
Di et al. Biological Procedures Online           (2022) 24:13  
https://doi.org/10.1186/s12575-022-00175-x

RESEARCH

Single‑cell and WGCNA uncover a prognostic 
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Abstract 

Background:  Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Single-cell 
transcriptome sequencing (scRNA-seq) can provide accurate gene expression data for individual cells. In this study, 
a new prognostic model was constructed by scRNA-seq and bulk transcriptome sequencing (bulk RNA-seq) data of 
CRC samples to develop a new understanding of CRC.

Methods:  CRC scRNA-seq data were downloaded from the GSE161277 database, and CRC bulk RNA-seq data were 
downloaded from the TCGA and GSE17537 databases. The cells were clustered by the FindNeighbors and FindClusters 
functions in scRNA-seq data. CIBERSORTx was applied to detect the abundance of cell clusters in the bulk RNA-seq 
expression matrix. WGCNA was performed with the expression profiles to construct the gene coexpression networks 
of TCGA-CRC. Next, we used a tenfold cross test to construct the model and a nomogram to assess the independence 
of the model for clinical application. Finally, we examined the expression of the unreported model genes by qPCR and 
immunohistochemistry. A clone formation assay and orthotopic colorectal tumour model were applied to detect the 
regulatory roles of unreported model genes.

Results:  A total of 43,851 cells were included after quality control, and 20 cell clusters were classified by the FindClus-
ter () function. We found that the abundances of C1, C2, C4, C5, C15, C16 and C19 were high and the abundances of 
C7, C10, C11, C13, C14 and C17 were low in CRC tumour tissues. Meanwhile, the results of survival analysis showed 
that high abundances of C4, C11 and C13 and low abundances of C5 and C14 were associated with better survival. 
The WGCNA results showed that the red module was most related to the tumour and the C14 cluster, which contains 
615 genes. Lasso Cox regression analysis revealed 8 genes (PBXIP1, MPMZ, SCARA3, INA, ILK, MPP2, L1CAM and FLNA), 
which were chosen to construct a risk model. In the model, the risk score features had the greatest impact on survival 
prediction, indicating that the 8-gene risk model can better predict prognosis. qPCR and immunohistochemistry 
analysis showed that the expression levels of MPZ, SCARA3, MPP2 and PBXIP1 were high in CRC tissues. The functional 
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Introduction
Colorectal cancer (CRC) has the third highest incidence 
and the second highest mortality worldwide [1]. The five-
year survival rate is less than 15%, which is linked to the 
spread of the cancer and the failure of early diagnosis [2]. 
Alterations at the genetic and epigenetic levels have been 
recognized as major players in CRC initiation and devel-
opment [3]. Therefore, a better understanding of CRC 
molecular mechanisms is urgently needed to develop 
CRC diagnosis and better treatment strategies.

In recent decades, bulk transcriptome sequencing 
(bulkRNA-seq) has been a powerful technique to identify 
new molecular biomarkers and improve our understand-
ing of tumour development. For instance, Xu M et  al. 
revealed the functions of SATB2-AS1 in CRC progres-
sion, suggesting new biomarkers and therapeutic targets 
in CRC [4]. In addition, our previous study identified a 
4-gene prognostic model predicting survival in CRC [5]. 
However, traditional RNA-seq is mainly concentrated 
on the “average” expression of all cells, an approach 
that cannot detect the molecular complexity and diver-
sity of tumour cells in a sample. Currently, single-cell 
RNA-sequencing (scRNA-seq) technology elucidates the 
molecular distinction of all cell type compositions and 
enables cell population profiling of tumours at single-
cell resolution. scRNA-seq provides deeper insights into 
transcriptome expression profiles at a single-cell resolu-
tion and is applied to develop personalized therapeutic 
strategies that are potentially useful in cancer diagno-
sis and therapy resistance during cancer progression 
[6, 7]. Using scRNA-seq, Siel Olbrecht et  al. identified 
marker genes specific for stromal cell phenotypes pre-
dicting overall survival in high-grade serous tubo-ovar-
ian cancer patients [8]. Additionally, Katzenelenbogen 
Y et  al. revealed an immunosuppressive role of TREM2 
by coupling scRNA-Seq and intracellular protein activ-
ity in cancer [9]. Therefore, to comprehensively identify 
the predictive biomarkers and novel molecular targets 
of gene therapy for CRC, utilizing bulkRNA-seq and 
scRNA-seq analysis could precisely stratify patients and 
recognize patients.

In this study, we aimed to construct a prognostic model 
for patients with CRC by integrating scRNA-seq and bulk 

RNA-seq data. The capability of this model in predict-
ing the prognosis of CRC was validated. Furthermore, 
the results of qPCR and immunohistochemistry staining 
assays revealed that MPZ, SCARA3, MPP2 and PBXIP1 
were upregulated in CRC tissues. Functional stud-
ies showed that the over-expression of MPZ, SCARA3, 
MPP2 and PBXIP1 could promote the colony formation 
abilities of CRC cells in vitro and in vivo. We believe our 
findings will provide a potential prognostic model and 
therapeutic targets for CRC.

