Materials and methods  In this study, a series of nHA-nanocomposite scaffolds were fabricated using 100:0:0, 
60:40:0, and 60:20:20 weight ratios of PGS to PCL: Gel copolymers through salt leaching method. The morphology and 
porosity of prepared samples was characterized by SEM and EDX mapping analysis. Also, the dynamic contact angle 
and PBS adsorption tests are used to identify the effect of copolymerization and nanoparticles on scaffolds’ hydrophi-
licity. The hydrolytic degradation properties were also analyzed. Furthermore, cell viability and proliferation as well as 
cell adhesion are evaluated to find out the biocompatibility. To determine the potential ability of nHA-nanocomposite 
scaffolds in chondrogenic differentiation, RT-PCR assay was performed to monitor the expression of collagen II, aggre-
can, and Sox9 genes as markers of cartilage differentiation.

Results  The nanocomposites had an elastic modulus within a range of 0.71–1.30 MPa and 0.65–0.43 MPa, in dry and 
wet states, respectively. The PGS/PCL sample showed a water contact angle of 72.44 ± 2.2°, while the hydrophilicity 
significantly improved by adding HA nanoparticles. It was found from the hydrolytic degradation study that HA incor-
poration can accelerate the degradation rate compared with PGS and PGS/PCL samples. Furthermore, the in vitro 
biocompatibility tests showed significant cell attachment, proliferation, and viability of adipose-derived mesenchymal 
stem cells (ADMSCs). RT-PCR also indicated a significant increase in collagen II, aggrecan and Sox9 mRNA levels.
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Conclusions  Our findings demonstrated that these nanocomposite scaffolds promote the differentiation of hADSCs 
into chondrocytes possibly by the increase in mRNA levels of collagen II, aggrecan, and Sox9 as markers of chondro-
genic differentiation. In conclusion, the addition of PCL, Gelatin, and HA into PGS is a practical approach to adjust the 
general features of PGS to prepare a promising scaffold for cartilage tissue engineering.

Keywords  Biomaterials, Nanocomposites, Cartilage, Tissue engineering
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Introduction
Cartilage, as a unique connective tissue [1], exhibits 
distinctive characteristics such as low intrinsic healing 
capacity due to its avascular nature and low cell den-
sity [2, 3]. Articular cartilage (AC) covers the surfaces of 
the bones in a synovial joint that plays a critical role in 
maintaining joint durability and mobility by providing an 
almost frictionless movement of the joints [4]. However, 
damage to the AC from wear, tears, direct trauma, and 
systemic diseases leads to impaired cartilage treatment 
which causes osteoarthritis, affecting more than 25% 
of the adult population globally and about 30.8 million 
adults in the United States [5].

Since there is no permanent clinical solution for OA 
treatment, cartilage tissue engineering (CTE) has been 
investigated with the potential to enhance the healing 
process. CTE conducts biodegradable materials, relevant 
cells like articular chondrocytes or mesenchymal stem 

cells (MSCs), and growth factors (GFs) to regenerate 
damaged or diseased tissues [5–8].

Among different types of natural and synthetic bio-
materials, collagen, gelatin, fibrin, silk fibroin, alginate, 
hyaluronan, chondroitin sulfate, agarose, and chitosan, 
as well as polyethylene glycol[PEG], poly (lactide-co-
glycolic) acid [PLGA], and polycaprolactone [PCL] have 
widely used in CTE [9–12].

In addition, recent studies have reported the incorpo-
ration of inorganic nanoparticles such as bioactive glass, 
tricalcium phosphate, and hydroxyapatite in natural or 
synthetic polymers to fabricate nanocomposite scaffolds 
for cartilage regeneration [13–16]. For example, Jiang-
hong et  al., demonstrated the capability of 3D-printed 
HA-doped scaffolds to support the proliferation and 
chondrogenic differentiation of human umbilical cord 
blood-derived mesenchymal stem cells (hUCB-MSCs), 
also proved that gelatin/HA films can support growth 
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and phenotype of chondrocytes compared with gelatin 
alone [17]. Another studies also showed the promotion of 
the proliferation and migration of chondrocytes as well 
as chondrogenic differentiation of stem cells in hybrid 
materials containing HA [18–20].

Since Wang et al. [21] introduced PGS as a biodegrad-
able synthetic polyester, many researchers have inves-
tigated PGS-based copolymers and nanomaterials to 
provide tissue engineering scaffolds. However, the effect 
of combining Gel and HA in PGS: PCL copolymer on 
chondrogenesis has not been evaluated so far [22, 23]. 
In the present study, five different composite scaffolds 
including PGS, PGS/PCL, PGS/PCL/Gel, PGS/PCL/Gel/
HA (3% wt.), and PGS/PCL/Gel/HA(5%wt.) were synthe-
sized for cartilage regeneration applications.

