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Abstract 

Background:  The provision of seamless public transport supply requires a complete understanding of the real traffic 
dynamics, comprising origin-to-destination multimodal mobility patterns along the transport network. However, 
most current solutions are centred on the volumetric analysis of passengers’ flows, generally neglecting transfer, 
walking, and waiting needs, as well as the changes in the mobility patterns with the calendar and user profile. These 
challenges prevent a comprehensive assessment of the routing and scheduling vulnerabilities of (multimodal) public 
transport networks.

Research aims/questions:  The research presented in this paper aims at addressing the above challenges by propos-
ing a novel approach that extends dynamic Origin-Destination (OD) matrix inference to dynamic OD matrix inference 
with aggregated statistics, highlighting vulnerabilities and multimodal mobility patterns from individual trip record 
data.

Methodology:  Given specific spatial and temporal criteria, the proposed methodology extends dynamic Origin-
Destination (OD) matrices with aggregated statistics, using smart-card validations gathered from (multimodal) public 
transport networks. More specifically, three major contributions are tackled; i) the data enrichment in the OD matrices 
with statistical information besides trip volume (e.g., transfer and trip features); ii) the detection of vulnerabilities on 
the network pertaining to walking distances and trip durations in a user-centric way and iii) the decomposition of traf-
fic flows in accordance with calendrical rules and user (passenger) profiles. The set of contributions are validated on 
the bus-and-metro public transport network in the city of Lisbon.

Results:  The proposed approach for inferring OD matrices yields four unique contributions. First, we allow inference 
to consider multimodal commuting patterns, detecting individual trips undertaken along with different operators. 
Second, we support dynamic matrices’ OD inference along with parameterizable time intervals and calendrical rules, 
and further support the decomposition of traffic flows according to the user profile. Third, we allow parameterization 
of the desirable spatial granularity and visualisation preferences. Fourth, our solution efficiently computes several sta-
tistics that support OD matrix analysis, helping with the detection of vulnerabilities throughout the transport network. 
More specifically, statistical indicators related to travellers’ functional mobility needs (commuters for working pur-
poses, etc.), walking distances and trip durations are supported. The inferred dynamic OD matrices are the outcome 
of a developed software with strict guarantees of usability. Results from the case study using data gathered from the 
two main public transport operators (Bus and Metro) in the city of Lisbon show that 77.3% of alighting stops can be 
estimated with a high confidence degree from bus smart-card data. The inferred OD matrices (Bus and Metro) in the 
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1  Introduction
European cities are pursuing sustainable mobility, dis-
couraging individual car-based travel and reinforcing the 
service quality of public transport. In this context, it is 
of utmost importance for policy makers to have a clear 
and comprehensive knowledge of the public transport 
network (all modes), being able to assess its adequacy, 
vulnerabilities and unsatisfied mobility needs along 
time based on passenger dynamics patterns and relevant 
context information (e.g., socioeconomic). Classic ori-
gin–destination (OD) matrices are one of the most used 
tools by public transport agencies to this end, enabling 
the analysis of the distribution of passengers’ flows along 
the network. However, this classic method is hampered 
by multiple obstacles: (i) the need to account for ongo-
ing changes in demand and isolate calendar-specific 
traffic flows (dynamic stance); (ii) the need to integrate 
traffic views from different operators and modes of trans-
port; (iii) the relevance of offering parameterizable spa-
tial resolutions; (iv) the importance of providing filters 
to focus on specific routes and user profiles; and, finally 
and foremost, (v) the need to go beyond classic volumet-
ric views and capture important statistics that can reveal 
vulnerabilities, such as the distribution of the number of 
required transfers, as well as the time and distance spent 
in trips or within transfers throughout the network.

The research presented in this paper addresses the 
above issues by proposing an approach that extends 
dynamic Origin–Destination (OD) matrices with aggre-
gated statistics, using smart-card validations gathered 
from (multimodal) public transport networks. More spe-
cifically, we discuss three major contributions: (i) the data 
enrichment in the OD matrices with statistical informa-
tion besides trip volume (e.g., transfer and trip features); 
(ii) the detection of vulnerabilities on the network per-
taining to walking distances and trip durations in a user-
centric way and (iii) the decomposition of traffic flows in 
accordance with calendrical rules and user (passenger) 
profiles.

Differently from other previous works, these contribu-
tions go beyond the analysis of the demand distribution 
on the network. In particular, to the best of our knowl-
edge, the analysis of transfer or trip features in Origin–
Destination matrices is non-existent in the literature. 
Integrating a set of statistical indicators (e.g., distribution 
of travel times, transfer times, travel distances, trans-
fer distances and the average number of transfers) in a 

single OD matrix (across all OD pairs) promotes a com-
prehensive and differentiated analysis of the public trans-
port network. Moreover, this approach allows to detect 
network vulnerabilities, especially for specific profiles at 
a given time window and OD level (for instance, search 
OD pairs with high or moderate volume, where the mean 
value of transfers and the travel time is high for elders).

The contributions are validated on the bus-and-metro 
public transport network in the city of Lisbon. In par-
ticular, this work is conducted in the context of the ILU 
project [1], an innovative project established on advances 
from artificial intelligence, big data analytics, and urban 
computing, applied to the integrative analysis and opti-
mization of urban traffic in the Lisbon city.

With the support and validation of the primary pub-
lic bus operator, CARRIS, a robust and usable soft-
ware application for the visual analysis of the proposed 
dynamic OD matrices was further developed. The tool 
allows several filters to build the OD matrix, including 
temporal restrictions (time periods, calendrical con-
straints), spatial granularities (transportation analysis 
zones, parishes, neighbourhood sections, stops), selec-
tion of user profiles, trip typologies, amongst other 
facilities. In the end, it projects the OD matrix onto a 
heatmatrix, where one of the metrics is highlighted and 
the remaining metrics are shown in a tooltip that is vis-
ible by hovering over the cell. Observing the related lit-
erature, to the best of our knowledge, the contributions 
explained here are unique and encourage a new spati-
otemporal perspective of urban traffic.

The paper is organised as follows: Sect.  2 introduces 
essential concepts pertaining to this multidisciplinary 
research scope and identifies the related work on the 
inference of OD matrices; Sect.  3 introduces the case 
study and describes the proposed methodology for the 
inference of dynamic and multimodal OD matrices; 
Sect.  4 presents the main research results and implica-
tions; finally, major concluding remarks are drawn in 
Sect. 5.