Methods
Data download
CRC scRNA-seq data were downloaded from the GEO 
Database, accession number GSE161277, which included 
13 samples. CRC bulk RNA-seq data were downloaded 
from TCGA (431 tumour and 41 normal samples) and 
GSE17537 (55 tumour samples) databases.

scRNA‑seq data processing and cell type identification
First, the scRNA-seq data were filtered by setting each 
gene to be expressed in at least 3 cells, and each cell 
expressed at least 250 genes. Second, we calculated 
the proportions of mitochondria and rRNA through 
the PercentageFeatureSet function. We ensured that 
the genes expressed in each cell were between 100 and 
7500, the mitochondrial content was less than 35%, and 
the Unique Molecular Identifiers (UMI) of each cell was 
more than 1000; as a result, 43,851 cells were obtained. 
Fig. S1A-D shows the quality control charts before and 
after filtration.

Then, we normalized the data of the 13 samples sepa-
rately by log-normalization. The FindVariableFeatures 
function was used to find hypervariable genes (variable 
features were identified based on variance-stabilizing 
transformation (“vst”)), and then, the batch effect of the 
samples was removed using the FindIntegrationAnchors 
function of the canonical correlation analysis (CCA) 
method. Furthermore, we used the IntegrateData func-
tion to integrate the data, the ScaleData function to 
scale all genes, and principal component analysis (PCA) 
dimensionality reduction to find anchor points (Fig. S1E). 
We selected dim = 30, and the cells were clustered by 

experiment results indicated that MPZ, SCARA3, MPP2 and PBXIP1 could promote the colony formation ability of CRC 
cells in vitro and tumorigenicity in vivo.

Conclusions:  We constructed a risk model to predict the prognosis of CRC patients based on scRNA-seq and bulk 
RNA-seq data, which could be used for clinical application. We also identified 4 previously unreported model genes 
(MPZ, SCARA3, MPP2 and PBXIP1) as novel oncogenes in CRC. These results suggest that this model could potentially 
be used to evaluate the prognostic risk and provide potential therapeutic targets for CRC patients.

Keywords:  Colorectal cancer, Single cell, WGCNA, Prognostic model
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the FindNeighbors and FindClusters function (Resolu-
tion = 0.4), and 20 clusters were obtained. Furthermore, 
we downloaded the marker genes of human cells from 
the CellMarker website (http://​biocc.​hrbmu.​edu.​cn/​
CellM​arker/) [10] and selected the list of tissue and cell 
marker genes related to colon, internal crypt, gut, periph-
eral blood and blood. The FindCluster () function was 
used to cluster cells.

Abundance analysis of clusters in bulk RNA‑seq samples
To assess the correlation between cell types obtained by 
scRNA-seq and bulk RNA-seq, CIBERSORTx (version R) 
was applied to detect the abundance of cell clusters in the 
bulk RNA-seq expression matrix, which is expressed as 
log2(TPM + 1) normalized.

WGCNA analysis
WGCNA with the expression profile using the R pack-
age “WGCNA” was used to construct the gene coex-
pression networks of TCGA-CRC (431 tumour and 41 
normal samples). The network construction process 
mainly includes the following steps: 1. Define the simi-
larity matrix. 2. Select the weight coefficient β = 12 to 
convert the similarity matrix into an adjacency matrix. 
3. Transform the adjacency matrix into a topological 
overlap matrix (TOM). 4. Layer the dissTOM based on 
Tom Cluster to obtain a hierarchical clustering tree. 5. A 
dynamic tree-cut method was used to identify modules 
from the hierarchical clustering tree. 6. We calculated the 
module eigengenes (MEs) for each module, where MEs 
represent the overall expression level of the module. The 
Pearson correlation coefficient between the MEs of each 
module was calculated, and the 1-Pearson correlation 
coefficient was defined as the average distance between 
the MEs of each module. The MEs of all modules were 
clustered using the average linkage hierarchical cluster-
ing method, and the minimum value (genome) was set to 
100. The modules with high similarity were combined to 
obtain a coexpression network.

Cell trajectory and cell communication analysis
To characterize the underlying processes of functional 
changes and identify potential lineage differentiation 
between different clusters, Monocle2 was used to per-
form a pseudotemporal analysis of cellular evolution. 
The Monocle2 algorithm was used to calculate the pseu-
dotime, and the resulting pseudotime was scaled from 0 
to 1. Then, the hub genes in each cluster were identified 
by the “differentialGeneTest”. The expression profile was 
reduced to 2 dimensions (max_components = 2) by the 
“reduceDimension” function and the DDRTree method. 

Then, the “orderCells” function was used to sort the cells 
and assign “pseudotime” values.

To study the communication interaction between cells 
and identify the mechanism of communication mole-
cules at single-cell resolution, the R package “CellChat” 
was used to perform cell–cell communication correlation 
analysis.

Construction of the prognostic risk model
We calculated the risk score for each patient using the 
following formula:

i refers to the expression level of the gene, and beta is 
the coefficient of the receptor–ligand pair of multivariate 
Cox regression. Based on the threshold (median value), 
patients were divided into high- and low-risk groups, sur-
vival curves were drawn using the Kaplan–Meier method 
for prognostic analysis, and the log-rank test was used to 
determine the significance of differences.

Tissue specimens
Fresh CRC tissues and adjacent normal tissues were col-
lected from the Department of Gastrointestinal Surgery, 
Zhongnan Hospital of Wuhan University. No patients 
received treatment before surgery, and all patients signed 
informed consent forms provided by Zhongnan Hospital. 
The primary tumour area and morphologically normal 
surgical margin tissue were immediately isolated from 
each patient by an experienced pathologist and stored in 
liquid nitrogen until use. The study was approved by the 
Zhongnan Hospital of Wuhan University (2,017,047).

