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Abstract

Purpose: With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many
response-based methods to evaluate road surface conditions have emerged in the recent decade. Various
techniques and systems have been developed to measure road profiles and detect road anomalies for multiple
purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride
comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement
applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-
of-the-art response-based methods, to highlight key differences between methods and thereby to propose key
focus areas for future research.

Methods: Available articles regarding response-based methods to measure road surface condition were collected
mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15
years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and
the remaining 24% for roughness index estimation.

Results: The results show that machine-learning techniques/data-driven methods have been used intensively with
promising results but the disadvantages on data dependence have limited its application in some instances as
compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based
mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed
variation and less computation for real-time/online applications. On the other hand, algorithms for pothole
detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and
crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable
to existing International Roughness Index and conventional Pavement Management System is still lacking.
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1 Introduction
A rough road gives poor ride quality, increases vehicle
fuel consumption and affects vehicle handling. Accord-
ing to a report in Britain, potholes caused more than £1
million damages to vehicles every day in 2010 [1]. Road
roughness measurement is vital for transport authorities
in the quest to maintain adequate ride quality for vehi-
cles. Knowledge of road profiles also provides informa-
tion for adjusting control parameters to improve ride

comfort and ride handling, given the development of
suspension system from passive to semi-active and active
control in the automotive technology.
Generally speaking, road estimation algorithms [2] can

be divided into three distinct types, namely contact
measurement, non-contact measurement, and system
response-based estimation. Conventional contact and
non-contact measurements have been used worldwide as
major pavement profiling methods. The primary contact
measurement includes two categories: manual profilo-
graph such as rods and levels, straight edges, walking
profilers, and trailer-towed devices such as the Longitu-
dinal Profile Analyser (LPA). Non-contact measurement
includes inertial profilers such as the GM profilometer
developed by General Motors (GM), and the Automated
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Pavement Profiler (APP). The advantages and disadvan-
tages of these contact and non-contact measurements
are discussed in [3–6]. In recent years, road surface
monitoring instruments have transcended from dedi-
cated vehicles with special sensors to dedicated sensors
mounted on public transport vehicles, and general-
purpose sensors on privately-owned vehicles, and most
recently, smartphone-enabled automated monitoring of
road infrastructure [7]. This development is driven by
response-based methods to indirectly assess road rough-
ness condition using measurements of displacements,
velocities, and accelerations of vehicle components,
resulting in cost reduction for labour and equipment as
compared with direct contact/non-contact profiling [8].
This has led to the emergence of Probe Data Perform-
ance Management (PDPM) or Vehicle Probe-based
Pavement Management (PBPM) for assessing pavement
quality through probe data [9]. There are three system
structures by way of connected vehicle approach, fleet
vehicle approach and smartphone approach. Basically,
road excitation can be estimated using onboard sensors
(accelerometers, gyroscopes) for individual or a combin-
ation of three key functions as follows (see Fig. 1):

1) Road Profile Reconstruction/estimation or road
roughness classification - PR (e.g. Power Spectral
Density – PSD), in which fast computation (e.g. in
second) adapts vehicle parameters to road
roughness levels;

2) Potholes Detection – PD, which detects potholes,
manholes, road defects where the precise
localisation is of importance; and

3) Roughness Index Estimation – RE (e.g.
International roughness index – IRI or new index)
for pavement maintenance where roughness data is
often aggregated for a certain segment length.

A brief overview of approaches using dedicated sensors
and smartphone sensors can be found in [10, 11], yet a
comprehensive review is lacking. Herein, in this literature
review paper, around 130 articles have been reviewed fo-
cusing on the methodologies but not on theories, empirical
insights or conceptual model [12]. The objectives and con-
tribution of this review are threefold. Firstly, an examin-
ation of the state-of-the-art response-based methods is
conducted to provide an overview of their developments
within the last 10 years. This provides a comprehensive un-
derstanding of the diversity of on-going and dominant
methodologies being used. Secondly, the key pros and cons
of different methods, e.g. signal processing, data-driven,
threshold-based, transfer function, are highlighted. Lastly,
key focus areas on the estimation of road surface irregular-
ity are proposed as opportunities for further studies such as
the inclusion of air-suspension system, improvement of
current machine learning algorithms or further develop-
ment of the fleet vehicle approach. The results of this re-
view serve to shed light and provide orientation for the
research community on system response-based estimation.
Figure 2 illustrates a topology of approaches to meas-

ure road surface irregularity focusing on system
response-based methods with detailed applications for
vehicle dynamics control (VDC) in dealing with PR for
adjusting vehicle parameters to improve ride comfort
and ride handling; and PBPM utilising portable onboard
sensors and smartphones for PD and RE in citywide
network.
The methodology for gathering “response-based

methods literature database” is presented in the next
section. PR algorithms for VDC are then described,
followed by PD and RE algorithms for PBPM. The dis-
cussion, conclusion and outlook section reports the
main results of this review study and proposes research
and development gaps deserving of further study.

Fig. 1 Three temporal-spatial functions using response-based methods
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2 Literature data retrieval method
Available articles regarding response-based methods
to measure road surface condition were collected
mainly from “Scopus” database [13] and partially from
“Google Scholar” [14]. Articles of focus are those pub-
lished by international journals and high-quality con-
ferences. The first round of online search was
conducted using the following keywords: ((“road
roughness” OR “road profile” OR “pothole”) AND (ac-
celerometer OR response) AND (estimation OR classifi-
cation OR detection)) AND PUBYEAR > 2005, using
Scopus’ default search settings: article titles, abstracts
and/or keywords. The search period is limited to the
recent 15 years since an initial investigation found
that studies on the topics mostly started at around
2006, with predominant numbers in the past 10 years
(see Fig. 3b).