Poly(glycerol sebacate)(PGS) is a biodegradable poly-
ester with flexible and elastomeric nature that has been 
extensively targeted in both soft and hard tissue engi-
neering as well as drug delivery systems, and wound 
healing [24, 25]. A two-step polycondensation of glycerol 
and sebacic acid is used to prepare PGS, and then it can 
be modified using copolymers, hybrid, composite, and 
nanocomposite materials [13, 24]. Since PGS possesses a 
high degradation rate, blending of PGS and polycaprolac-
tone (PCL) with a long degradation rate (1–2 years) [13] 
can increase the stability of PGS while improving PCL 
hydrophilicity, biological behavior, and cell adhesion [12]. 
In addition, PCL can mimic the anisotropic and viscoe-
lastic biomechanical properties of articular cartilage [1], 
which makes it a promising option for cartilage tissue 
engineering.

Gelatin (Gel), as a natural polymer, has been widely 
used in tissue engineering scaffolds due to its good bio-
compatibility, biosafety, and chemical similarities to the 
extracellular matrix (ECM) in the native tissues, and the 
presence of functional groups that allow facile chemical 
modifications with other biomaterials or biomolecules 
[26, 27].

Despite this widespread use, poor mechanical strength 
and rapid decomposition limit its application. In con-
trast, polycaprolactone (PCL), as a biodegradable, semi-
crystalline elastic polymer, has good mechanical strength 
and slow degradability but poor biocompatibility [26, 
28–31]. Obviously, the combination of Gel and PCL is an 
efficient approach to achieve optimal degradation rates 
while improving biocompatibility [32, 33].

After preparing copolymers and chemically character-
izing them, different concentrations of nano-hydroxyapa-
tite (nHA) particles were incorporated into copolymers, 
and physical, microstructural, and biochemical proper-
ties of composite scaffolds were characterized concerning 
morphology, nano-particle distribution, wettability, bio-
activity, and degradation. Finally, human adipose-derived 

mesenchymal stem cells were used for in vitro biological 
evaluations of the scaffolds to investigate cytocompat-
ibility, cell attachment, cell proliferation, and cartilage 
differentiation.

Materials and methods
Materials
Glycerol, sebacic acid, Gelatin, Ɛ-caprolactone (PCL), 
and hydroxyapatite nanoparticles (particle size < 100 nm) 
were purchased from Sigma-Aldrich (USA). Chloroform 
and Isopropanol were ordered from Dr. Mojallali Chemi-
cal Industries Complex (Iran). Hexamethylene diiso-
cyanate (HDI) was purchased from Merck (Germany). 
Phosphate buffer saline (pH 7.3) was obtained from the 
GIBCO. Adipose-derived mesenchymal stem cells were 
supplied from the Stem Cell Technology Research Center 
(Tehran, Iran) and used for cellular experiments.

Methods
Synthesis of PGS‑based copolymers and nanocomposite 
samples
PGS is synthesized by reacting equimolar sebacic acid 
and glycerol monomers through the polycondensation 
method. To prepare pure PGS samples, the equimo-
lar of glycerol (G) and sebacic acid (S) monomers (G:S) 
(1 mol:1 mol) and also a specific amount of catalyst are 
stirred at 120 °C in a chemical reactor for half an hour.

After this time, sebacic acid dissolves in glycerol and 
melts and pure PGS resin is obtained. Then dissolve 
a certain amount of PGS and PCL in DMSO at room 
temperature for 24  h. Synthesized pre-polymers of PGS 
and PGS- PCL were shown in Fig.  1. Different physi-
cal forms in this figure can show the observable influ-
ence of ε-caprolactone in the PGS structure. Synthesized 
polymers were totally dissolved in Chloroform and were 
precipitated in n-Hexane. This process was performed 
several times for removing unreacted monomers and 
residual catalysts.

To prepare PGS- PCL-Gelatin pre-polymer, dissolve 
gelatin in 10% acetic acid in a container and add it to the 
PGS- PCL polymer solution on the stirrer at room tem-
perature for 24 h.

Furthermore, nanocomposite samples are also syn-
thesized according to the above method. First, a specific 
amount of hydroxyapatite nanoparticles (3 and 5 w.t%) is 
dissolved in DMSO by using an ultrasonic bath (15 min), 
and then desired weight ratios of copolymers were added 
to the mixture and homogenized using a Hielscher 
(UP100H) homogenizer to prepare scaffolds containing 3 
and 5% (w/w) of HA nanoparticles (all of volume amount 
of solvents was 10 cc).
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Scaffold fabrication method
Different weight ratios of synthesized copolymers to 
PGS (PGS: PCL: Gel) were set at 100:0:0, 60:40:0, and 
60:20:20, and dissolved in chloroform/ HDI (4:1 v/v) 
solvent at 10% (w/v) polymer concentration, overnight. 
The summary of these desired concentrations and their 
abbreviations were shown in Table 1.

To prepare nanocomposite blends, 3 and 5% w.t of 
HA nanoparticles were added to PGS: PCL: Gel copoly-
mers. To prepare porous polymeric and nanocompos-
ite scaffolds, catalyst 1,4 Tin octanoate (10  ppm) was 
added to each of the polymer compounds and after 
half an hour when they were well mixed together, 
each of the samples was mixed with a specific amount 
of salt (particle size of NaCl was about more than 100 
micron). Then pour it into the mold and let the samples 
dry completely. After removing them from the mold, 
we put them in distilled water for a week to remove the 
salt completely.