Cell culture
The human CRC cell lines SW480 and SW620 were pur-
chased from the ATCC Cell Bank of the United States. 
SW480 and SW620 cells were grown in Leibovitz’s L-15 
medium (Sigma, Beijing, China) supplemented with 
10% foetal bovine serum (FBS) (Gibco, Grand Island, 
NY, USA), 2 mmol/l glutamine, 100 U/ml penicillin, and 
100  μg/ml streptomycin (Thermo Scientific, Waltham, 
MA, USA) in a 37 °C incubator without CO2.

Transfection and lentiviral transduction
Lentiviral expression vectors (pLKO.1-NC-GFP, pLKO.1-
MPZ-GFP, pLKO.1-SCARA3-GFP, pLKO.1-MPP2-GFP or 
pLKO.1-PBXIP1-GFP) and packaging plasmids (psPAX2 and 
pMD2. G) were used to construct MPZ-, SCARA3-, MPP2- 
or PBXIP1-interfering SW620 cell lines. Lentiviral expression 
vectors (pLVX-IRES-Neo-3xFlag, pLVX-MPZ-IRES-Neo-
3xFlag, pLVX-SCARA3-IRES-Neo-3xFlag, pLVX-MPP2-
IRES-Neo-3xFlag or pLVX-PBXIP1-IRES-Neo-3xFlag) and 

RiskScore = betai × Expi
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packaging plasmids (psPAX2 and pMD2. G) were used for 
overexpression of MPZ, SCARA3, MPP2 or PBXIP1 in the 
CRC cell line SW480. Cells were transfected with interfering 
expression or overexpression plasmids using Lipofectamine 
2000 (12,566,014, Invitrogen, Shanghai, China) following the 
manufacturer’s protocols. To generate the lentivirus, 293FT 
cells were cotransfected with psPAX2, pMD2G, pLKO.1-
MPZ-GFP, pLKO.1-SCARA3-GFP, pLKO.1-MPP2-GFP or 
pLKO.1-PBXIP1-GFP to interfere with expression. 293FT 
cells were cotransfected with pLVX-MPZ-IRES-Neo-
3xFlag, pLVX-SCARA3-IRES-Neo-3xFlag, pLVX-MPP2-
IRES-Neo-3xFlag or pLVX-PBXIP1-IRES-Neo-3xFlag for 
overexpression. Forty-eight hours after transfection, the 
lentiviral supernatants were collected and filtered through a 
0.45-μm filter. The lentiviruses were added to medium con-
taining 8 µg/ml polybrene (Sigma, St. Louis, MO, USA) and 
transduced into CRC cells according to the manufacturer’s 
instructions. Stable cells were selected for at least 1  week 
using PURO (P8230-25, Solarbio, Beijing, China) or G418 
(10,131,035, Invitrogen, Shanghai, China).

Total RNA extraction and quantitative real‑time PCR
Total RNA extraction was performed using RNA-easy 
Isolation Reagent (No. RC112-01, Vazyme, China). Then, 
quantitative real-time PCR (qRT‒PCR) was performed 
using the HiScript III 1st Strand cDNA Synthesis Kit 
(No. R312-01, Vazyme, China) and ChamQTM Universal 
SYBR® qPCR Master Mix (No. Q712-02, Vazyme, China) 
according to the manufacturer’s instructions. The primer 
sequences were as follows: MPZ Forward Sequence 
5’-3’: CTA​TCC​TGG​CTG​TGC​TGC​TCTT and Reverse 
Sequence 5’-3’: ACT​CAC​TGG​ACC​AGA​AGG​AGCA; 
SCARA3 Forward Sequence 5’-3’: CTC​CGA​AGA​CAT​
CTC​CTT​GACC and Reverse Sequence 5’-3’:CCA​GCT​
TCA​TGG​CAG​AAA​GAGC; MPP2 Forward Sequence 
5’-3’:GGC​ACA​CGT​ATT​GAC​TCC​ATCC and Reverse 
Sequence 5’-3’: GCC​TCG​ATG​AAC​ACC​ACG​TAAG; 
PBXIP1 Forward Sequence 5’-3’: ACG​CTC​TTC​CAG​
ACT​GAA​AGC​CAC​TGC and Reverse Sequence 5’-3’: 
TCC​CTG​GAC​TAC​TGT​GTC​TCCT; GAPDH Forward 
Sequence 5’-3’: GTC​TCC​TCT​GAC​TTC​AAC​AGCG and 
Reverse Sequence 5’-3’: ACC​ACC​CTG​TTG​CTG​TAG​
CCA. GAPDH served as an internal control.

Immunohistochemistry
An immunohistochemistry (IHC) staining SP kit (No. 
SP-9000, ZSGB-BIO, Beijing, China) was used for IHC, 
which was performed as previously described [5]. Anti-
MPZ (ab183868, Abcam, Shanghai, China) (1:200), anti-
MPP2 (1:200) (ab231634, Abcam, Shanghai, China) and 
anti-PBXIP1 (ab84752, Abcam, Shanghai, China) (1:200) 
were purchased from Abcam. Anti-SCARA3 (sc-365649, 

SANTA CRUZ, Shanghai, China) (1:200) was purchased 
from SANTA CRUZ. The magnification of the IHC 
images was 20 × .