A total of 161 documents were obtained from the vari-
ous field of studies, of which 86 are published journal ar-
ticles, 3 are articles in press, 1 is a book chapter and 71
are conference papers. All retrieved documents were fur-
ther analysed in which 87 documents were removed as be-
ing insufficiently related to the main scope of VDC or
PBPM nor the main functionalities of system response-
based estimation (PR, PD or RE); these rejected docu-
ments are mostly related to bridge-vehicle interaction.
Relevant references (56) were retrieved and included in
the analysis (see Fig. 3a). The additional literature that was
missed in the direct search is due to various technical
terms being used in these documents such as road anom-
aly, abnormal section, impact, defect, bump, irregularity,
failure, damage (instead of ‘pothole’) or sensing, measure-
ment (instead of estimation, classification, detection).
Among the 130 reviewed documents, 37% are for road

Fig. 2 Classification of different approaches to measure road surface irregularity under three main functions

Fig. 3 Reviewed documents from (a) retrieval of 130 articles, and (b) development by years
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profile reconstruction, 39% for pothole detection and the
remaining 24% for roughness index estimation.

3 Results
3.1 Road profile reconstruction/estimation for vehicles
dynamics control
Profile reconstruction/estimation (PR) is essential for ve-
hicle dynamics control (VDC). However, control algo-
rithms are dependent on vehicle suspension types, be it
passive, semi-active or active, to formulate the corrective
dynamics behaviours [15]. PR algorithms for VDC can be
classified into three main approaches: 1) model-based
methods or observers/estimators, 2) data-driven methods/
machine-learning techniques, and 3) frequency response
functions/transfer functions and others. These are de-
scribed in the following sections.

3.1.1 Model-based methods (observers/estimators)
Kalman filter/estimator (KF) and sliding mode observer
(SM) are the most commonly-used methods since a long
time. Three standard KFs are the linear KF for linear
cases, the extended KF for a non-linear relationship, and
the unscented KF for strong nonlinearities. Initially in
2011, the linear quarter-car model was developed to im-
plement the KF method [16] that needed measurements
of the suspension deflections, the body position and accel-
eration. In [17], an improved KF was developed to include
the vehicle sprung mass change, and in [18] an augmented
KF was developed to make use of all the available sensors.
The PR is implemented with the modified KF framework
in [19] for the non-linear spring-damper system to localise
autonomous vehicle position. Unfortunately, for all KF
methods, the tuning of the covariance matrix is usually
done heuristically which effects the estimation results
caused by the deterioration and loss of information. To
overcome this drawback, an algebraic estimator was devel-
oped in [20], by updating the covariance matrix according
to the change of road roughness [21], or by applying the
adaptive KF and adaptive super-twisting observer (AKF-
ASTO) algorithm in a new estimator [22].
Regarding other observer approaches, the most common

method is the sliding mode observer (SM) considering the
road profile as unknown inputs to be estimated. A 16-
DOF full-car model was firstly used to develop the SM
based on the vertical motion of the vehicle [5]. A re-
searcher [23] then developed a second-order SM to avoid
the assumption of constant velocity, while another model-
based observer was developed to compensate for the chas-
sis dynamics for minimising its interaction effect [6]. The
higher-order SMs using adaptive super-twisting observer
based on a nonlinear quarter-car model were also devel-
oped in [24] for PR, and in [25] for PR and tyre friction es-
timation simultaneously. The combination of sliding
mode observer and adaptive Kalman filter for PR related

to tyre dynamics can be found for active suspension con-
trol in [26]. Other methods of control theory using an
adaptive observer with the Q-parameterisation method
have shown their validity and feasibility [27] and the ex-
tensions in [28, 29] with detailed synthesis and experimen-
tal validation. Compared to other methods such as KF, the
Q-parametrization method provides better performance
and is suitable for real-time implementation due to less
computing cost and implementation complexity.
Another state observer can be found in [30] to use the

overall response of the preceding vehicle(s) to generate
preview controller information for follower vehicles. An
H∞ observer was adopted and found to be feasible for
real-time implementation but required knowledge of
many vehicle parameters [31], while a jump-diffusion
process estimator can perform PD and PR simultan-
eously [32]. Although these types of estimators can work
effectively for active suspension system control, exten-
sive modelling is required as the main drawback as well
as the problem of speed variation.

3.1.2 Data-driven methods/machine-learning techniques
The emergence of machine-learning techniques (MLs)
has motivated researchers to focus on various ML algo-
rithms to measure road surface irregularity, as reported
in more than half of the reviewed documents. Among
them, Neural Network (NN)/Artificial Neural Network
(ANN) and Support Vector Machine (SVM) are the most
common methods. In 2010, a study [33] used a Bayesian-
regularised nonlinear autoregressive exogenous model
(NARX) for PR based on the acceleration from a linear
half-vehicle model. The ANN-based methodology has
been applied for road surface condition identification on
mining vehicles and mining roads [34], and for the Land
Rover Defender 110 [35]. Similar ANN can be found in
[36] using seven vehicle acceleration variables as inputs.
To improve estimation efficiency, different techniques/al-
gorithms have been implemented along with ANN. In [8],
wavelet analysis was included in similar ANN for the con-
nected vehicle environment. In [37], ANN was used with
the mean square of unsprung mass acceleration divided
by vehicle speed to classify road Power Spectral Density
(PSD) regardless of vehicle speed and suspension
parameters.
To classify different road types/terrains (e.g. brick,