2 � Background
2.1 � Smart card data and automatic fare collection systems 

definition
The monitoring and planning of a public transport sys-
tem are essential to establish an equilibrium between 
demand and supply, operation and policy-making [2]. 
Commonly, the transport agencies support the planning 

city of Lisbon reveal vulnerabilities along specific OD pairs, offering the bus public operators in Lisbon new knowl-
edge and a means to better understand dynamics and validate OD assumptions.

Keywords:  Public transport, Origin–destination matrices, Multimodality, Data science, Big data, Sustainable mobility



Page 3 of 18Cerqueira et al. European Transport Research Review           (2022) 14:42 	

decisions through the observation of the extracted infor-
mation from a data-collecting technology. Automated 
Fare Collection (AFC) systems record passenger entries 
and/or exits on the network via smart card validation. 
When a passenger validates the smart card, on the station 
or in a public vehicle, a record is stored with the times-
tamp, location, and optional route specifications. In this 
work, the act of validating a card is called a transaction. 
AFC systems can be classified as an entry-only system 
or a close-system [3–5]. In a close-system, the passenger 
has to validate the card when both arriving and leaving 
a station (or vehicle boarding and alighting). A transport 
network with an entry-only system requires ticket valida-
tion only at the boarding. Since the alighting information 
is not recorded on the entry-only system, the agencies do 
not know the vehicle load at a given moment and the des-
tination of its passengers, hindering the service planning 
and management. This is the case of the bus public trans-
port system in the city of Lisbon.

2.2 � Trip typology definition
A trip stage s : θstart  → θend , is a movement of a passen-
ger p without transfers between stop coordinates θstart 
and θend , through transport modes (metro, bus, bike, 
car, among others). The path of a passenger to its final 
destination is a set S of one or more (1...m) travel steps 
S = {s1, s2, ...., sm} . Since some systems are entry-only 
and, hence, only collect the boarding information, it is 
necessary for the identification of alighting information 
to have a complete trip stage record. In the literature, 
the most studied methodologies are based on rule-based 
chaining of trip stages (Li et al. 2007, [6–14]), where the 
most used rules are the ones enunciated by Barry et  al. 
[15]: i passengers tend to start their next trip near the exit 
on the previous trip; ii the alighting place of the last trip 
is the same place as they boarding on the first trip of the 
day. Later, this principle was improved by Trépanier et al. 

[12], by suggesting that the last trip is the first boarding 
place on the day that could be closed and not necessar-
ily the same location. This revised principle is particularly 
important (or prone to occur) in bus networks because 
on a given route that has ascending and descending 
directions, their stops correspond to different locations.

Let a journey, j : θstart  → θend , to be the movement of a 
passenger from a origin θstart to a final destination of the 
passenger’s trip θend , with zero or more transfers through 
one or more modes of transport. From a set of m trip 
stages S = {s1, s2, ...., sm} it is inferred a set of $n$ jour-
neys J =  j1, j2, ...., jn  , were n ≤ m . In the literature, the 
methodologies to identify the origin and final destination 
of the passenger’s trip are mostly based on the distinction 
of transfers from an activity [10, 16]. In detail, if the time 
interval between two trip stages is greater than a certain 
threshold it indicates that the passenger is doing an activ-
ity (work, shopping, home), otherwise, it is a transfer 
between trip stages. For instance, Alsger et al. [17] used 
this methodology to generate origin–destination matri-
ces based on journeys and demonstrated that the transfer 
time of 15 to 90 min had an insignificant impact on the 
OD matrices (Fig. 1).

In commuting trips, the distinction between transfer 
and activity is simpler to identify due to their periodic-
ity, frequency and the large time discrepancy between 
the time spent on an activity and on a transfer, such as 
school-home and vice versa, or work-home and vice 
versa.

2.3 � Origin destination matrix definition
After performing stage trip or journey generation and 
extraction, we can represent the volumetric distribution 
of trips, in space, in an origin–destination matrix [18]. 
Each cell of the origin–destination matrix specifies the 
volume vi,j between an origin i and a destination j . In 
short, matrices include three modelling features, which 

Fig. 1  Illustrative trip typology chains for a given passenger during the day. On the left axis it shows the trip stage chain. The right side shows the 
chain of journeys, resulting from the identification of transfers and each activity time
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are: (i) static or dynamic matrix; (ii) spatial granularity; 
and (iii) trips typology (Table 1).

Firstly, OD matrices can be classified as either static or 
dynamic. A static OD matrix considers time-independ-
ent flows over the space [19]. For this typology, meth-
odologies have been developed to capture average flows 
between OD pairs within a geographic area, in a single 
matrix, such as gravity models, entropy maximization, 
information minimization [20]. However, the advance-
ment of technologies, computational processing and 
storage resources enabled the inference of dynamic OD 
matrices. Consequently, dynamic OD matrices become 
the focus in the study of transportation planning, since 
it shows more accurately traffic dynamics between zones.

Secondly, in the transport context, the space dimension 
can be configured for micro and macroscopic analysis. 
Some studies perform exhaustive and microscopic analy-
sis, observing the flow of trips between pairs of network 
stops (subway stations, bus stops, bike stations, among 
others) [8]. On the other hand, there are matrix studies at 
the macroscopic level, i.e. between network zones (aggre-
gations of stops), such as Transportation Analysis Zones 
(TAZ) [19, 21], city parishes, clusters [22].

Finally, the content of the matrices can be modelled 
from trip stages or journeys. Matrices that present the 
flow in the network through trip stages show the actual 
passenger volume at all points in the network. While the 
rendering of journeys-based matrices aims at identifying 
potential producer and attractor points in the network.

2.4 � Previous works on origin destination matrix modelling
This section summarises the related work on the infer-
ence of origin–destination matrices and similar contri-
butions in urban traffic visualisation. In literature, the 
inference of origin–destination matrices has a common 
purpose, which is passenger flow analysis. However, 
matrices’ design diverges in different aspects, that will be 
herein addressed, in the following order: (i) data source 

(ii) temporal and spatial granularities, (iii) visualisation 
facilities.