Colony formation assay
Cells were seeded into 6-well plates at 1 × 103 cells per 
plate. The cells were mixed and then cultured for 10 days 
with culture medium containing L-15 with 10% FBS. The 
following criterion was considered for evaluating the 
results: clusters of ≥ 30 cells were counted as a colony.

Xenograft model tumour assay
Antitumor therapy in an orthotopic colorectal tumour 
model. The orthotopic CRC model was developed in 
female BALB/c nude mice as described previously [9]. 
Female BALB/c nude mice (4–5 weeks old) were anaes-
thetized by an intraperitoneal injection of ketamine-xyla-
zine solution. The abdomen was sterilized with alcohol 
swabs. A median incision was then made through the 
lower ventral abdomen, and the caecum was exterior-
ized. A suspension of 2 × 106 SW620-luc cells/SW480-luc 
cells in 50 µL serum-free DMEM containing 10 µg µL-1 
Matrigel was injected into the caecal wall using a 30 G 
needle (Hamilton Company, Reno, NV). To prevent leak-
age, a cotton swab was carefully held over the injection 
site for 1 min. The caecum was then returned to the peri-
toneal cavity, and the peritoneum and skin were closed 
with 5–0 suture. Tumour formation and growth were 
monitored using a Xenogen IVIS 200 imaging system 
(Caliper Life Sciences, MA). At the end of the experiment 
(after 4  weeks), the mice were euthanized by an intra-
peritoneal injection of 100  mg/kg pentobarbital sodium 
(Sigma, St. Louis, MO, USA).

Statistical analysis
All statistical analyses were performed using R software 
3.5.3 and GraphPad Prism v. 8.01 (GraphPad Software, 
La Jolla, CA, USA). Student’s t test was used to compare 
values between the test and control groups, and P < 0.05 
was considered significant.

Results
Dimensionality reduction clustering of CRC single‑cell data
To study the characteristics of different cell groups of 
CRC, we collected the scRNA-seq profiles of 43,851 
cells. As shown in the tsne map of 13 samples (Fig. 1A), 
the samples were mixed together. The tsne diagram 
of four patients (Fig.  1B) and tumour types (Fig.  1C) 
were also mixed together. Furthermore, the FindClus-
ter () function was used to cluster cells and obtain 20 
clusters (Fig.  1D). Next, we annotated the 20 clus-
ters by ssGSEA (Table  1) to 7 cell types (Fig.  1E) 
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(CD14 +  + CD16- monocytes, CD14 + CD16 + mono-
cytes, fibroblasts, memory B cells, memory T cells, 
red blood cells (erythrocytes) and thymic embryonic 
cells). The logfc = 0.35, Minpct = 0.15 and padj < 0.05 of 

FindAllMarkers were set to screen marker genes of the 
20 clusters. The expression levels of the top five marker 
genes with the most prominence in each subgroup are 

Fig. 1  The characteristics of different cell groups of CRC. A The tsne map of 13 mixed samples. B The tsne diagram of four patients and C tumor 
types are also mixed together. D The FindCluster () function was used to obtain 20 clusters. E Twenty clusters annotated to 7-cell types by ssGSEA.  
F The expression of the top five marker genes with the most prominence in each subgroup
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shown in Fig.  1F, and the results of the marker genes 
are shown in Supplementary Table S1.

To better interpret and distinguish these 20 clus-
ters, we analysed the cell types of the cluster marker 
genes. The results show the following: 1. Five clus-
ters (C7, C9, C11, C13 and C17) were annotated as 
CD14 +  + CD16- monocyte cells. We selected the first 
three marker genes to draw a violin diagram (Fig. 2A). 
At the same time, we performed KEGG annotation 
through the WebGestaltR package and screened the 
key pathways by FDR < 0.05 in these 5 clusters (Fig. 2B). 
2. Two clusters (C5 and C19) were annotated as 
CD14 + CD16 + monocyte cells (Fig. S2 A-B). 3. Three 
clusters (C1, C8 and C10) were annotated as memory 
T cells (Fig. S2 C-D). 4. Seven clusters (C0, C2, C3, C4, 
C6, C15 and C16) were annotated as red blood cells 
(erythrocytes) (Fig. S3 A-B). 5. C14 were annotated as 
fibroblast cells, C12 were annotated as memory B cells 
and C18 were annotated as thymic emigrant cells (Fig. 
S4). The results of the 20-cluster enrichment analysis 
are shown in Supplementary Table S2.

Table 1  Clusters annotate

seurat_clusters cell_type

C0 Red blood cell (erythrocyte)

C1 Memory T cell

C10 Memory T cell

C11 CD14 +  + CD16- monocyte

C12 Memory B cell

C13 CD14 +  + CD16- monocyte

C14 Fibroblast

C15 Red blood cell (erythrocyte)

C16 Red blood cell (erythrocyte)

C17 CD14 +  + CD16- monocyte

C18 Thymic emigrant cell

C19 CD14 + CD16 + monocyte

C2 Red blood cell (erythrocyte)

C3 Red blood cell (erythrocyte)

C4 Red blood cell (erythrocyte)

C5 CD14 + CD16 + monocyte

C6 Red blood cell (erythrocyte)

C7 CD14 +  + CD16- monocyte

C8 Memory T cell

C9 CD14 +  + CD16- monocyte

Fig. 2  The cell types of the cluster marker genes. A The first three marker genes to draw a violin diagram and B We screened the key pathways by 
FDR < 0.05 in these 5 clusters (C7, C9, C11, C13 and C17)
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Prediction and analysis of cellular cluster abundance based 
on TCGA databases
CIBERSORT was used to analyse the abundances of the 
20 clusters in TCGA-CRC databases. We found that the 
abundances of 13 clusters were significantly different 
between CRC tumour and normal tissues. The abun-
dances of C1, C2, C4, C5, C15, C16 and C19 were high 
and the abundances of C7, C10, C11, C13, C14 and C17 
were low in CRC tumour tissues (Fig.  3A). Meanwhile, 
the results of survival analysis showed that high abun-
dances of C4, C11 and C13 and low abundances of C5 
and C14 were associated with better survival (Fig. 3B). At 
the same time, we found a significant correlation between 
C14 and patient prognosis.