Evaluation of scaffold properties
Scanning electron microscopy (SEM)
Morphology, pore size, and nanoparticles distribution of 
PGS/PCL, PGS/PCL/Gel, PGS/PCL/Gel/HA (3% wt.), 
and PGS/PCL/Gel/HA (5% wt.) scaffolds were examined 
by scanning electron microscopy (TESCAN, MIRA III 
model). The samples were mounted on aluminum stubs 
and coated with a thin layer of gold. In addition, the 

morphology and adhesion of the cells on the scaffolds 
were identified by SEM.

Energy‑dispersive X‑ray spectroscopy (EDX)
Mapping tools are applied for researching Calcium (Ca), 
Phosphorus (P), and Oxygen(O) atoms as the main ele-
ments in the HA nanoparticles. For this purpose, EDX 
(TESCAN, MIRA II SAMX detector model) was used 
as a complementary test to investigate the morphology, 
elemental distribution, and qualitative microanalysis of 
the samples.

Scaffold swelling
The swelling behavior of five composite scaffolds was 
determined by soaking them in PBS (pH 7.4) solution 
at 37 °C. The initial weight of the samples was measured 
and noted as W0, then the scaffolds were placed in PBS 
and the weight of swollen scaffolds (Ws) was measured 
after the removal of extra PBS by filter paper. The per-
centage of PBS absorption of the scaffolds was calculated 
according to the following equation after 24 h [34]:

Contact angle
The water contact angle investigates the surface hydro-
philicity behavior of the prepared scaffold. The contact 
angle was measured using a contact angle measuring sys-
tem (CAG-20 SE, JIKAN) using four microliter droplets 
of deionized water on the scaffolds. The angle between 
the water droplet and scaffold surface was measured after 
20 s at room temperature (Image J software) and reported 
as the contact angle.

Scaffold degradation
The scaffold degradation rate is a critical factor in tis-
sue engineering that should be coordinated with tissue 
regeneration [35]. Hydrolytic degradation of samples 

(1)Swelling rate (%) =
Ws −W0

W0

× 100

Fig. 1  The fabricated scaffolds by salt leaching method for cell seeding, A(PGS), B(PGS/PCL), C(PGS/PCL/Gel), D(PGS/PCL/Gel/HA 3%), and E(PGS/
PCL/Gel/ha 5%)

Table 1  Summarized desired concentrations of the polymers 
and their abbreviations

Sample PGS PCL Gelatin HA

PGS 100 0 0 0

PGS/PCL 60 40 0 0

PGS/PCL/Gel 60 20 20 0

PGS/PCL/Gel/HA 60 20 20 3

PGS/PCL/Gel/HA 60 20 20 5
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was assessed by measuring the initial weights of a spe-
cific size (10 mm × 10 mm × 15 mm) of polymeric scaf-
folds (W0) followed by immersing them in 20 ml of PBS 
solution in a shaker incubator at 37  °C (Heidolph) for 
desired time intervals (1, 3, 7, 14,28 and 40 days). After 
each period, the liquid was removed and scaffolds were 
washed with deionized water 3 times for 15  min and 
dried in a vacuum oven. Then, the weights of scaffolds 
were measured (Wt), and their degradability was calcu-
lated according to weight loss by the following formula 
[36]:

Mechanical properties of scaffolds
To measure mechanical features (compressive test), rec-
tangular sections of scaffold samples with a thickness of 
9  mm were cut by scalpel blade at size11 × 9 mm2. The 
compressive test was carried out by a mechanical device 
(SANTAM, STM-20, Korea) at speed of 2  mm/min at 
ambient temperature.

Verification of cellular properties
Cell culture and seeding
Human adipose-derived mesenchymal stem cells (h 
ADSCs) were supplied from the Iranian Biological 
Resource Center and cultured in a Dulbecco’s Modified 
Eagle’s Medium (DMEM; BIOSERA, USA)/F12 contain-
ing 10% fetal bovine serum (FBS; Gibco, USA), 100 U/
mL penicillin and 100  µg/ml streptomycin (Invitrogen) 
at 37 °C and 5% CO2 in 95% humidity.hADSCs were cul-
tured until reaching a confluence between 70 and 80%. 
The culture medium was changed every 3  days. Four 
groups of scaffolds including PGS, PGS/PCL/Gel, PGS/
PCL/Gel/HA3%, and PGS/PCL/Gel/HA5% in three rep-
licates were placed in 1 cm × 1 cm wells of 12-well plates 
in DMEM F-12 medium and fourth passage culture of 
cells (5 × 105 cells/cm2) was seeded on the scaffolds and 
cultured in the proliferation culture medium for desired 
times (1,7 and 14 days). The culture medium was changed 
every 3 days.

Before seeding the cells on the scaffold, a small amount 
of medium was poured into each well containing the 
scaffold and placed in an incubator (BINDER, Ger-
many) overnight so that the cells can better adhere to the 
scaffolds.