gravel, grass), ANN and principal component analysis
(PCA) were used in combination with image processing
[38], or SVM with PCA [39]. To remove the speed de-
pendence from terrain classification, SVM was combined
with wavelet analysis of acceleration data [40], or SVM
with spatial frequency component analysis by Fast Fou-
rier Transform [41].
Apart from ANN and SVM, other sophisticated MLs were

developed and often combined with other techniques for
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VDC. Deep Neural Networks [42] and Probabilistic Neural
Network classifier [43] were proposed by using measurable
system responses. The Adaptive Neuro-Fuzzy Inference Sys-
tem - ANFIS road classification method was proposed using
wavelet analysis based solely on sprung mass acceleration
[44]. ANFIS classifier was found to be better than other
methods in [45], and ANFIS was combined with KF for
VDC of semi-active suspension in [21, 46]. PNN classifier
using wavelet analysis showed better performance than
ANFIS and NARX methods. The combination with PNN
classifier and AKF-ASTO [22] adaptively changes the
process noise covariances Q and R for the KF, resulted in
higher accuracy than existing KF method. Random forest
classifier (RF) was used to combine information from both
time and frequency domains for a controllable suspension
system in [2], while the RF was combined with transfer
function to develop a speed independent road classification
strategy in [47]. Most recently, independent component ana-
lysis as a simple and fast method was developed in [48], and
various MLs were compared in [49].

3.1.3 Transfer functions and other techniques
The transfer function (TF) was first used by Gonzalez in
2008 [50] to estimate road PSD based on the relation-
ship between the road surface and vehicle acceleration
via a TF as Eq. 1:

H Ωð Þ ¼ PSDacc Ωð Þ=PSDroad Ωð Þ ð1Þ

where PSDacc(Ω) and PSDroad(Ω) are the PSD for a fre-
quency Ω due to vehicle accelerations and road profile,
respectively.
The road can be classified according to ISO 8608 [51]

based on PSDroad estimated from the PSDacc of the axle
or body acceleration measurements [50]. In [52], similar
results have confirmed the efficiency of the TF approach,
and in [53] the TF was extended to a full-vehicle model
to estimate road PSD regardless of vehicle speeds. From
another point of view, dynamic tyre pressure sensor was
used to estimate road profiles based on an assumption
of a linear relationship between road surface profiles and
tyre pressure via a TF [54].
Regarding other methods, a numerical optimisation

technique can be found in [55] that employs Monte
Carlo simulations to obtain the optimal PR, but it is
costly for computing. The method of control-constraints
was proposed [56] that focuses on tyre dynamics and re-
quires solving differential-algebraic equations. A modu-
lating function technique [57] can fulfil the real-time
and noise suppression requirements with the focus par-
ticularly on off-road vehicles. In [58], Bayesian estimator
was proposed regardless of vehicle models; but a priori
information of the road is required. In addition to accel-
eration measurements, PR can be done by microphones

to measure tyre noise [59]; however, a robustness study
is needed to reduce signal contaminations.

3.1.4 Summary of methods for road profile reconstruction/
estimation
Table 1 lists the related model-based methods where
most of them use a passive suspension system and
quarter-vehicle model while fewer use active suspen-
sion system. Q-parameterisation has demonstrated its
better performance than other methods, with less par-
ameter information required after experimental valid-
ation using passive, semi-active and active suspension
systems. The pothole detection does not gain much
research interest with only 2 relevant studies. Studies
on data-driven methods are listed in Table 2 and
similarly most studies use a passive suspension system
and quarter-vehicle model. Together with road profile
reconstruction, the functions of pothole detection (2
studies), roughness index estimation (1 study) or ter-
rain classification (4 studies in which 3 are from the
same first author) can be found. Since the first ML
emerging from NARX in 2010, recent research con-
tinues to improve the algorithms by increasing esti-
mation accuracy and using less parameter information
such as the ANFIS (only sprung mass). Research re-
lated to speed independence has shown the potential for
large-scale application with both offline-online phase clas-
sification steps such as the speed independent road classi-
fication strategy - SIRCS. Studies on transfer function and
other methods are listed in Table 3 for road profile recon-
struction only without consideration of pothole detection
or roughness index estimation, in which all the algorithms
were developed using the passive suspension system. The
sophisticated modelling of other methods has negated
them from the real-time or online application.
In summary, various methods have been developed

for PR (48 studies) and several include additional
functions for PD (4/48 or 8.3%) and RE (1/48 or 2%),
in which TF and other methods have focused on PR
(9/48 or 19%) only (see Fig. 4). A high number of
studies use quarter-vehicle model (29/48 or 60%) and
passive suspension system (32/48 or 67%), in which
TF and other methods mostly use passive system (8/9
or 89%). Starting from the first developed Kalman fil-
ter, sliding mode observer, artificial neural network
and transfer function methods in the 2010s which re-
quire many vehicle parameters but fewer accuracy
levels, recent methods are focusing on fast computa-
tion with fewer parameters for online and real-time
application. The combination of different techniques
has resulted in higher estimation performance such as
machine learning and feature extraction, or machine
learning and Kalman filters.
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Table 1 Summary of model-based methods for road profile reconstruction function

System
name/
by

Model-based approach Additional Suspension Vehicle
model

Main parameter

P SA A Q H F

[16] KF ✔ ✔ body position and acc, suspension def

[17] improved KF ✔ ✔ sprung acc, suspension def

[18] augmented KF ✔ ✔ ✔ suspension dis, unsprung, sprung acc

[19] modified KF ✔ ✔ ✔ ✔ ✔ vertical dis of the tire-road contact points, longitudinal acc