We applied WGCNA with the expression profile using 
the R package “WGCNA” to construct the gene coexpres-
sion networks of CRC patients. Pearson’s correlations 

were performed for all pairwise genes, and WGCNA was 
used to build a weighted coexpression network (Fig. 4A). 
We next calculated 5 as the optimal soft threshold for the 
adjacency computation. In the present study, the coex-
pression network conformed to the scale-free network, 
and we chose β = 12 to ensure that the network was 
scale-free (Fig. 4B).

Next, the expression matrix was transformed into an 
adjacency matrix, and then the adjacency matrix was 
transformed into a topology matrix. Based on TOM, 
we used the average-linkage clustering method to 
cluster genes and set 100 as the minimum number of 
genes in each module according to the standard of the 
hybrid dynamic clipped tree. We performed cluster 
analysis on the modules and merged the modules with 
closer distances into a new module (set height = 0.25, 
deepSplit = 3, minModuleSize = 100), and a total of 12 

Fig. 3  The abundance of 20 clusters in TCGA-CRC databases. A The abundance of C1, C2, C4, C5, C15, C16 and C19 was high, and the abundance 
of C7, C10, C11, C13, C14 and C17 was low in CRC tumor tissues. B The results of survival analysis showed that high abundances of C4, C11 and C13 
and low abundances of C5 and C14 were associated with better survival
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modules were obtained (Fig. 4C). In cluster analysis, the 
grey module represented a gene set that could not be 
aggregated into other modules. We further analysed the 
correlation between each module and the abundances of 
C4, C5, C11, C13 and C14 (Fig. 4D). The results showed 
that the red module was most related to the tumour and 
the C14 cluster. The red module contains 615 genes and 
is shown in Supplementary Table S3.

We chose the red module for more detailed analysis, 
and the R software package “WebGestaltR” was used 
for GO functional enrichment and KEGG pathway 
analysis (Supplementary Table S4). For the GO func-
tional enrichment: 1. A total of 237 gene ontologies 
were annotated with significant differences in biologi-
cal process (BP) (FDR < 0.05), and the top 10 are shown 
in Fig. 5A. 2. A total of 122 genes were annotated with 
significant differences in cellular components (CCs) 
(FDR < 0.05), and the top 10 are shown in Fig.  5B. 3. 
Fifty-nine gene ontologies were annotated with sig-
nificant differences in molecular function (MF) 
(FDR < 0.05), and the top 10 are shown in Fig. 5C. For 
KEGG pathway enrichment of marker genes, a total of 

28 pathways were significantly annotated (FDR < 0.05), 
and the results of the first 10 pathways are shown in 
Fig.  5D. These annotation results showed that these 
genes were closely related to tumorigenesis.

Cell communication analysis of key clusters
In multicellular organisms, the basic process of cell life 
activities depends on cell–cell interactions, and the 
communication between cells is mostly mediated by 
multisubunit protein complexes. Based on the above 
analysis results, we found that the C14 cluster plays an 
important role in the tumorigenesis of CRC and ana-
lysed the cellular communication between C14 and 
other clusters. We used CellCharts to analyse the cell 
communication among the 20 cell clusters, and the 
results are shown in Supplementary Table S5. Among 
the 20 clusters, there were high cell-to-cell correla-
tions in terms of the number and intensity of ligand–
receptor interactions (Fig.  6A). By extracting the 
ligand–receptor information of each cluster, we found 
that C14 affects other clusters through ligand recep-
tors; for example, C14 affects the C1 cluster through 

Fig. 4  We applied WGCNA to construct the gene coexpression networks of CRC patients. A A weighted coexpression network. B β = 12 to ensure 
that the network is scale-free. C A total of 12 modules were obtained. D The red module is most related to the tumor and C14 cluster
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HLA-C-CD8A and clusters C2, C7, C12, and C19 by 
APP-CD74. The effects were also found in C14 clusters 
by others, such as C13 and C16 clusters affecting C14 
via MDK-SDC2 (Fig. 6B).

Construction and evaluation of a prognostic risk model
Next, we performed Cox regression analyses among the 
615 candidate genes in the red module above. The R-pack-
age survival Cox function was used to carry out a univari-
ate Cox proportional hazards regression model, and 10 

genes were obtained (p < 0.001) (Supplementary Table S6). 
Then, Lasso regression was used to solve the multicollin-
earity problem during regression analysis and reduce the 

number of genes in the risk model. We used the glmnet 
package to perform Lasso Cox regression analysis and the 
change trajectory of each independent variable (Fig. 7A). 
As lambda gradually increases, the number of independ-
ent variable coefficients tends to gradually increase. Next, 
we used a tenfold cross test to construct the model and 
confidence interval under each lambda (Fig.  7B). The 
model was optimal when lambda = 0.0175, and 8 genes 
were chosen to construct a risk model.