Cell attachment
The morphology and adhesion of the ADSCs on PGS, 
PGS/PCL, PGS/PCL/Gel, PGS/PCL/Gel/HA3%, and 

(2)Degradation(%) =
W0 −Wt

W0

× 100

PGS/PCL/Gel/HA5% scaffolds were identified by SEM 
(TESCAN, MIRA III model) on day 3 after cell seeding.

Cell viability test (MTT)
The cytotoxicity of the scaffolds was evaluated using an 
MTT assay (3-[4, 5-dimethlythiazol-2- yl]-2, 5-diphe-
nyl tetrazolium bromide). After 1,7 and 14 days of seed-
ing cells on scaffolds, 10 mg MTT was dissolved in 2 ml 
sterile PBS at a concentration of 5 mg/ml, added to the 
wells (90  µl medium /10  µl MTT solution), and incu-
bated for 4 h at 37 °C and 5% CO2 in 95% humidity. The 
formazan complex formed during the incubation time 
was dissolved using 100  µl DMSO (dimethyl sulphox-
ide). PGS scaffolds were used as controls. The absorption 
of the obtained solutions was monitored by measuring 
at 570 nm with an ELISA reader. In this study, the MTT 
assay was performed on days 1, 7, and 14 of cell seeding, 
with 3 replicates for each day.

RNA isolation and real‑time PCR
After in  vitro cultivation for 21  days, total RNA was 
extracted from the cell-scaffold constructs using a stand-
ard TRIzol procedure (Kiazist, Iran), according to the 
manufacturer’s protocol, and the concentration and 
purity of the RNA were determined using a NanoDrop 
ND-2000 spectrophotometer (Thermo Fisher, USA). 
The mRNA was reverse-transcribed into cDNA using an 
Easy cDNA Synthesis Kit (Parstous, Iran). The expres-
sion levels of genes encoding collagen II, aggrecan, Sox9, 
and Osteocalcin were quantified using RT-PCR on a 
Real-time PCR thermocycler (ABI Stepone, USA). The 
sequence of primers (Sinaclon, Iran) that we used in real-
time PCR was as Table 2.

The mRNA levels of genes encoding collagen II, aggre-
can, and Sox 9 were all normalized to the value of glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) as an 
internal control. Real-time PCR was performed in one 
step using SYBR Green Master Mix (SYBR Master with 
high Rox (2X), Addbio, Korea) under the following con-
ditions: an initial denaturation (95 °C for 5 min) followed 

Table 2  Primer sequences for RT-PCR

Primer Name Forward sequence Reverse sequence

AGGRECAN CCT​CAC​CAT​CCC​CTG​CTA​T GGG​TAG​TTG​GGC​AGT​
GAG​ACC​

Col II ACC​AGG​ACC​AAA​GGG​ACA​
GAA​

GGG​CAC​CTT​TTT​CAC​CTT​
TGT​

SOX9 AGA​AGG​AGA​GCG​AGG​AGG​
ACA​

CTT​GAC​GTG​CGG​CTT​GTT​
CTT​

Osteocalcin GAA​GCC​CAG​CGG​TGCA​ CAC​TAC​CTC​GCT​GCC​CTC​C

GAPDH CTT​TGG​TAT​CGT​GGA​AGG​AC GCA​GGG​ATG​ATG​TTC​TGG​
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by 40 cycles of denaturation (95  °C for 15  s), annealing 
(60 °C for 15–20 s), and extension (72 °C for 30 s). To ver-
ify the reliability of the results obtained, each sample was 
analyzed in triplicate.

Results
Morphological characterization and elemental distribution 
of scaffolds
Since the morphological characteristics of the scaffolds 
affect their cellular, mechanical, and thermal behaviors, 
SEM images from surfaces of PGS/PCL, PGS/PCL/Gel, 

and PGS/PCL/Gel/HA with different amounts of nano-
particle (3% and 5%) were investigated and shown in 
Fig. 2. The results showed porous scaffolds with intercon-
nected pores and irregular shapes. As shown in Fig. 2 HA 
nanoparticles show a monotonous dispersion and excel-
lent adhesion inside the polymeric matrix, indicating a 
suitable synthesis method.

In addition, the mapping analysis shows the disper-
sion of calcium (Ca), phosphorus (P), and oxygen (O) 
atoms as the main elements in HA nanoparticles, 
so that the atomic percentage of Ca, P, and O in the 

Fig. 2  Scanning electron microscopy images of scaffolds fabricated by salt leaching method in the surface, at 5kx magnification. a PGS/PCL b PGS/
PCL/Gel c PGS/PCL/Gel/HA 3% d PGS/PCL/Gel/HA 5%. SEM images show porous scaffolds with irregular shapes, and HA nanoparticles
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samples increased with the increase in the percentage 
of HA nanoparticles. Figure  3A and B represent the 
dispersion of these atoms in PGS/PCL/Gel/HA 3% and 
5%, respectively.