[5, 23] SM, second-order SM ✔ ✔ wheels and chassis

[6] SM PD ✔ ✔ chassis

[24] higher-order SM ✔ ✔ sprung mass dis and velocity

[25] higher-order SM Tyre ✔ random road profile, the longitudinal friction force, and the
engine friction

[26] SM + AKF Tyre ✔ ✔ spring def, wheel acc, tire road contact acc

[27] Q-parametrization ✔ ✔ sprung mass position

[28] Q-parametrization ✔ ✔(1/
5)

[29] Q-parametrization ✔ ✔

[20, 30] Algebraic estimator, state
observer

✔ ✔ sprung mass and unsprung mass vertical dis, suspension def

[31] H∞ observer ✔ ✔(1/
5)

sprung acc, suspension def, unsprung mass motion

[32] Jump-diffusion estimator PD ✔ ✔ wheel excitation

Table 2 Summary of data-driven methods for road profile reconstruction function

System name/by Machine learnings Additional Suspension Vehicle model Main parameter

P SA A Q H F

[33–35] ANN (NARX) PD ✔ ✔ sprung, axle, body

[36] ANN ✔ ✔ wheels and chassis

[8] ANN +wavelet DWT) RE(IRI) ✔ ✔ sprung mass

[37] ANN + ADV ✔ ✔ ✔ unsprung mass

[38] ANN + image processing + PCA Terrain ✔ ✔ wheel acc, speed

[39–41] SVM+ PCA, FWT, FFT

DNNs classifier [42] Deep NNs ✔ ✔ sprung, unsprung, rattle space

PNN classifier [43] PNN +WPT ✔ ✔ sprung, unsprung, rattle space

ANFIS classifier [44] ANFIS ✔ ✔ sprung mass

[45] ANFIS, RLS, GMDH ✔ ✔ sprung, unsprung, rattle space

ANFIS+AKF [21] ANFIS + Kalman filter ✔ ✔ sprung mass

AKF-ASTO [22] PNN + Kalman filter ✔ sprung, unsprung

[46] ANFIS + MOOP + NSGA-II ✔ ✔ sprung mass

[2] RF +WPT ✔ ✔ ✔ sprung, unsprung, speed

SIRCS [47] RF + TF, decision procedure ✔ ✔ unsprung mass

[48] Independent Component Analysis ✔ ✔ ✔ ✔ chassis, suspension

[49] Various MLs + TF PD ✔ ✔ axle or body, speed

PCA, WPD, WPT, DWT, FWT: Principal Component Analysis, Wavelet Package Decomposition, Wavelet Package Transformation, Discrete Wavelet Transform, Fast
Wavelet Transform.
RLS, GMDH, ADV: Recursive Least Square, Group Method of Data Handling, the mean square of unsprung mass acceleration divided by vehicle speed.
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3.2 Pothole detection and roughness index estimation
The three approaches in PBPM has been classified as: con-
nected vehicle approach (uses OEM-installed accelerome-
ters, sensor hardware and standardised onboard vehicle)
fleet vehicle approach (uses semi-permanent, non-stock ac-
celerometers in a fleet of agency-owned vehicles, supple-
mented by GPS units) and mobile device approach (uses
accelerometer-equipped mobile devices to gather and
transmit roughness information to a central database) [9].
The latter approach using smartphone sensors as the con-
cept of “citizen as sensors” in [60] or “citizen engineer” [61]
has received much research interest in recent years,

followed by the connected vehicle and the fleet vehicle
(which can be grouped into one dedicated sensor onboard
approach). Regardless of applications, the methodology can
be classified into three groups: acceleration thresholds or
threshold-based methods, signal processing and machine-
learning techniques.

3.2.1 Threshold-based methods
Threshold-based methods are the most straightforward
approaches for PD detection by processing mainly the
vertical acceleration (Z-acc) or in combination with

Table 3 Summary of TF and other methods for road profile reconstruction function

System
name/
by

TF and others Suspension Vehicle model Main parameter

P SA A Q H F

[50] TF ✔ ✔ axle or body

[52] TF ✔ ✔ unsprung mass acceleration

[54] TF ✔ tyre pressure

[53] TF + time span ✔ ✔ axle or body

[55] Cross-entropy ✔ ✔ sprung and unsprung acc

[56] Control-constraints ✔ ✔ tire dynamics

[58] Bayesian parameter rear wheel acc, veh response, speed

[59] Microphone ✔ ✔ tyre noise and axle acc

[57] Modulating function technique ✔ ✔ accelerometer, spring dis and orientation

Fig. 4 Method classification for RE, PD and PR
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other direction acceleration (x and y) and gyroscopes. A
researcher [62] has proposed four indices in which the
Z-THRESH was further modified [63] to build a cloud
computing system: Z-THRESH (from vertical vibration),
Z-DIFF (from the difference of consecutive Z-acc above
threshold), STDEV(Z) (as the standard deviation of Z-
acc above threshold in a window), and G-ZERO
(whether the sensor senses a 0-G vibration). Similar
STDEV(Z) can also be found in [64] and to develop a
bump index in [65]. Other acceleration thresholds are
used to classify three relative rough road levels [66] or
severity levels of potholes [67, 68] and to characterise
road bumps [69]. Thresholds of Z-acceleration and
ultrasonic data were combined in [70] while the Z-jerk
as the “rate of change of acceleration” is used in Cyber-
physical system [71]. However, how to set up correct
thresholds is challenging under the influence of vehicle
speeds, suspension parameters as well as sensor location
and orientation. Furthermore, only pothole detection
alone is not sufficient for real application, as transport
authorities care about roughness index estimation as
well for road surface maintenance.