First approaches for the estimation of origin–desti-
nation (OD) matrices were based on statistical infer-
ence from interviews or/and surveys. However, with the 
monitoring of individual movements in the network, it 
has been possible to model dynamic and more accurate 
matrices of the state of urban traffic through sensory data 
sources such as phone mobile records [23], global posi-
tion system trajectories [19], and smart card records 
[24]. In fact, most studies in the scope of public urban 
transport with AFC systems are dependent on smart 
card information. For instance, Munizaga et al. [24] used 
smart card data from the multimodal public transport 
system of Chile (metro and bus) to enrich the alight-
ing bus information and apply the bus data to infer OD 
matrices. Similarly, in 2017, Hora et  al. [8] contributed 
with an approach that includes smart card data from the 
transport modes metro, bus and tram. The matrix pro-
posed by Hora et  al. [8] depicts dynamic OD matrices 
with flow distribution between city Porto zones, where 
each zone aggregates stops of all transport modes.

The second fundamental point for the design and anal-
ysis of OD matrices is spatial granularity. Usually, the 
explored granularities in literature and transport plan-
ning practice correspond to aggregations of stops, such 
as TAZ, clusters, or zones chosen by the author. Accord-
ing to McCord et  al. [25], stop-to-stop OD matrices 
make it difficult to explore important pattern flows. Yet, 
Sobral et  al. [21] states that it is essential to depict OD 
matrices with several levels of spatio-temporal granular-
ity to encourage use by stakeholders in exploring urban 
mobility flows. Luo et  al. [22] proposes aggregation of 
stops through the clustering algorithm K-means. Spa-
tial K-means requires the optimal parametrization of the 
optimal number of clusters, by maximizing the ratio of 
average intra-cluster flow to average inter-cluster flow 
while maintaining the spatial compactness of all clusters. 

Table 1  Illustrative OD matrix showing the traffic flow volume between stations or stops. The last row and column shows the total 
volume on a given entry or exit, respectively

Destination j

1 2 … w
Oj =

n
∑

i=1

vi,j

Origin i 1 v1,1 v1,2 v1,j v1,w O1

2 v2,1 v2,2 v2,j v2,w O2

… vi,1 vi,2 vi,j vi,w Oi

z vz ,1 vz ,2 vz ,j vz ,w Oz

Dj =
n
∑

i=1

vi,j
D1 D2 Dj Dw V =

n×n
∑

i,j

vi,j
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Moreover, Luo et  al. indicates clustering aggregation is 
appropriate for areas with high station density, such as 
the addressed study case, the city Haaglanden. In terms 
of computational efficiency, the Luo et  al. approach 
employed in a tool to depict dynamic OD matrices, 
would be expensive, since it requires clustering training 
each time it would be queried a different distribution 
flow. The cost is less when it is assigned stops to each 
zone before inferring matrices.

Data visualisation plays an indispensable role in the 
organisation and perception of data. According to Lee 
et  al. [26], complex data encoded in numbers and text 
is much more incomprehensible to humans than those 
visualised in graphics. Indeed, finding useful patterns and 
information, to the naked eye, in a large set of numerical 
data, such as target origin matrices, is easier and appeal-
ing when the data is expressed in appropriate graphi-
cal representations. In the existing literature, we find 
several options to depict the demand flow between ori-
gin–destination, including heat matrices [21], heat maps 
[27, 28], flow maps [29], chord diagrams [30], and san-
key diagrams [31]. In the scope of heat matrices, Sobral 
et  al. [21] proposes a knowledge-assisted visualisation 
tool suitable for each stakeholder Porto. The dashboard 
allows the visualisation of OD matrices with journey flow 
in Porto’s public transport system, with spatial options 
such as stops, neighbourhood and TAZ spatial granular-
ity. On the other hand, the temporal granularities avail-
able are restricted to daytime windows, such as morning 
(AM) peaks, afternoon (PM) peaks, and weekends. Each 
cell of the matrix has a hue colour belonging to the scale 
to indicate the volume between the OD pair and the 
flow details are shown after hovering the mouse over a 
cell. Interestingly, if the matrix has a coarse granularity 
e.g., neighbourhood, clicking on a cell drills down the 
spatial perspective by one level, e.g., stops. Similarly, the 
software application developed within the scope of our 
research (project ILU) is tailored to the Lisbon bus net-
work and it shows more statistics, beyond the volume of 
passengers’ distribution. Furthermore, the ILU app dis-
plays heat matrices that dynamically change temporally 
and spatially, allows other filters such as views of profile 
user types, boarding and alighting restrictions (routes 
and stops), typology of trips (trip stage and journeys), and 
more granularities (parishes). Similarly to Sobral et  al. 
[31], the hovering act displays all information regarding 
the available metrics.

In contrast with heat matrices, heatmaps offer the 
complementary advantage of associating passenger 
demand with geographical locations on the map. How-
ever, displaying an arbitrarily high number OD pairs in 
a geographical area can deteriorate usability, and gener-
ally inflows and outflows need to be represented in two 

separate heatmaps. For instance, Yu et al. [28] details bus 
travel demand patterns using the heat maps to identify 
entries and exits, in the Guangzhou bus network, China. 
Flow patterns were identified at different temporal gran-
ularities, including periods of the day, days of the week, 
weekdays, weekends and vacation periods. Wood et  al. 
[27] counteracts the restriction of representing OD flows 
in heatmaps by proposing a new visualisation approach. 
The developed technique preserves the spatial layout 
of all origin and destination locations by constructing a 
gridded two-level spatial treemap. The result is a set of 
vectors projected on each geographic area.

2.5 � Transfer and trip status indicators
Assessing the status of public transport is covered by a 
vast number of related studies in different study cases 
(urban rail, bus, metro, or even multimodal) worldwide, 
where accessibility, comfort, security, and other factors 
are considered relevant to improve the network [32–35]. 
For this purpose, researchers and operators recurrently 
perform inquiries, inference (e.g., gravity model) or data-
driven analysis (e.g., data mining on smart card data) to 
extract users’ behaviour. Considering indicators such as 
flow, transfer or trip features (e.g., trip time, transfer loca-
tion), studies have been able to identify mobility patterns 
and travel preferences, for instance: de Magalhães et  al. 
[33] say that comfort, direct lines and decrease travel 
time are key factors to create attractiveness for com-
muting private users and they are willing to walk around 
500 m to transfers; Espino et al. [36] analyse travel pref-
erences and suggest that, from a policy point of view, 
decrease travel time and the transfer cost encourages the 
use of bus transport system. Indeed, the assessment of 
these statistical indicators has been pivotal to aiding the 
operators’ planning, help redesigning the network (e.g., 
30 min city or even 15 min city projects), and increasing 
the public transport attractiveness, especially for private 
car users [37–39].