The final 8-gene model is as follows:

The patients were stratified into high- and low-risk 
groups according to the best cut-off value of the risk 
score in TCGA-CRC databases. To investigate the 

RiskScore = 0.225 ∗ PBXIP1 + 0.311 ∗ MPZ + 0.065 ∗ SCARA3 − 0.212 ∗ INA + 0.136 ∗ ILK + 0.158 ∗ MPP2 + 0.024 ∗ L1CAM − 0.004 ∗ FLNA.

Fig. 5  GO functional enrichment and KEGG pathway analysis in the red module. A The top 10 significant differences in Biological Process. B The top 
10 significant differences in cellular components. C The top 10 significant differences in Molecular Function. D The results of the first 10 pathways
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diagnostic accuracy of the prognostic risk model, the 
areas under the time-dependent ROC curves (AUCs) 
were computed. The AUCs of the risk model for pre-
dicting 1-, 3- and 5-year survival were 0.72, 0.70 and 
0.65, respectively (Fig.  7C). In addition, patients with 

a high risk score presented significantly worse OS than 
those with a low risk score (Fig. 7D). To determine the 
accuracy and robustness of the model, we used the 
GSE17537 dataset as the training set. The AUCs of the 
risk model for predicting 1-, 3- and 5-year survival were 

Fig. 6  The cellular communication between C14 and other clusters. A Among the 20 clusters, there were high cell-to-cell correlations in terms 
of the number and intensity of ligand–receptor interactions. B The effects were also found in C14 clusters by others, such as C13 and C16 clusters 
affecting C14 via MDK-SDC2
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0.79, 0.83 and 0.69, respectively (Fig. 7E). The prognosis 
of the high-risk group was worse (Fig. 7F). We further 
performed correlation analysis of the 8-gene model 
among clinical factors and found that the model could 
significantly distinguish high- and low-risk groups by 
T stage, M stage, N stage, stage, age and cancer status 
(p < 0.05, Fig. 7G). These findings further show that our 
model has good predictive ability for some different 
clinical factors.

GSVA and TMB analysis between the low‑ and high‑risk 
groups
To explore the relationship between the risk score and 
biological function in different samples, we performed 
ssGSEA using the “GSVA” R package. We calculated the 
scores on different features and obtained the correspond-
ing ssGSEA score of each sample (Supplementary Table 
S7). The correlations between biological function and 
risk scores were further calculated (Supplementary Table 
S8), and functions with correlations greater than 0.4 were 
selected as shown in Fig. 8A. Enrichment analysis of risk 

score groups revealed that 8 pathways were negatively 
correlated and 32 pathways were positively correlated 
with sample risk scores. In addition, cluster analysis of 
enrichment scores was carried out based on 40 KEGG 
pathways. The results showed that RENAL_CELL_CAR-
CINOMA and other related pathways increased with the 
risk score (Fig. 8B).

We used mutect2 software to process the TCGA 
mutation data and calculate the tumour mutation load 
(TMB) of patients. There was no difference in TMB 
between the different molecular subtypes (Fig. S5A). In 
addition, we quantified the difference in the number of 
mutant genes (Fig. S5B), and there was no difference. 
Furthermore, we screened 12,489 genes with muta-
tion frequencies greater than 3 (Supplementary Table 
S9) and screened genes with significant high-frequency 
mutations in each subtype by the chi square test, and 
the selection threshold was p < 0.05. Finally, 464 genes 
(Supplementary Table S10) were obtained. The muta-
tion characteristics of the top 15 genes in each subtype 
are shown in Fig. S5C.

Fig. 7  Construction and evaluation of a prognostic risk model. A-B The model was optimal when lambda = 0.0175, and 8 genes were chosen 
to construct a risk model. C The AUCs of the risk model for predicting 1-, 3- and 5-year survival were 0.72, 0.70 and 0.65, respectively, and D 
patients with a high risk score presented significantly worse OS than those with a low risk score in TCGA databases. E The AUCs of the risk model 
for predicting 1-, 3- and 5-year survival were 0.79, 0.83 and 0.69, respectively, and F the prognosis of the high-risk group was worse in GSE17537 
datasets. G The model could significantly distinguish high- and low-risk groups by T stage, M stage, N stage, stage, age and cancer status
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Construction of a nomogram integrating the risk score 
and clinical features
To assess the independence of the 8-gene model for 
clinical application, we used univariate (Fig.  8C) and 
multivariate (Fig.  8D) Cox regression to analyse the 
clinical information and risk score. The results indicated 
that the risk score was an independent prognostic fac-
tor for OS (HR = 2.68, 95% CI = 1.63–4.41, p < 0.05) in 
the TCGA-CRC database. According to the results of 
univariate and multivariate analyses, we constructed a 
nomogram model with clinical features (M stage and 
risk score) (Fig.  8E). In the model, the risk score fea-
tures have the greatest impact on survival prediction, 
which indicates that the 8-gene risk model can better 
predict prognosis. As shown in Fig.  8F, the calibration 

curves for the nomogram for 1-, 3- and 5-year survival 
were almost identical to the standard curve. In addi-
tion, we used decision curve analysis (DCA) to evalu-
ate the reliability of the model. The results of the DCA 
diagram showed that the nomogram had a better evalu-
ation effect than the others (Fig. 8G). Furthermore, we 
performed Kaplan‒Meier survival analysis according to 
age, male sex, female sex, T stage, N stage, M stage and 
stage in the TCGA-CRC databases. Patients were strati-
fied into the following subgroups: age > 65 or <  = 65, 
male, female, T1-2 stage, T3-4 stage, N1-3 stage, N0 
stage, M0 stage, M1 stage, MI-II stage, and MIII-IV 
stage. The OS of patients in the high-risk group was sig-
nificantly shorter than that of patients in the low-risk 
group in the age > 65 or <  = 65, male, female, T3-4 stage, 