3.2.2 Signal processing
To overcome the drawbacks of the threshold-based
methods, various signal processing filters have been used.
Researcher [72] further processed Z-acc by simple filters
and Gaussian model-based algorithm to detect the severity
of potholes and differentiate humps and potholes. A study
in [73] combined Z-THRESH and G-ZERO and adopted a
spatial interpolation method to obtain precisely pothole lo-
cations. Fuzzy logic was used to detect and recognise the
speed bumps from vehicle speed and Z-acc variance [74].
Time-frequency analysis was used such as the Discrete
Wavelet Transform to estimate gravel roads ride quality,
detect the location and the severity of surface potholes [75],
or the Gabor transform to estimate road roughness condi-
tion in combination with image processing for PD [76]. In
[77], a greedy heuristic approach for an optimal mobile sen-
sor placement maximises the total length of the road
inspected by sensors.
Frequency filter, speed filter and small peaks filter were

used to develop the vertical acceleration impulse that cor-
responds to a “high-energy event” on the road surface in
UNIquALroad [78, 79]. Dynamic Time Warping – DTW
detects pothole by using the pattern-matching technique
independent of time and speed [80]. Similar to DTW, the
Smartphone Probe Car system was developed using a new
road anomaly indexing heuristic which is adaptive to ve-
hicle dynamics [81].
To evaluate road roughness IRI, the well-known regres-

sion relationships between PSD with IRI was investigated in
[82, 83], so do the root-mean-squared acceleration (RMS)
and IRI in [84, 85]. A compact road profiler and ArcGIS to

measure and evaluate road roughness condition was intro-
duced in [86]. Filter and Fast Fourier Transform (FFT) were
used to estimate IRI from smartphone data under realistic
setting (e.g. inside pockets) based on the approximate pro-
portion of spectrum magnitude and road IRI [87, 88]. The
inverse pseudo-excitation method offers a new approach to
estimate IRI independent of the travelling speed, road
roughness grade, and vehicle type [89]. The RMS acceler-
ation was further studied to detect potholes using speed fil-
ter and Z-axis filter in Pothole Patrol, and to develop new
roughness index (IRI-proxy) depicting overall road quality
[60]. Based on the relationship of PSD between road surface
and vertical acceleration, parameters of road profile can be
evaluated using Maximum Likelihood-based estimation
[90], or using linear predictive coding by averaging the
power of the prediction error [91, 92]. In [93], a recursive
multiscale Correlation-Averaging algorithm was developed
to deal with the uncertainty/noise such as GPS inaccur-
acies, driving path variation and errors from the distance-
measuring devices.
Regarding new roughness index, a speed-independent

road impact factor - RIF (individual vehicle) and its corre-
sponding time-wavelength-intensity-transform – TWIT (ve-
hicle groups) for connected vehicles were established using
advanced signal processing in [94]. Further studies were
conducted intensively to investigate and validate the RIF re-
garding sampling rate selection [95], localisation [96, 97],
RIF-IRI proportionality [98], deterioration forecasts in con-
sideration of suspension parameter variances [99], stop-and-
go conditions [100], and wavelength sensitivity [101].

3.2.3 Machine learning techniques
With more data availability, machine learning techniques
(MLs) have been utilised in PD and RE functions while not-
ing that most of them were developed for the PD. The
abovementioned Z-THRESH is similar but simpler than Z-
peak in Pothole Patrol [102], Nericell [103] and Traffic-
Sense [104], which used specific algorithms to filter and to
cluster the collected data. Based on Pothole Patrol, further
analysis to differentiate pothole and bump-road cases in
[105], or to develop the PRISM platform for remote sensing
[106]. For the same purpose, a supervised learning ap-
proach based on temporal classification was undertaken in
[107]. Based on Pothole Patrol, P3 can infer the depth and
length of the pothole by adopting a one degree-of-freedom
(DOF) vibration model as well as perform a self-learning vi-
bration recovery algorithm [108]. A clustering ML was used
to cluster potholes with an adaptive detection threshold
and learning rate update in CRSM [109, 110] after using
pothole filters in Pothole Patrol. K-mean clustering was
used in [111] and additional Random Forest (RF) classifier
in [112]. Another study [113] developed an online
road roughness classification system using bicycles
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instrumented with smartphones embedded with the
K-Nearest-Neighbour and Naive Bayes algorithm.
Among MLs, support vector machine (SVM) is used

most frequently, and it is often combined with feature
extraction methods as multiple classifiers. In [114], SVM
was used to detect road anomalies by processing the
data collected from a motorcycle-mounted tri-axial ac-
celerometer and further classify road surface condition
using unsupervised ML. Recently, SVM and Dynamic
Time Warping algorithm were developed in [115] to
identify aggressive driving events, road bumps and pot-
holes for cycling. Another improvement was included in
[116] where the gyroscope around gravity rotation was
used. SVM and wavelet analysis were also used in
RoADS [117] to classify the road anomaly into three
event classes: severe, mild and span, and in [118] to de-
tect road anomaly based on driver attitudes toward the
speeds and turnings. SVM and Fast Fourier Transform-
ation were used in [119] to remove the speed depend-
ence and to label road anomaly. Another study in [120]
combined SVM and Wavelet Package Decomposition to
detect potholes with low computing cost. In Wolverine
[121], the smartphone accelerometer data is used to de-
tect braking events and bumps using K-means clustering
and SVM. In [122, 123], SVM was trained using exten-
sive data set from CarSim vehicle simulation as well as
experiment, applying for under-sampled vehicles sensor
problems and multi-lane pothole detection. In [124], a
virtual road network inspector was built based on SVMs
to detect potholes using accelerometers mounted to the
front and rear axles of the buses.
The comparison of different MLs was conducted in