Despite the significant efforts assessing the public 
network, non-trivial mobility patterns or even network 
vulnerabilities can stay unnoticed due to: (i) lack of a 
proper data representation for the analysis transfers and 
trip features (not only volume), on space and time (e.g., 
OD matrix), and (ii) lack of complete integrative analy-
sis of the volume with other statistical indicators. For 
instance, Arbex et al. [32] propose an approach to assess 
the accessibility in São Paulo, Brazil, using transfer and 
travel time statistics, before and after changes in public 
bus transport. By using a grid map, the author indicates 
the accessibility score of each hexagon area on the map 
(the accessibility to reach the area). Since this data rep-
resentation is devoid of bilateral orientation, it does not 
differentiate the regions of the map with lower (or higher) 
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accessibility to reach the marked area (hexagon area). By 
contrast, our proposed approach integrates the indicators 
in an OD matrix, which allows a differentiated analysis by 
OD regions (or stops).

Chen et  al. [34] provide useful methods to capture 
transfer patterns between metro and bus transports 
in order to assess the accessibility in Nanjing, China. 
Employing a multidimensional representation (cube) 
with three dimensions, time of the day, day of the week 
and stations, the author cuts the cube into two dimen-
sions (matrix) to visualize the transfers. As a result, the 
author can identify patterns across the possible combina-
tions of two dimensions, such as days of the week against 
a time of the day, days of the week against stations, and 
time of the day against stations. Despite its relevance, 
the study does not provide an approach to gathering spa-
tial–temporal traffic dynamics (e.g., matrix with spatial 
resolution, at a given time window). Studies that robustly 
include transfer or trip features in OD matrices are, to 
our knowledge, non-existent. Usually, related works 
apply OD matrices on volume/flow analysis, as shown 
in Sect.  2.4. Besides, the identified studies so far, ana-
lyse complementary indicators individually. Chia et  al. 
[35] analyze travel time indicator only and show that 
most inner-city suburbs in Brisbane, Australia, has high 
accessibility, although by including transfer needs the 
outcome reveals opposite results. In other words, an inte-
grative exploration of both indicators allows to discover 
non-trivial knowledge about network status. Indeed, our 
work proposes extended OD matrices with aggregated 
statistics, not only transfer time or distance but a com-
plete set of context statistics, such as mean travel time 
and distance, trip volume and mean value of transfers 
between origins and destinations. Considering these fea-
ture extraction principles, together with visual facilities 
developed to extract these matrices with guarantees of 
usability, our work overcomes the lack of proper data rep-
resentation and data enrichment present in the literature. 

Besides, the developed software allows the decomposi-
tion of these indicators in accordance with calendrical 
rules and user (passenger) profiles. The filtering criteria 
enhance the analytical power, allowing a comprehen-
sive analysis, for instance, exploiting the accessibility for 
elders or youngers at different time windows.

3 � Methods
3.1 � Lisbon city as the study case
The smart card transactions used in the scope of this 
research were made available from the main Lisbon pub-
lic transport operators, including the main bus opera-
tor, CARRIS, and the subway operator, METRO. The 
bus operator has a total of 178 routes (82 ascending, 82 
descending and 14 circular routes), including 2166 stops, 
meanwhile the subway operator contains four lines with a 
total of 53 stations.

A residual number of transactions, with a lack of pas-
senger identifier, boarding timestamp and boarding loca-
tion, were removed from the original dataset. Briefly, the 
bus and subway datasets have approximately 11 million 
and 31 million trip records, respectively, for October 
2019. The distribution of bus transactions during Octo-
ber month is constant, with a daily average of 400,000 
validations on working days, 200,000 on Saturdays and 
150,000 on Sundays. Meanwhile, the subway operator 
has a daily average of 1.2 million transactions on working 
days, 600,000 on Saturdays and 500,000 on Sundays.

Dataset features with smart card transactions from bus 
and subway networks are described in Tables  2 and 3, 
respectively.

Studying the distribution of the transactions from sub-
way and bus operators according to card titles, the major-
ity were done by monthly passes or occasional tickets. 
Specifically, 37% of the transaction are from monthly 
passes, 26% from occasional tickets with 1-h durability 
and 17% from tickets with the durability of 24/48/72  h. 
The remaining 17% are distributed on the ticket for elders 

Table 2  Dataset columns from bus data collection

Dataset column Description

Card ID Card identifier

Boarding Timestamp Date and time registered at card validation, aboard the bus vehicle

Route Identifier of the route on which the bus is operating

Direction Direction of the route (ascending, descending, circular)

Variant Some routes have several variations covering subparts of the 
original stop sequence

Stop code boarding Code that identifies the boarding bus stop

Stop name Name of the boarding stop

Stop sequence boarding Sequence number of a stop, on a given route

Card type Fare code related to the card (ex: Sub18/Sub23 is the student card)
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(10%), youngers between 18 and 23 years old (5%), chil-
dren with less than 12 years old (1%) and others (1%).

3.2 � Modelling methods
This study aims to infer extended dynamic OD matri-
ces by gathering trip and transfer statistics, in a unique 
integrated view. This approach is suitable for any traffic 
analysis and offers efficient interpretability of bus net-
work vulnerabilities. First, Sect.  3.2.1 starts by apply-
ing an appropriate multimodal trip-chaining algorithm 
for alighting inference over the incomplete bus smart 
card data. Second, Sect.  3.2.2 defines the heuristics and 
parameterization for the estimation of boarding and 
alighting stops of journeys, from individual trips. Dur-
ing the journey identification process, trip and transfer 
statistics are gathered and stored in the database. Third, 
Sect.  3.2.3 details the inference and visualisation of sta-
tistics along end-to-end traffic flows under the selected 
spatiotemporal criteria and optional filters. Further, 

Sect. 3.2.4 introduces the implemented software applica-
tion for OD matrix modelling.