Hydrophilicity behavior of scaffolds
The hydrophilicity of five composite scaffolds, as an 
important factor in biocompatibility and biodegra-
dability, was investigated using contact angle analysis 

Fig. 3  SEM/EDX-Mapping of A) PGS/PCL/Gel/HA 3% sample and B) PGS/PCL/Gel/HA 5% sample a SEM image b calcium (Ca) atoms c phosphorus 
(P) atoms d oxygen (O) atoms and e The combination of elements
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[37–39]. The average contact angles for each sample 
after 20 s have been presented in Fig. 4A. According to 
the results, the PGS and PGS/PCL/Gel/HA 5% scaffolds 
as the most hydrophilic samples show a lower contact 
angle among others. PCL with hydrophobic nature due 
to aliphatic groups causes an increase in contact angles 
[37], while gelatin is a natural hydrophilic polymer 
consisting of a large number of glycine, proline, and 
4-hydroxy proline residues, which provides a favorable 
physico-chemical microenvironment for cell adhesion 
and proliferation [40].

As shown in Fig.  4A, the contact angle of the PGS/
PCL/Gel sample is less than PGS/PCL sample, due to the 
hydrophilicity of gelatin.

On the other hand, the incorporation of hydroxyapatite 
nanoparticles with polar groups [41, 42], to the polymer 
mixture reduces the contact angle compared to the PGS/
PCL/Gel scaffold. Among two nanocomposite scaffolds, 
the incorporation of 5 wt% of HA nanoparticle shows a 
more significant effect in increasing the hydrophilicity 
of PGS/PCL/Gel copolymers, so that the contact angle 
reaches a value lower than the contact angle of the PGS 

Fig. 4  A Results from contact angle analysis, B The absorption of scaffolds in PBS after 24 h, C Hydrolytic degradation of scaffolds in PBS at time 
interval of 1, 3, 7, 14, 28 and 40 days. The statistical significant analysis paired t-test compared to control; *p < 0.05, and **p < 0.01
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scaffold. These results showed the effect of gelatin and 
HA nanoparticles on enhancing the hydrophilic proper-
ties of composite scaffolds.

The swelling process is defined as an increase in the 
volume of a gel or solid material due to liquid absorb-
ance. In polymers, swelling is the first step of inter-
action between liquid molecules and the polymeric 
network, which is usually followed by solving the poly-
mer chains [37]. The swelling behavior of the scaffold is 
a crucial parameter that can influence cell adhesion and 
growth [43].

As shown in Fig. 4B, after 24 h, the PBS absorption of 
all composite scaffolds has significantly increased com-
pared to the PGS scaffold as control. Results revealed 
that the PGS/PCL/Gel sample has the highest swelling 
percentage among others.

Hydrolytic degradation of scaffolds
The degradation behavior of polymeric scaffolds after 
tissue restoration is a critical feature that eliminates the 
need for secondary surgeries [43–45]. Since PGS has too 
fast degradation rate, PCL as a hydrophobic polymer 
with a low degradation rate, is a good candidate to con-
trol its degradation rate and mechanical stability in the 
body [46–49].

Figure  4C demonstrates the results of degradation 
during 40 days. Moreover, the combination of PCL with 
hydrophilic materials including Gelatin and HA nano-
particles increases the degradation rate [43]. Gelatin as a 
hydrophilic natural polymer enhances wettability, accel-
erates degradation, and improves cell recognition sites of 
PCL [12].

In this study, the degradation of pure PGS, PGS/PCL, 
PGS/PCL/Gel, and PGS/PCL/Gel/HA scaffolds with dif-
ferent contents of nanoparticles (3, 5 wt %) was investi-
gated. As shown in Fig.  4C, PGS/PCL/Gel composite 
scaffolds show the highest weight losses among others 
because of their swelling behavior. As expected, scaffolds 
with higher HA nanoparticle content (5 wt%) showed a 
higher degradation rate compared to PGS/PCL/Gel/HA 
3%, due to the hydrophilic nature of HA nanoparticles.

Mechanical properties of scaffolds
Cartilage is a composite load-bearing tissue found in 
animal and human joints [50]. Since ECM regeneration 
depends on the mechanical properties of the scaffold at 
both macroscopic and microscopic scales, evaluation of 
the mechanical properties is a critical factor for provid-
ing a stable structure and clinical application of the scaf-
fold [43].

The mechanical characteristics including compres-
sion strength (Fig.  5A), elongation at break (Fig.  5B), 
and module (Table  3) of composite scaffolds were 

investigated to assess the effect of the combination of 
PCL and Gelatin as well as HA nanoparticles in PGS-
based composites (Fig.  5). Considering dry scaffolds, 
the results revealed that compression strength of 
PGS/PCL/Gel and PGS/PCL/Gel HA3 wt % compos-
ites are higher than other scaffolds. On the contrary, 
the compression strength of PGS/PCL/Gel/HA 5% 
samples in the wet state shows a remarkable decrease 
(p-value ≤ 0.05) compared to PGS/PCL/Gel/HA 3% 
scaffolds, which can be attributed to the higher swelling 
in the scaffolds with 5% HA.