several studies to find the best ML. In [125], a data
mining approach was developed to compare the per-
formance of five algorithms for PD. By adopting the
framework of this study, a study [126] used RF for
its best performance to develop a cloud-based Road
Anomaly Service architecture in which PCA was
used for feature extraction. PCA was also used in
[127, 128] after NN and RF classification were com-
pared to develop a street defect classifier to select
NN for its better performance. RMS thresholds were
set as a triggering condition for data logging condi-
tion and a new street defect level (from 0 to 1) to
evaluate the road segment condition. In RoadSense
[129], Decision Tree (DT) was designed and com-
pared with SVM and Naïve Bayes algorithm after
feature extraction. In Pothole lab [130], a new
SVM(Z) and Swarm indices were developed to com-
pare with the four thresholds in [62], Nericell, Pot-
hole Patrol, and PERT [119]. Backward feature
elimination was used in [131] to select the optimal
set of features for different classification models
while in [132] the forward selection and backwards

elimination process was performed showing better
performance than existing approaches.
Besides CRSM system for IRI estimation, MLs were

used in [133] where the authors used smartphone sensor
data for training a feature-based prediction model and
compared with the road condition from official IRI mea-
surements of the road surface. Another researcher [134]
applied NARX ANN to estimate IRI from the connected
vehicle after investigating vehicle suspension characteris-
tics and its speed in [8]. In [7], the mean-absolute-value
of the Z-acc for every 100 m was sensed by a smart-
phone on a motorbike, and a fuzzy classifier from a ser-
ver was used for RE.

3.2.4 Summary of methods for pothole detection and road
roughness estimation
Studies on threshold-based methods are listed in Table 4.
Given the simplicity of this method based on true posi-
tive and false positive of the detection rate, the threshold
values may vary due to different factors which make this
method not being feasible to be used in real scenarios
and large-scale implementation. Table 5 lists the studies
on signal processing methods, in which not only the
methods of accurate PD and RE but also further con-
cerns on GPS data noise/inaccuracy, sensor and smart-
phone installation/direction, data fusion/aggregation and
crowdsensing system/platform were considered. Among
them, the adaptive thresholds in Smartphone Probe Car
and Smart patrolling, as well as the IRI-proxy, Smar-
tRoadSense and UNIquaALroad system are found to be
promising for large scale application. RIF and TWIT are
also potential replacements of IRI in the context of con-
nected vehicle environments. As for ML methods recent
studies are listed in Table 6. MLs have attracted many
studies resulting in high performance in which PCA
plays an important role in feature extraction for the
training process. CRSM [109, 110], the system in [122,
123] and another in [133] are promising systems for
large scale application.
In summary, the diversity of methods and systems

have been described in over 80 reviewed articles for the
main functions of PD (50/80 or 63%) and RE (30/80 or
27%). Many algorithms can perform both PD and RE
(20/80 or 20%). The same number of studies use MLs
and signal processing (34 each or 41%) whereas
threshold-based methods are used mostly for PD (8%).
MLs received more research interest than other methods
for PD (26/50 or 52%). In contrast, signal processing is
preferred for RE (22/30 or 73%) especially for IRI esti-
mation, in which 11/22 studies (50%) are original algo-
rithms while others are further development or
application (Fig. 4). Over the studies related to RE, 6/30
(20%) is about the relative roughness index, 14/30 (47%)
for IRI estimation, 2/30 (7%) for IRI-proxy estimation

Nguyen et al. European Transport Research Review           (2019) 11:43 Page 9 of 18



and 8/30 (27%) for the new roughness index (RIF and
TWIT). There are only 6 studies (7%) related to fleet
vehicle approach, 23 studies for the connected ve-
hicle (28%) and 53 studies for smartphone approach
(65%). The problems of GPS accuracy, data aggrega-
tion and crowdsourcing have been considered in
many studies using signal processing (9/21 studies)

and ML (13/30 studies), aiming at supporting the
emergence of crowdsourcing-based road surface
monitoring.

4 Discussion, conclusion and outlook
Different methods present different levels of complexity,
precision and computing intensiveness. Across all the

Table 4 Summary of threshold-based methods for pothole detection and roughness index estimation

System name/by Thresholds Function Approach

PD RE C F S

[62], [63] Z-thresh, Z-diff, Stdev(z), G-zero ✔ ✔

BusNet [64] std of filtered Z-acc ✔ ✔

Bump Recorder [65] Z-acc, bump index ✔ ✔

[66] Z-acc ✔ Relative ✔

Smart Pune [67] Z-acc, skid, accident, braking ✔ ✔

[68] Z-acc for severity levels ✔ ✔

[69] Z-acc pattern ✔ ✔

Cyber-physical system [71] Z-jerk ✔ ✔

[135] 0.1 g threshold ✔ ✔

PoDAS [70] Z-acc, ultrasonic ✔ ✔

Relative: Pothole-based roughness index.