3.2.1 � Alighting estimation of a stage trip
To generate dynamic origin–destination matrices we 
need complete information of each passenger’s trip 
stages. Therefore, in this subsection, we briefly explain 
the algorithm for alighting stop and timestamp estima-
tion for transactions collected from the bus entry-only 
system. The developed algorithm chains the bus and 
subway transactions to trace the passenger’s path, in the 
bus and metro network. Subsequently, to determine the 
location of unknown exit bus stops, the model follows 
the principles described by Barry et al. [15], explained in 
Sect. 2.

Figure 2 provides a flowchart illustrating the steps for 
processing metro and bus transactions of a given pas-
senger [15]. The model can be parameterized to receive 
transactions from a suitable time window. Indeed, a 24 h 
period was chosen, starting from one day at 03:59:59 to 
04:00:00 the next day. Then, the algorithm collects the 
transactions from a parameterized period ordered by 
passenger identification and chronologically. The assess-
ment of candidate alighting stops depends on a suitable 
distance equation. For our problem, the haversine dis-
tance is used, since it expresses more accurately the walk-
ing distance and is widely used in recent studies [8, 40]. 
The candidate stop θ that minimises transfer distance, 
along a given route, is chosen. However, if the calculated 

Table 3  Dataset columns from subway data collection

Dataset column Description

Card ID Card identifier

Boarding Timestamp Date and time stored at the boarding station

Boarding Station Station code stored at the validation on the 
boarding

Alighting Timestamp Date and time registered alighting station

Alighting station Station code registered validation on the alighting

Fig. 2  Model flowchart for alighting estimation of a stage trip
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transfer distance exceeds the threshold (parameteriz-
able on the model), the θ is not valid and the transaction 
remains without alighting information. We consider that 
the maximum transfer distance should not exceed the 
1000 m threshold [24]. In the end, the model produces a 
dataset with trip stages, including the following columns 
shown in Table 4, along with other statistical features.

In the related surveys, the developed approaches are 
limited to keep boarding and alighting information. In 
our enhanced solution, we additionally calculate and 
store relevant statistics, such as travel time, trust level, 
travel distance, including transfer distance (as shown in 
the Table  4) associated with each trip stage. With this 
method, the computational effort generated by the model 
is compensated by the creation of low cost and efficient 
dynamic matrices based on calculated a priori statistics. 
On the other hand, storing these statistics offers freedom 
for further exploratory analysis beyond the classic OD 
matrices.

3.2.2 � Boarding and alighting stops estimation for a journey
The model proposed in this section aims to gener-
ate journeys, whose origin and destination are respec-
tively the beginning of the trip and the final destination 
(trip purpose) of the passenger. Some common exam-
ples that illustrate this typology of journeys are routine 
or functional trips, such as home-work or home-school 
commuting.

Journeys are derived from a set of tip stages made dur-
ing the day. A journey ends when the passenger alights 
to perform an activity. In the proposed algorithm, the 
activity is identifiable through the time spent between 
trip stages. That is, if the time spent between trip stages 
is greater than the defined threshold, the passenger is 

considered to be performing an activity; otherwise, it 
is considered to be a transfer between public transport 
vehicles. The threshold defined for our case study is 
90 min [17].

Tables  4 and 5 show a real example of the estimation 
of journeys. The algorithm receives, as input, a dataset 
with stage trips of a passenger, sorted by boarding date, 
as shown in Table  4. Finally, the algorithm estimates 
two journeys, as shown in Table 5. In the afternoon, the 
passenger makes a return trip, transferring between the 
same routes, but in the upward direction.

Similarly to the trip stage estimation model, this solu-
tion stores other feature statistics associated with each 
journey, in addition to those indicated in Table 4. In addi-
tion to the trip time and distance statistics, the model 
also calculates the number of transfers made by the pas-
senger during the journey, the time and the total dis-
tances spent on the transfers. This new approach allows 
efficient resource allocation for generating journey-based 
matrices, dependent on statistical metrics.

3.2.3 � Inference of dynamic OD matrices
One of the main contributions of this research resides in 
the inference and visualisation of extended dynamic OD 
matrices that highlight mobility patterns within areas 
of the city. The proposed solution aims to overcome 
traditional presentations centred on the distribution 
of volume in the network. Considering a given spatial 
resolution and temporal constraints (time interval and 
calendrical restrictions), we generate dynamic matrices 
able to comprehensively describe the real state of the net-
work, through metrics such as volume, time, distances, 
transfers, and multimodality indicators. This functional 
multiplicity of matrices allows a detailed and precise 

Table 5  Data outcome from boarding and alighting estimation of a journey

Boarding 
route code

Boarding 
direction

Stop code 
boarding

Datetime boarding Alighting 
route code

Alighting 
Direction

Stop code 
alighting

Datetime alighting Transfer 
time 
(min)

706 DESC 510 2019-10-01 08:24:04 774 DESC 6608 2019-10-01 08:41:36 789

774 ASC 1216 2019-10-01 17:02:05 706 ASC 511 2019-10-01 17:42:00 1987

Table 4  Data outcome from alighting estimation of a stage trip

Route code Direction Stop code 
boarding

Datetime boarding Stop code 
alighting

Datetime alighting Transfer 
Distance 
(meters)

706 DESC 510 2019-10-01 08:24:04 6608 2019-10-01 08:25:39 0

774 DESC 6608 2019-10-01 08:38:48 1211 2019-10-01 08:41:36 29.5

774 ASC 1216 2019-10-01 17:02:05 6611 2019-10-01 17:07:29 108

706 ASC 6906 2019-10-01 17:40:36 511 2019-10-01 17:42:00 42.4
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identification of vulnerabilities and mobility disparities 
within the city.

The OD matrices are modelled from three components 
which are. (i) the data source; (ii) optional filters includ-
ing temporal, spatial and user profile restriction; and (iii) 
the selection of one of the possible statistics as primary 
organisation criterion. The next paragraphs explain each 
of these modelling fields.