Fig. 8  The relationship between the risk score and clinical application. A The correlations between biological function and functions with a 
correlation greater than 0.4 were selected. B The results showed that RENAL_CELL_CARCINOMA and other related pathways increased with the risk 
score. The results of C univariate and D multivariate Cox regression indicated that the risk score was an independent prognostic factor for OS. E The 
risk score features have the greatest impact on survival prediction in the nomogram model. F The calibration curves for the nomogram for 1-, 3- and 
5-year survival were almost identical to the standard curve. G The results of the DCA diagram show that the nomogram has a better evaluation 
effect than the others



Page 13 of 17Di et al. Biological Procedures Online           (2022) 24:13 	

N1-3 stage, N0 stage, M0 stage subgroup and MI-II 
stage subgroups. The above findings further showed 
that our risk model still has good predictive ability in 
different clinical clusters (Fig. S6).

Expression and function analysis of the previously 
unreported model genes MPZ, SCARA3, MPP2 and PBXIP1 
in CRC​
Furthermore, we examined the expression profiles of pre-
viously unreported model genes (MPZ, SCARA3, MPP2 
and PBXIP1) in clinical samples from CRC patients by 
qPCR (Fig.  9A-D) and IHC (Fig.  9E-H) analysis and 
found that the expression levels of MPZ, SCARA3, MPP2 
and PBXIP1 were high in CRC tissues.

To clarify the functional roles of MPZ, SCARA3, MPP2 
and PBXIP1 in CRC cells, a clone formation assay and 
orthotopic colorectal tumour model were applied to 
detect the regulatory roles of these previously unreported 

model genes. Lentiviral expression vectors (pLKO.1-
NC-GFP, pLKO.1-MPZ-GFP, pLKO.1-SCARA3-GFP, 
pLKO.1-MPP2-GFP or pLKO.1-PBXIP1-GFP) were used 
to construct MPZ (sh-NC and sh-MPZ), SCARA3 (sh-
NC and sh-SCARA3), MPP2 (sh-NC and sh-MPP2) or 
PBXIP1 (sh-NC and sh-PBXIP1) interference cell lines 
in SW620 cells, and SW620 cells transfected with sh-NC 
were considered the control. Western blots were used 
to validate the cell transfection efficiency and the results 
are presented in Fig. S7A. Lentiviral expression vectors 
(pLVX-IRES-Neo-3xFlag, pLVX-MPZ-IRES-Neo-3xFlag, 
pLVX-SCARA3-IRES-Neo-3xFlag, pLVX-MPP2-IRES-
Neo-3xFlag or pLVX-PBXIP1-IRES-Neo-3xFlag) were 
used to over-express MPZ (vector and MPZ), SCARA3 
(vector and SCARA3), MPP2 (vector and MPP2) or 
PBXIP1 (vector and PBXIP1) in the CRC cell line SW480, 
and SW480 cells transfected with vector were consid-
ered the control. The results indicated that the inhibition 

Fig. 9  The expression of the unreported model genes. The results of A-D qPCR and E–H IHC analysis showed that the expression of MPZ, SCARA3, 
MPP2 and PBXIP1 was high in CRC tissues
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of MPZ, SCARA3, MPP2 and PBXIP1 expression inhib-
ited the colony formation ability of SW620 cells in  vitro 
(Fig. 10 A) and tumorigenicity in vivo (Fig. 10 B-C), while 
overexpression of MPZ, SCARA3, MPP2 and PBXIP1 
promoted the colony formation ability of SW480 cells 
in  vitro (Fig. S7B) and tumorigenicity in  vivo (Fig. S7C). 
IHC analysis of xenografted tumour tissues revealed that 
MPZ, SCARA3, MPP2 and PBXIP1 expression levels were 
low in the SW620/sh-MPZ, SW620/sh-SCARA3, SW620/
sh-MPP2 and SW620/sh-PBXIP1 groups (Fig. 10D).

Discussion
The heterogeneity of tumours plays critical roles in 
tumour progression and treatment response and is an 
opportunity for cancer diagnosis and treatment [11]. 
The utility of scRNA-seq helps us to better under-
stand tumour heterogeneity and may bring promising 

prospects for clinical diagnosis and therapy. A growing 
body of studies have identified that scRNA-seq can be 
utilized to explore genetic alterations in CRC. Zhou Y. 
reported that five genes (BGN, RCN3, TAGLN, MYL9, 
and TPM2) were identified as fibroblast-specific bio-
markers of poorer prognosis of CRC using single-cell 
multiomics sequencing of FACS-sorted cells isolated 
from CRC patients [12]. Single-cell RNA sequencing 
analysis showed that the intratumoral immunomodula-
tion of CD73 inhibition is distinct from PD-1 inhibition 
and exhibits potential as a novel anticancer immuno-
therapy for CRC [13]. However, a new prognostic model 
was constructed by single-cell RNA sequencing, and 
bulk transcriptome data of CRC samples have yet to be 
obtained.