Table 5 Summary of signal processing methods for pothole detection and roughness index estimation

System name/by Signal processing Function Approach Additional

PD RE C F S GPS Data Crowd

UNIquaALroad[78, 79] high-energy events ✔ ✔ ✔ ✔

Smart patrolling [80] filter + DTW (adaptive) ✔ ✔ ✔ ✔

Smart Probe Car [81] anomaly index heuristic
(adaptive AI)

✔ ✔ ✔ ✔ ✔

[72] Z-acc, Gaussian model ✔ ✔

[73] Z-thresh, G-zero combined ✔ ✔ ✔

[74] Fuzzy logic ✔ ✔

[75, 76] time-frequency analysis ✔ ✔

[77] Greedy heuristic algorithm ✔ ✔ ✔ ✔

[90] Maximum Likelihood-based ✔ ✔

RCM-TAGPS [82, 83] PSD + empirical formula IRI ✔

[84] RMS acceleration IRI ✔

[85] RMS acceleration IRI ✔

STAMPER [86] filter + IRI IRI ✔

[87, 88] Filter + FFT IRI ✔

IPEM [89] Inverse pseudo-excitation method IRI ✔

[60] IRI-proxy ✔ IRI-proxy ✔ ✔ ✔

SmartRoad
Sense
[91, 92]

PSD + Linear
Predictive Coding

Relative ✔ ✔ ✔ ✔

[93] Correlation-Averaging Algorithm ✔ ✔ ✔ ✔ ✔

RIF [95–101] RIF-transform, TWIT ✔ New ✔ ✔ ✔
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reviewed documents and methods, it is recognised that
data-driven methods/MLs are increasingly being used
for all the functions in PR, PD and RE (see Fig. 4), as
well as the usage of the passive suspension system and
quarter-vehicle model due to their modelling simplifica-
tion. Recent studies have shifted towards RE as shown in
the time series graphs, in which signal processing tech-
niques have been preferred for RE given the ability to
achieve advanced functionalities such as adaptive thresh-
olds or data fusion. Regarding the function of PR for the
individual suspension system, it is more comprehensive
to integrate PR for suspension control with variable un-
certainty, but more challenges will occur on the know-
ledge of vehicle dynamic characterisation. Whereas to
deal with PD and RE for group of vehicles (fleet or con-
nected vehicle) and “citizen sensor” concept in the large-
scale society, the issues of GPS accuracy, data fusion

(e.g. the aggregation of sensor data or vehicle suspension
types) and crowdsourcing will be challenges to the de-
velopment of appropriate algorithms/systems. So far,
several established algorithms/systems have solved these
issues successfully.
In summary, the development of response-based

methods to evaluate road surface irregularity has attracted
research interests from both automotive technology and
pavement engineering, aiming at the three main functions
of Road profile reconstruction (PR), pothole detection
(PD) and roughness index estimation (RE). The review of
about 130 articles on this topic has revealed the diversity
of recent approaches mostly within the recent decade. At
first, the present study describes the algorithms used for
PR including model-based methods, data-driven methods,
transfer functions and others. Then, related algorithms for
PD and RE are described including the threshold-based,

Table 6 Summary of ML methods for pothole detection and roughness index estimation

System name/by Machine learning Function Approach Additional

PD RE C F S GPS Data Crowd

Pothole Patrol [102] Clustering + training detector ✔ ✔

Nericell [103], TrafficSense [104, 105] Z-peak method/ Clustering + training detector ✔ ✔

PRISM [106] Z-peak method + training detector ✔ ✔ ✔

[107] supervised ML ✔ ✔

P3 [108] Clustering + training detector ✔ ✔ ✔

PADS [111] K-mean clustering ✔ ✔

BDS [112] K-means clustering + RF ✔ ✔

[113] Naive Bayes algorithm + K-nearest-neighbor Relative ✔

[114] SVM + unsupervised ML ✔ Relative ✔

D&Sense [115] SVM + DTW ✔ ✔ ✔

RoadMonitor [116], RoADS-based [117,
118]

SVM, SVM + SWT ✔ ✔

[119] SVM + FFT, cross validation ✔ ✔ ✔

[120] SVM +WPD, feature selection ✔ ✔

Wolverine [121] SVM + K-means clustering ✔ ✔

[122] [123] SVM + data filter, sliding window, greedy forward feature
selection

✔ ✔ ✔ ✔ ✔

VRNI [124] SVM + filter, moving window, feature extraction ✔ ✔

CRISP-DM-based [125, 126] various algorithms comparison ✔ Relative ✔

[127, 128] various algorithms comparison ✔ Relative ✔ ✔ ✔

RoadSense [129], Pothole Lab [130] various algorithms comparison ✔ ✔ ✔

[131] various algorithms comparison ✔ ✔

[132] various algorithms comparison ✔ ✔ ✔

CRSM [109, 110] iGMM clustering ✔ IRI ✔ ✔ ✔

[133] SVM +WPD, Random forest IRI ✔ ✔ ✔ ✔

[134] ANN + feature selection IRI ✔ ✔

[7] Fuzzy classifier ✔ Relative ✔ ✔ ✔

Relative: Pothole-based roughness index;
ANN, SVM, RF, DT: Artificial Neural Network, Support Vector Machine, Random Forest, Decision Tree;
PCA, WPD, DWT: Principal Component Analysis, Wavelet Package Decomposition, Discrete Wavelet Transform.
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Table 7 Advantages and disadvantages of response-based methods

Response-based methods Advantages Disadvantages

1. Road profile reconstruction

1.1. Model-based approach can deal with unforeseen
situations that are not included
in the data-driven training datasets.