Firstly, the approach allows the formation of dynamic 
matrices based on one of the trip typologies which are 
either trip stage or journey. Secondly, the matrices can 
be modelled according to time, space and passenger 
typology, by parameterizing: (a) a desirable time win-
dow restricting dates and times; (b) the target weekdays 
(weekend, working days, one or more days of the week); 
(c) the target user profiles; (d) the desirable entry and exit 
routes and stops (by default all the transport network is 
considered). This last filter is only available for matrices 
filled with journeys, since the alighting route may not be 
the same as the boarding one. Third, one of the following 
metrics must be chosen to guide the organisation of the 
matrix (the highlighted metric) and the remaining is dis-
played by hovering in each cell (OD pair):

a	 Volume: total trips volume;
b	 Average volume per day: average daily travel volume;
c	 Number of transfers: average number of transfers 

between origin and destination;
d	 Transfers volume: total number of transfers made 

between origin and destination;
e	 Transfer distance: average walking distance spent by 

passengers to transfer;
f	 Transfer Time: average time spent by passengers to 

make a transfer;
g	 Travel distance: average distance travelled during a 

trip;
h	 Travel Time: average time spent during a trip;
i	 Trust level: the percentage that determines the trust 

of the data used to report cell information. This con-
fidence is calculated through the walking distance in 
the transfer (200 m corresponds to 100% and 1000 m 
corresponds to 1% reliability).

The visual representation of the matrices is given 
through interactive heat matrices with usable zoom-
ing and selection facilities. The hue of each cell changes 
according to a scale that varies between the minimum 
and maximum value of the highlighted metric. As men-
tioned before, only one of the aforementioned metrics is 
chosen to tone the matrix and the rest are coupled and 
displayed through tooltips.

At the top of the matrix and on the left side are bar 
charts that summarise information about the total 

boardings and alightings, respectively. If the highlighted 
metric in the OD pairs is volume, the bar charts show 
the sum of the passenger volumes presented in the rows 
and columns to indicate the total volume of boardings 
and alightings, respectively. If the highlighted metric is 
related to time or distance, the average value is weighted 
according to the cell’s volume presented in the row or 
column.

3.2.4 � Tool for OD inference with trip and transfer status
With the support and validation of the major public bus 
operator in the city of Lisbon, CARRIS, a robust tool was 
developed for the guided parameterization and usable 
visualisation of the proposed dynamic OD matrices. The 
software application allows the specification of several 
filters, including temporal filters (time windowing, cal-
endar selections), spatial granularities (TAZ, parishes, 
neighbourhood sections, stops), user profile filters, trip 
typologies, amongst others. Figure 3 provides a snapshot 
of the parameterization board. The visualisation of OD 
matrices satisfies strict usability requirements, incorpo-
rating zooming, navigation, and exportation facilities. 
Both heatmatrix and heatmap visualisations are sup-
ported, as well as statistical reports for summarization 
and background checks.

All described algorithms and graphic interface are 
implemented under python language conventions, 
including alighting trip inference, journey identifications, 
and OD matrices inference. Pressing “Run Query”, an OD 
matrix is displayed on the graphic interface after the soft-
ware executes the following steps: (i) retrieves the infor-
mation from each field of the interface, (ii) completes a 
query with extracted information and executes it on the 
database (PostgreSQL), (iii) a table is returned where 
each row contains boarding and alighting information, 
trip and transfers features, (iv) for each indicator (e.g., 
travel time), a matrix OD is inferred from the table (e.g., 
for each pair OD is calculated the mean travel time) and 
finally, (v) all matrices are displayed in one heat matrix, 
where the indicator chosen in “Highlighted statistic” field 
will colour the heat matrix and the remaining indicators 
can be shown by hovering over the cell (OD pair). To ren-
der graphic visualizations (e.g., heat matrix, violin plot, 
maps) the app uses the library Plotly.js.

4 � Modelling results
This section validates the relevance of the proposed 
contributions using Lisbon’s public transport network 
as the study case. We want to assess whether the cross-
cutting dynamic views over the available statistics can 
reveal knowledge and guide the public transport service. 
In particular, we explore several scenarios, including age 
groups distribution, intra-city disparities, and regions 
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connectivity. Since CARRIS, the target bus operator, has 
an entry-only system, the inferred alighting stops must be 
validated to verify if the outcomes from models discussed 
in the Sects. 4.1 and 4.2 satisfy the principles mentioned 
in Sect. 2. For this purpose, we adopt the usual validation 
method used in the literature, which is a sensitive anal-
ysis of the percentage of trips that fulfil certain criteria. 
The majority use as criteria a distance threshold on the 
transfer to validate the alighting stop. Therefore, using 
the mentioned method, the next section’s results (Figs. 4 
and 5) will assess the robustness of the algorithm for the 
alighting estimation. Following, we show the contribu-
tions of this research with the analysis of OD matrices for 
October 2019.

4.1 � Sensitive analysis of trip stages and journeys
Figure  4 shows the distribution of transactions whose 
alighting stop labels were successfully estimated. The 
blue bar, whose percentage is 11.6%, indicates the per-
centage of transactions with no estimated alighting stop. 
These transactions are unlinked with other transactions, 
therefore alighting information remains unknown. In 
the orange bar, we observe that 11.1% of the transactions 
were chained with other transactions, but the estimated 
output was not valid, since the inferred alighting bus stop 
is at a distance above 1000  m from the boarding of the 
subsequent transaction. The last bar, green, indicates the 

success percentage: 77.3% of the input transactions 
were assigned with a valid alighting stop. Thus, these 

Fig. 3  Dashboard responsible for modelling and parameterization of OD matrices

Fig. 4  Distribution of bus transactions with and without estimated 
alighting stop. Transactions in the blue bar are isolated trips, while 
transactions in the orange bar correspond to estimations without 
statistical significance due to considerably highly walking distances 
and waiting times in transfers
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transactions compose the data source for modelling 
matrices based on trip stages.

Figure  5 shows the percentage of trip stages (transac-
tions with alighting stop estimated) between a range of 
the walking distance spent after alighting at the estimated 
stop. The results are in agreement with the principle that 
passengers tend to walk as short distances as possible, 
in transfers and after arriving at their destination. The 
first bar of the chart does not correspond to an interval 
because it is intended to highlight that 14.4% destination 

stop of trip stages is the same as the boarding of the sub-
sequent trip stage. Another conclusion that corroborates 
the mentioned principle is the distribution of the per-
centage of trip stages that decreases with the increase of 
the walking distance interval. Observing the accumulated 
percentage, we verify that 91.30% of the trip stages, the 
walking distance on transfers is less than 500 m, and the 
remaining percentage is residual and distributed in the 
remaining intervals.