No significant changes (p-value > 0.05) were observed 
in compression strength between PGS, PGS/PCL, 
and PGS/PCL/Gel samples in dry condition, how-
ever as shown in Fig. 5A in wet state, the compression 
strength of PGS/PCL/Gel scaffolds showed a signifi-
cant decrease (p-value ≤ 0.05) compared with PGS, and 
PGS/PCL samples. Additionally, there is considerable 
difference (p ≤ 0.05) between PGS/PCL/Gel, PGS/PCL/
Gel/HA 3%, and PGS/PCL/Gel/HA 5% samples, in the 
wet state.

As shown in Fig.  5B, the addition of PCL to PGS is 
associated with a significant decrease (p-value ≤ 0.01) in 
elongation in the dry state, due to the toughness of the 
PCL, while the addition of gelatin increases elongation 
(p-value ≤ 0.05). Meanwhile, by introducing HA nano-
particles, the elongation represents a significant increase 
(p-value ≤ 0.01), which shows a higher value than the 
elongation of pure PGS sample by the increase of HA 
percentage. However, in the wet state, the elongation of 
the samples in PGS, PGS/PCL, PGS/PCL/Gel, and PGS/
PCL/Gel/HA 3%/ scaffolds is not significantly different 
(p-value > 0.05), while with the increase of HA nanopar-
ticles to 5%, a sharp decrease in elongation is observed 
(p-value ≤ 0.01).

Cell viability and proliferation
To determine the effect of nanocomposite scaffolds 
on cytocompatibility and cell proliferation, the optical 
absorbance of ADSCs at 570  nm has been evaluated at 
the time intervals of 1, 7, and 14 days. According to MTT 
results, shown in Fig. 6, after 24 h, the engineered scaf-
folds in PGS/PCL group had inhibitory effects on cell 
proliferation. After that, on day 7, a significant increase in 
cell proliferation was observed in the PGS/PCL/Gel and 
PGS/PCL/Gel/HA 5% groups compared to the control 
samples (PGS scaffolds). Finally, after 14  days of treat-
ment, all groups except PGS/PCL/Gel/HA 5% showed 
higher cell proliferation, especially in the presence of 
3% HA. Based on these results, PGS-PCL-Gel and PGS-
PCL-Gel-HA 3% scaffolds can support more cell survival 
and proliferation in vitro over time.
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Cell attachment
The cell attachment and behavior of PGS, PGS/PCL, 
PGS/PCL/Gel, and PGS/PCL/Gel/HA (3 and 5%) scaf-
folds three days after cell seeding have shown in Fig.  7, 
revealing the interaction of cells with scaffolds as well as 
cell attachment and spreading of them inside the pores. 
Since hydrophilicity and functional groups at the scaf-
fold surface are the major factors in cell adhesion [51, 52], 
more cell-scaffold interaction can be observed at PGS/
PCL/Gel/HA 3%( g, h) and PGS/PCL/Gel/HA 5%,( i, j) 

Fig. 5  Mechanical properties A Compression strength, B Elongation at break of the scaffold; at dry (left) and wet (right) conditions; The values are 
expressed as means (± SEM; n = 3), (*p < 0.05), (** p < 0.01)

Table 3  Calculated modulus of fabricated scaffolds

Samples Modulus (MPa) (Dry) Modulus 
(MPa) (Wet)

PGS 0.69 0.39

PGS/PCL 0.71 0.65

PGS/PCL/Gel 1.13 0.16

PGS-PCL-Gel-HA 3% 1.13 0.45

PGS-PCL-Gel-HA 5% 1.30 0.43
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due to hydroxyapatite nanoparticles with polar groups. In 
addition, PGS/PCL/Gel scaffolds (e, f ) have a very similar 
trend in this property, due to the hydrophilicity of Gela-
tin. These findings are confirmed by contact angle analy-
sis in "Hydrophilicity behavior of scaffolds" section.

Cell differentiation
To evaluate the chondroconductive capability of the scaf-
folds, mRNA levels of Aggrecan, Sox9, Collagen II,as 
well as Osteocalcin were investigated after 21 days of cell 
seeding and results are depicted in Fig. 8.

The increase of Aggrecan expression as a marker of 
chondrogenic differentiation was observed after 21 days 
of seeding for scaffolds with 3 and 5 wt% of HA nano-
particles as compared to PGS and PGS/PCL/Gel samples 
(P < 0.05) (Fig. 8A).

The results showed an increase in the Sox9 gene 
expression level for samples with 3 and 5 wt% of HA 
nanoparticles as compared to PGS and PGS/PCL/Gel 
scaffolds revealing mineralization effect of nHA (P < 0.05) 
(Fig. 8B). As a result, mRNA analysis revealed significant 
cartilage-related gene expression for samples contain-
ing HA, which was consistent with other studies [18–20, 
53], indicating the chondroconductive properties of HA. 
In addition, normalized data in Fig. 8C show the highest 
increase in Col2 expression in PGS/PCL/Gel/HA 3% and 
5% scaffolds compared to other groups (P < 0.05), indi-
cating the role of nHA in chondrogenic differentiation. 
The mRNA expression of Sox9 was also in accordance 
with the results observed for Aggrecan and Col2 genes. 
As shown in Fig.  8D,the result of gene expression for 

Osteocalcin as a bone-related gene showed down-regu-
lation (P > 0.05).