In this study, we developed a prognostic model for CRC 
patients by integrating scRNA-seq and bulk RNA-seq 

Fig. 10  The functional role of MPZ, SCARA3, MPP2 and PBXIP1 in CRC cells. The results indicated that the inhibition of MPZ, SCARA3, MPP2 and 
PBXIP1 expression inhibited the colony formation ability of SW620 cells A in vitro and B-C tumorigenicity in vivo. D IHC analysis of xenografted 
tumour tissues revealed that MPZ, SCARA3, MPP2 and PBXIP1 expression was low in the SW620/sh-MPZ, SW620/sh-SCARA3, SW620/sh-MPP2 and 
SW620/sh-PBXIP1 groups
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data. First, we collected the scRNA-seq profiles of 13 
CRC samples with 43,851 cells and obtained 20 cell clus-
ters. Meanwhile, the results of survival analysis showed 
that the high abundances of C4, C11 and C13 and the low 
abundances of C5 and C14 resulted in better survival. The 
WGCNA results showed that the red module was most 
related to the tumour and the C14 cluster, which contains 
615 genes. Next, we performed Lasso Cox regression 
analysis among the 615 candidate genes, and an 8-gene 
risk model was constructed. The time-dependent ROC 
curves and survival analysis revealed that the 8-gene 
risk model can better predict prognosis in the TCGA 
and GSE17537 datasets. Furthermore, our risk model 
still has good predictive ability in different clinical clus-
ters. Finally, we examined the expression profiles of the 
previously unreported model genes and showed that the 
expression levels of MPZ, SCARA3, MPP2 and PBXIP1 
were high in CRC tissues. The functional experiment 
results indicated that the inhibition of MPZ, SCARA3, 
MPP2 and PBXIP1 expression could inhibit the colony 
formation ability of SW620 cells in  vitro and tumori-
genicity in vivo, while overexpression of MPZ, SCARA3, 
MPP2 and PBXIP1 promoted the colony formation abil-
ity of SW480 cells in  vitro and tumorigenicity in  vivo. 
These data revealed that the new prognostic model could 
potentially be used for clinical application and provide 
potential therapeutic targets for CRC patients.

Consistent with other studies, INA, ILK, L1CAM and 
FLNA were abnormally expressed and played regula-
tory roles in the progression of CRC. For example, INA 
is a novel tumour suppressor that increases microtu-
bule polymerization during CRC progression [14]. ILK 
overexpression in human CRC is associated with EMT 
and CSC traits, contributing to tumour progression and 
chemoresistance [15]. L1CAM defines the regenerative 
origin of metastasis-initiating cells in colorectal cancer 
[16]. FLNA could be a novel and reliable CRC marker 
and a potential therapeutic target against CRC [17]. 
Our results were consistent with previous reports. For 
unreported model genes (MPZ, SCARA3, MPP2 and 
PBXIP1), recent studies have demonstrated that those 
genes are involved in the development of cancers. Haas 
GP. reported that six cores each from the MPZ were most 
likely to detect the majority of clinically significant can-
cers but also detected many insignificant cancers [18]. 
The upregulation of SCARA3 during disease progres-
sion from diagnosis to recurrence suggests that it plays 
a role in ovarian cancer biology [19]. The overexpression 
level of MPP2 in liver cancer cells promotes their apop-
tosis [20], and Huang C. reported that MPP2 is related 
to the 5-year survival rate of colon cancer patients [21]. 
A recent study revealed that PBXIP1 is a novel protein 
overexpressed in astrocytoma and ependymoma that is 

involved in tumour cell proliferation and migration and 
warrants further exploration as a novel therapeutic tar-
get in these tumours [22]. However, the expression pro-
files of MPZ, SCARA3 and PBXIP1 and the roles of MPZ, 
SCARA3, MPP2 and PBXIP1 in CRC remain elusive. In 
the present study, our results showed that the expression 
levels of MPZ, SCARA3, MPP2 and PBXIP1 were high in 
CRC tissues, and the inhibition of MPZ, SCARA3, MPP2 
and PBXIP1 expression could inhibit the colony forma-
tion ability of SW620 cells in  vitro and tumorigenicity 
in  vivo, while overexpression of MPZ, SCARA3, MPP2 
and PBXIP1 promoted the colony formation ability of 
SW480 cells in  vitro and tumorigenicity in  vivo. Con-
sistent with our risk observations, the functions of these 
specifically expressed markers were primarily as potential 
oncogenes in CRC.

We are aware of several limitations in this study. First, 
the number of patients in this study was relatively small. 
The gene signature needs to be validated further in mul-
ticentre trials and larger patient cohorts. Second, due to 
technical limitations, we cannot uncover the underly-
ing mechanism research on unreported genes. Further 
experiments need to be conducted to verify our analysis 
results in the future.

Conclusions
In summary, by scRNA-seq and bulk RNA-seq data, and 
performing WGCNA, a novel prognostic model for OS 
prediction in CRC patients could be applied to predict 
the survival probability of CRC patients. Subsequently, 
we also explored the roles of 4 previously unreported 
genes (MPZ, SCARA3, MPP2 and PBXIP1), which could 
serve as new treatment targets for CRC in the future.
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