Figure 6 describes the distribution of journeys accord-
ing to the number of transfers. In short, 72.5% of the 
journeys have no transfers, 21.8% have one transfer and 
the remaining percentage is residually distributed in a 
number higher or equal to two transfers. These results 
corroborate the assumption that passengers prefer to 
walk the least as possible and consequently achieve the 
final destination without transfers.

4.2 � Dynamic origin destination matrix analysis
In this section, we present the results from the explora-
tion of dynamics OD matrices, that goes beyond the 
volumetric distribution analysis. Our proposal aims to 
express a complete and detailed understanding of the 
reality of dynamic traffic and patterns in a city, through 
several variables.

The figures are directly taken from the produced out-
put of the application used to visualise OD matrices in 
different conditions. In common, matrices are based 
on journeys and parishes of Lisbon are selected as the 
default spatial granularity. Parishes are the geographi-
cal (administrative) divisions of the city of Lisbon; these 
allow displaying fewer rows and columns in the matrices, 

Fig. 5  Cumulative and bin percentage of trip stages with a respective transfer distance interval

Fig. 6  Distribution of journeys according to the number of transfers
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yielding a simpler and more understandable visualisation. 
The matrix rows correspond to boarding parishes, the 
columns are the alighting parishes.

4.2.1 � Volumetric OD matrix for user profiles
Studies show policies and restructuring of public trans-
port services targeting age groups such as the young 
and elderly can offer freedom and independence in 
their mobility, and implicitly generate a positive impact 
on their lifestyles [41–43]. Therefore, Fig.  8 motivates 
the potentiality of the OD matrices to assess the traffic 
dynamics of specific age groups, wherein this case is the 
elderly group.

Furthermore, the results of Fig. 7 show that the distri-
bution of demand of the elderly age group is slightly dif-
ferent from other age groups. According to Fig. 7 elderly 
individuals (green wave) concentrate their travel from 10 
to 11 am and from 4 to 5  pm. These results are in line 
with evidence from Szeto et al. [44] study, where it indi-
cates that older people choose 10 am to 11 am to avoid 
overcrowded public transport (as shown in our results 
by peaks in pink and blue wave representing the density 
of entries in the network for adult and young age groups, 
respectively).

The statistical highlighted metric (which determines 
the hue of the cells) in the matrices at the Fig. 8 is the vol-
ume flow. Additionally, at the top and on the right side, 
the bar charts indicate the total volume of boarding and 
alighting on the network, respectively. The left matrix 
corresponds to the period between 7 and 9 am and on the 
right side we see the matrix from the period between 9 
and 11 am of October 2nd (Wednesday). The cell shading 

between the matrices of Fig. 8 reaffirms the fact that dur-
ing the period between 9 and 11 am there is higher traf-
fic of elderly passengers. It is also easily observed that the 
largest volume is between the following OD pairs: Ben-
fica-Benfica; Marvila-Marvila; São Domingos de Benfica-
São Domingos de Benfica, i.e., there’s an higher internal 
mobility dynamics (within parishes) than between dif-
ferent parishes. This fact matches the information of 
the number of elderly residents per parish described in 
the 2011 decennial census, where the parishes with the 
highest number of elderly residents are São Domingos de 
Benfica, Benfica and Marvila.

In both matrices, the cells (parish-parish OD pair) with 
the highest volume are those representing traffic within 
the same parish. This pattern indicates that older people 
prefer to travel shorter distances and within the same 
parish. Furthermore, the results of this figure corrobo-
rate with evidence of the study by Wong et al. [45], which 
states that shortening the walking and waiting times and 
improving seat availability can improve the probability 
of the elderly making a trip. Therefore, public transport 
can be a means to promote more active lifestyles for 
the elderly. Assessing the detailed information of some 
cells, by hovering over, other valuable information can 
be revealed. For instance: i the average transfer distance 
is low, ranging between 4 and 50 m; ii the trip distance 
and travel time are relatively short, 1.7 to 2.9 km and 13.4 
to 15 min, respectively; iii the average number of trans-
fers ranges between 0.4 and 0.5, and the total number 
trips with transfers ranges between 71 and 95. The latter 
metric indicates that around 42% to 47% of trips require 
a transfer. We conclude that the connectivity between 

Fig. 7  Distribution of boarding on the network for one day per profile user, smoothed by a kernel density function. The blue, green and pink areas 
show the boarding distribution of younger, elder and adult profiles
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locations inside of the parish could be improved to bene-
fit the elderly group, by dedicating mobility services, such 
as neighbourhood routes.

4.2.2 � OD matrix based on average number of transfers
Figure 9, shows the average number of transfers between 
origin–destination pairs in a 24 h period, on October 9. 
We zoomed two cells that show vulnerability in OD pairs. 
According to Fig. 9, the cell with the highest mean num-
ber of transfers is the pair Penha de França-Santa Clara 
(entry-exit). The detailed information, on the cell, shows 
that it takes on average 2 transfers to move between 
Penha de França and Santa Clara. Moreover, the aver-
age transfer time (124  min) and the average trip time 
are extremely high (66.7  min). Despite the low number 
of trips, the results show that the connectivity between 
these parishes is disparate regarding the rest of the 
network.

The second cell zoomed at the bottom shows the 
detailed information about Olivais to Olivais (traffic 

within the parish). At first sight, the highlighted indica-
tor (average number of transfers) seems low, correspond-
ing to 0.4 (close to 0 transfers). However, if we observe 
the exact value of the volume of trips and the volume 
of transfers, 1926 and 764, respectively, we verify that 
approximately 40% of the trips required 1 or more trans-
fers within the same parish. These findings reveal that 
the public transport network can be improved within the 
parish of Olivais to enable better user-place connectivity. 
Actually, according to Suman et al. [46], decreasing trans-
fers is the key to encouraging bus transport use and fur-
ther states that improving connectivity saves users travel 
time.

4.2.3 � OD matrix analysis on average travel time metric
Figure 10a presents patterns regarding the average travel 
time between each origin and destination, within a 24-h 
period on 2 October. Moreover, the top bars are able to 
show the average time required to reach a given destina-
tion from any point on the network and left bars to show 

Fig. 8  Matrices OD showing flow distribution of the elderly age group by two time windows, between 7 and 9 am and 9 am and 11 am. The 
matrices’ scale range from 0 to 200 and the elderly age group is represented by these two card titles—Navigator + 65 and Urban Navigator 3rd age
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the average time from a given origin to any point in the 
network, respectively.