Discussion
Poly (glycerol sebacate) (PGS), due to good mechani-
cal properties, high plasticity, easy processing, and good 
biocompatibility [54] has been used as tissue engineer-
ing scaffolds for many applications [55, 56]. In particu-
lar, PGS has shown promising results in nerve, cartilage, 
skin, bone, and cardiac tissue engineering. However, the 
low mechanical strength, almost poor hydrophilicity, and 
fast degradation of PGS via a surface erosion mechanism 
need to investigate methods to improve its properties. 
To overcome these issues, blending PGS with other pol-
ymers or fillers can result in a material with significant 
mechanical stability, hydrophilicity, and desired degrada-
bility rate [57–59].

For example, creating copolymers with PCL can 
result in a material with both the strength and elastic-
ity of PCL, while changing the degradation time slightly 
to fit the scaffold needs [5]. Rostamian et al. indicated 
that PGS-co-PCL scaffolds possess promising applica-
tions for soft tissue engineering, due to adjusting the 
general features of PGS [37]. In another study by Gaha-
rwar et al., nanocomposites of PGS and CNTs demon-
strated that covalent crosslinks between CNTs and PGS 
considerably enhanced the mechanical properties of 
PGS [60]. Aghajan et  al. prepared a PGS-based nano-
composite scaffold of gelatin, graphene oxide, and clay 
nanoparticles through in situ polymerization [45]. Fur-
thermore, in a study by Chen et al., the incorporation of 

Fig. 6  In vitro evaluation of human mesenchymal stem cells survival and proliferation on 1, 3, and 14 days after cell seeding. The statistically 
significant analysis paired t-test compared to control cells. *p < 0.05, and **p < 0.01
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Fig. 7  Scanning electron microscopy images of human adipose derived mesenchymal stem cells seeded on the scaffolds 3 days after cell seeding 
(a&b) PGS, (c&d) PGS/PCL, (e&f ) PGS/PCL/Gel, (g&h) PGS/PCL/Gel/HA 3%, (i&j) PGS/PCL/Gel/HA 5%
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halloysite nanotubes into PGS could modify the physi-
cal properties of PGS and provide proper conforma-
tion and stable mechanical behavior, as well as reduce 
its degradation rate [61]. Zhao et  al. reported that the 
addition of silica glass particles (SC) into PGS enhances 
the mechanical properties and hydrophilicity of the 
PGS-SC hybrid elastomers compared with PGS [62].

Also, Lau et  al. showed that hydrophilicity and deg-
radation rate, as well as cell viability, were improved 
significantly by incorporating β-tricalcium phosphate 
(β TCP) within PGS [63]. Our results in confirmation 
of these studies show that the addition of PCL and HA 
nanoparticles is associated with an increase in mechan-
ical properties, adjustment of hydrophilicity and deg-
radation rate of scaffolds. A large body of evidence has 
shown the combination of synthetic and natural poly-
mers as well as the addition of hydroxyapatite nanopar-
ticles to improve the differentiation of stem cells into 
chondrocytes. For example, gelatin as the hydrolysate 
of collagen, possesses excellent biocompatibility, low 
immunogenicity, and appropriate biodegradability. It 
can provide interactions with stem cells through the 
collagen-binding proteins, and thereby promotes cell 
proliferation, adhesion, and migration [17, 64–67].

Regarding to PCL, in a study by Wise et  al., the ori-
ented electrospun PCL scaffolds induced chondrogenic 
markers in MSCs and enhanced chondrogenesis [68]. The 
same results also were observed in a study by Ousema 
et  al., in which 3D woven PCL scaffolds could promote 
chondrogenesis while maintaining favorable mechani-
cal characteristics, without eliciting pro-inflammatory 
cytokine [69]. In addition, poly (vinyl alcohol)/polycap-
rolactone (PVA/PCL) nanofiber scaffolds revealed BM-
MSC chondrogenic differentiation and proliferation 
in vitro and in vivo [70].

Hong et  al., developed 3D-printed HA-doped, 
enzyme-crosslinked gelatin scaffolds, and demon-
strated the capability of the scaffolds to support the 
proliferation and chondrogenic differentiation of 
human umbilical cord blood-derived mesenchymal 
stem cells (hUCB-MSCs). Jiang and co-workers also 
proved that a gelatin/HA film can support growth 
and preserves the phenotype of chondrocytes com-
pared with gelatin alone [17]. Jamal et  al. also showed 
the promotion of the proliferation and migration of 
chondrocytes in HA-based colloidal gels [18]. Hybrid 
materials containing HA also showed chondrogenic dif-
ferentiation of stem cells. For example, Spadaccio and 

Fig. 8  Gene expression profile of chondrogenic markers A Aggrecan, B Sox9, and C Col2 D Osteocalcin on PGS and PGS/PCL/Gel, PGS/PCL/Gel/HA 
3 & 5%; the results are averages of three independent experiments,* p-value ≤ 0.05
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co-workers developed poly-L-lactic acid/HA electro-
spun nano-composites which induced chondrogenic 
differentiation of human MSCs [19]. In a recent report, 
Calabrese et al. developed gelatin/HAP hybrid materi-
als and demonstrated the chondrogenic differentiation 
of stem cells [20]. This pattern of enhanced differentia-
tion into cartilage with increased expression of collagen 
II, aggrecan, and Sox9 genes, and decreased expression 
of Osteocalcin is also observed in our results, which 
demonstrates the role of composite compounds of nat-
ural and synthetic polymers and HA nanoparticles in 
the differentiation of stem cells into chondrocytes.

In this study, composite porous scaffolds were fabri-
cated with PGS, PCL and Gelatin with different ratios of 
hydroxyapatite nanoparticles (3% wt. and 5% wt. nHA) 
by salting-out method. The results showed that PGS/
PCL/Gel/HA scaffolds had great potential for cartilage 
regeneration. Since, porous structure is essential for the 
transportation of nutrient/gas and consecutively for cell 
response [17], our polymeric composites could be fabri-
cated into 3D porous scaffolds with appropriate porosity 
according to SEM images.

The degradation data demonstrate that the degradation 
rate of PGS/PCL scaffolds was significantly slower than 
that of PGS scaffolds. This degradation rate is consistent 
with the regeneration of the extracellular matrix (ECM) 
and restoration of mechanical integrity. Thus, the combi-
nation of these polymers fulfills the initial requirements 
for engineering scaffolds in cartilage regeneration.

Based on the mechanical characterization of the scaf-
folds, the addition of PCL to PGS is associated with a 
considerable decrease in the scaffolds’ elongation in the 
dry state, which is due to the toughness of the PCL. How-
ever, the addition of gelatin increases elongation. Mean-
while, by introducing HA nanoparticles, the elongation 
represents a significant increase, and this rise reaches a 
higher value than the elongation of pure PGS scaffolds 
by the increase of HA percentage. However, in the wet 
state, the elongation of the samples in PGS, PGS/PCL, 
PGS/PCL/Gel, and PGS/PCL/Gel/HA 3%/ scaffolds is 
not significantly different, while with the increase of HA 
nanoparticles to 5%, a sharp decrease in elongation is 
observed. Regarding compressive strength in dry state, it 
can be seen that the addition of gelatin and HA increases 
it compared to PGS and PGS/PCL samples. While this 
trend is reversed in wet mode.

As can be seen, Gelatin as a biocompatible natural pol-
ymer can improve MSCs attachment on the scaffolds due 
to interaction with stem cells through the collagen bind-
ing proteins. According to the results, the PGS/PCL/Gel 
and PGS/PCL/Gel/HA 3% scaffolds could support more 
cell survival and proliferation after 14 days which is con-
firmed by other studies [60, 70].

Despite, several studies have shown the role of Osteo-
calcin (OC) in cartilage and bone development by the 
differentiation of stem cells into chondrocytes to form 
a cartilage matrix as a scaffold for mineralization, OC 
is a marker of mature osteoblasts that is not found in 
resting zone or adult cartilage. Therefore, in this study, 
we investigated the expression of OC by ADSCs, which 
confirms cartilage differentiation instead of bone differ-
entiation [71].

According to previous studies, SOX9, COLII, Aggre-
can, and COMP as cartilage-related genes were up-regu-
lated in hMSCs undergoing chondrogenic differentiation, 
while osteogenic genes (COLI, Osteocalcin) were down-
regulated [72].

The expression of collagen type II and aggrecan as spe-
cific and main components of cartilage matrix are regu-
lated by three Sox transcription factors, including Sox5, 
Sox6 and Sox9 [73].

According to our results, there is an remarkable 
increase in mRNA levels of collagen II, aggrecan, and 
Sox9 as markers of chondrogenic differentiation, and a 
significant decrease in Osteocalcin expression, which is 
consistent with previous studies [17].

Conclusion
In the present study, PGS/PCL/Gel scaffolds as new 
biomaterials have been synthesized with and without 
hydroxyapatite nanoparticles to compare with pure PGS 
and PGS/PCL samples. The morphology of all nanocom-
posites was evaluated by SEM and EDX images, dem-
onstrating proper dispersion of nanoparticles within 
polymeric scaffolds. As shown by contact angle meas-
urement, the hydrophilic behavior was influenced by 
incorporating Ɛ-caprolactone which causes a decrease, 
and Gelatin and HA nanoparticles cause an increase in 
the hydrophilicity of the copolymers. Furthermore, both 
PGS/PCL/Gel samples with 3 and 5% HA possess appro-
priate biocompatibility and enhanced cell proliferation 
and attachment. Our results also proved the differentia-
tion of hADSCs according to mRNA expression levels of 
collagen II, aggrecan, and Sox9. It can be concluded that 
PGS-based nanocomposites, including 3 and 5% HA, are 
considered an appropriate scaffold for cartilage regenera-
tion applications.
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