This indicator and the set of visuals identify differ-
ent areas on the network whose accessibility in terms of 
average travel time is higher or lower. For instance, the 
bar charts in Fig. 10a show evidence that the parish with 
the longest average arrival and departure times is Santa 
Clara, 21.9 min and 20.1 min. This average time at depar-
ture seems reasonable, however, it is weighted with the 
volume of each cell, and therefore OD pair cells with 
higher volume and low average time may be hiding criti-
cal cases of OD pairs with the lower flow but with higher 
travel times. In fact, the detailed information on the cells 
at the Fig. 10f, g and h, i reinforce the evidence of inac-
cessibility to entry and exit on the Santa Clara parish. The 
zoomed cells (f ) and (g), on Fig. 10, show the OD pairs 
Santa Clara-Avenidas Novas and Santa Clara-Santa Clara 
with the respective volume 127 and 1710, and the aver-
age travel times are 32 and 20 min, which seems moder-
ate travel time. However, if we add the average transfer 
time to the travel time, the total time spent on the trips 
for each pair OD is 53 and 35 min for 7.6 km and 3.1 km 
average trip distance, respectively. These statistical 

indicators show strong evidence that Santa Clara must be 
a target for new route modelling. The same scenario with 
volume and temporal difference happens as well with the 
zoomed cell (h) and (i) where the alighting parish is Santa 
Clara.

4.2.4 � OD matrix for calendrical periods
The highlighted metric in the OD matrices presented in 
Fig. 11 is the average daily volume, in different contexts. 
The top matrix corresponds to the weekday period (7 to 
11 October) and the matrix below represents a week-
end (12 to 13 October). The scale of the matrices ranges 
from 0 to 6000, and the scale of the bar charts ranges 
from 0 to 17,000. In both matrices, we show the cells 
with the highest daily volume number, zoomed on the 
sides of Fig. 11.

As expected, the average daily volume on weekdays is 
higher than at the weekend. And in both matrices, the 
OD pairs with higher volume correspond to traffic within 
parishes with higher resident density. The OD pair Santa 
Maria Maior—Santa Maria Maior, in the period of work-
ing days, is the fourth pair with the highest average daily 
volume. However, the weekend becomes the parish with 

Fig. 9  OD matrix showing the average value of transfers required to transfer between an origin and destination; the scale ranges from 0 to 2
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higher internal traffic and more daily entries. This situ-
ation may be explained by the touristic flows in Lisbon 
since this parish corresponds to Lisbon’s historical centre.

5 � Research limitations
Along with this work, two limitations were identified 
that are highlighted as relevant directions for future 
work. Firstly, the proposed solution for the alighting 
time inference can be further refined in the presence of 
traffic congestions. To calculate the alighting time, our 
approach sums the trip duration to the boarding time. 
Instead of using GTFS files, the trip duration is gath-
ered from a file made available by CARRIS (bus opera-
tor) that contains more precise information on the 
routes, including the time and distances between stops 
of a given route. Additionally, the algorithm checks if 
the alighting time occurs before the next transaction. 
In case this constraint is violated, the alighting time 
coincides with the boarding time of the next transac-
tion. We believe that in future work, pre-processing all 
boarding timestamps to map the alighting timestamp 
of each route is a robust approach to solve the current 
problem.

Secondly, since the CARRIS network has more than 
2000 stops, the interpretability of an OD matrix with this 

dimensionality becomes an impractical task. The opti-
mal solution would be an algorithm able to automatically 
detect motifs, relationships, outliers, clusters, among 
other relevant patterns on the OD matrix. Therefore, for 
future work, we intend to pursue this line of investiga-
tion, including the application of machine learning algo-
rithms (e.g., clustering algorithms).

6 � Conclusions
The reported research offers a new approach for the 
analysis of passengers’ flow behaviour and inference of 
dynamic OD matrices. We propose alighting stop infer-
ence models over the passengers’ paths in the absence 
and presence of multimodal views, offering the possibility 
to parameterize maximum walking distances and waiting 
times on route transfers, extending classical assumptions, 
and further addressing statistical indicators.

Furthermore, the proposed approach for inferring OD 
matrices yields four unique contributions. First, we allow 
inference to consider multimodal commuting patterns, 
detecting individual trips undertaken along with differ-
ent operators. Second, we support dynamic matrices’ OD 
inference along with parameterizable time intervals and 
calendrical rules, and further support the decomposition 

Fig. 10  OD matrix showing the average travel time between a origin and destination
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of traffic flows according to the user profile. Third, we 
allow parameterization of the desirable spatial granular-
ity and visualisation preferences. Fourth, our solution 
efficiently computes several statistics that support OD 
matrix analysis, helping with the detection of vulner-
abilities throughout the transport network. More specifi-
cally, statistical indicators related to travellers’ functional 
mobility needs (commuters for working purposes, etc.), 
walking distances and trip durations are supported. The 
inferred dynamic OD matrices are the outcome of a 
developed software with strict guarantees of usability.

Results from the case study using data gathered from 
the two main public transport operators in the city of Lis-
bon (Bus and Metro) show that 77.3% of alighting stops 
can be estimated with a high confidence degree from bus 

smart-card data. Since the analysis of patterns showed 
that nearly 27.5% of the journeys within Lisbon’s trans-
portation network require one or more transfers, the 
inferred OD matrices allowed the identification of vul-
nerabilities in the network, offering the bus public opera-
tors in Lisbon new knowledge and a means to better 
understand dynamics and validate OD assumptions.

The dynamic OD matrices explored within the scope 
of this investigation showed relevant patterns, includ-
ing evidence of the greater predominance of flows within 
parishes, by the elderly; factors such as travel time, trans-
fer time and transfer show that there are significant intra-
city disparities, with Santa Clara being one of the parishes 
with significant vulnerabilities, regarding connectiv-
ity and accessibility. Research findings are actionable, 

Fig. 11  Matrices comparing average volume by day between different days intervals, which are working days (top matrix) and weekend days
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offering the opportunity for operators and municipalities 
to pursue their efforts towards sustainable mobility.
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