- an accurate model is required
- not all required response
information is measurable

- often only time domains

1.2 Kalman filter/estimator convenient, fast and simple - a priori information
about model errors

- the tuning of the
covariance matrix is
usually done heuristically

1.1.2 Observer can include tyre dynamics generally required knowledge
of many vehicle parameters

i. Sliding mode observer - convergence of the errors rather complicated for
practical application

ii. Q-parameterisation - less computing cost
and complexity for
real-time implementation

- better performance than KF

- the problem of
extensive modelling

- the sensitivity to speed
variation in almost methods

iii. Algebraic estimator
iv. H∞ observer
v. State observer
vi. Jump-diffusion

- can work effectively in
the framework of the
active suspension system

- overcome the drawbacks of KF

1.2 Data-driven approach (MLs) - can use fewer parameters
(e.g. only sprung or unsprung mass)

- various ML techniques to be applied
- does not require excessive
system characterisation

- required fewer analytical
skills than parametric model

- impractical for an online
road estimation due to
computationally costly
training datasets (e.g.
4655 s are required to
train the
ANN-based moded)

1.2.1 Only MLs (e.g. ANN) - able to detect potholes - spatial frequency only
- many vehicle parameters
- not high accuracy and
sensitivity to speed variation

1.2.2 Combined MLs and others - higher accuracy
and performance

- feasible for speed
independent classifiers

i. with feature selection
(e.g. WPT, FFT, PCA)

- can combine both time
and frequency domains

- able to classify terrain conditions

further complex modelling
and understanding vehicle
dynamics control mechanism

ii. with KF determination of the
process noise variance
before estimation

iii. with TF - speed independent
classifier with less training effort

- able to detect potholes

1.3 Transfer function and others required fewer parameters
than the model-based approach

1.3.1 The transfer function (TF) - easy, convenient and fast
- frequency domain only

- not directly yield the
expression of the excitation

- limited to a constant speed
(can be eliminated when
combined TF with
small time span)

1.3.2 Others

i. Cross-entropy using only sprung and
unsprung mass accelerations

too much computing time

ii. Control-constraints non-linear and complex models remains costly
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signal processing and machine-learning methods. Follow-
ing this, all reviewed documents and discussion are sum-
marised on their advantages and disadvantages (see
Table 7) which should be beneficial for further research in
this field.
As for future research, it should be of strong value-add to

focus on several potential topics as follows. Firstly, the air-
suspension system (as an active-suspension type) has not
been investigated by any research for PR whereas most

existing studies are about passive suspension system (67%).
The reason is probably due to the high modelling complexity
of the air-suspension while it is noted that the Macpherson
controllable suspension was simulated and simplified in [2].
Secondly, MLs have demonstrated their capability for mul-
tiple functions such as ANN algorithms for PR and PD in
[33], PR and RE in [8, 134] in which certain limitation in the
estimation accuracy, vehicle parameters or speed variance
can be further studied to develop comprehensive algorithms.

Table 7 Advantages and disadvantages of response-based methods (Continued)

Response-based methods Advantages Disadvantages

iii. Bayesian parameter low cost regardless of vehicle models a priori information of
the road is required

iv. Microphone feasible for the combination
of techniques

the susceptibility to
signal contaminations

v. Modulating function fulfil the real-time and noise
suppression requirements

particularly for
off-road vehicles

2. Road roughness estimation
and pothole detection

2.1 Threshold-based methods

2.1.1 Thresholds only simplest methods (for PD
purpose) with fix thresholds

threshold value varies
with different types
of smartphones, roads,
vehicles, the condition
of vehicles.

2.1.2 Combined thresholds and others overcome drawbacks of the
threshold-based methods

i. with signal processing approaches - able to detect the severity
of potholes, differentiate
potholes and humps

ii. with MLs to train detectors - clustering of different road
anomalies with simple algorithms

training datasets required
which are not able to collect
in some cases

2.2 Signal processing - able include both PD and RE
in the same system

- deal with GPS errors, data
aggregation, device installation
and orientation, crowdsourcing

- higher performance and accuracy
- suitable for data aggregation
regardless of different configuration
(e.g. velocity, orientation, suspension)

complicated analysis

2.2.1 PSD and RMS acceleration calculate IRI value not able to detect a pothole

2.2.2 RIF transformation - feasible for connected vehicles
- both PD and RE considering
a fleet of vehicles

advanced signal processing

2.2.3 Adaptive threshold
(e.g. DWT)

less training effort as
compared to MLs

2.3 Data-driven
approach (MLs)

- various techniques to be
applied to select the best alternative

- easier to implement in the
smartphone for crowdsourcing

a huge amount of training
datasets required which are
not able to collect in
some cases

2.3.1 Only MLs
(e.g. ANN)

simple using of raw
acceleration data and filter

2.3.2 Combined MLs
and feature extraction

- able to eliminate speed
dependence, suspension variation

- higher accuracy
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Thirdly, although fleet vehicle approach seems to be
less complicated to deal with, a comprehensive PBPM
for PD and RE for the fleet of public transport (e.g. bus
fleet) is still missing, except the general concept in [64]
or smart PD in [124]. This fleet vehicle approach faces
fewer challenges on data aggregation since vehicle fleets
are quite identical, with lower GPS errors caused by
lane-by-lane difference and without crowdsourcing plat-
form. Such a system, once developed, will be beneficial
in maintaining the road condition for public transport
such as the citywide bus lane system in Singapore,
London or worldwide BRT lane system, in which the
road surfaces often deteriorate quickly due to heavy-
loading from heavy-duty vehicles [136]. Fourthly, how to
localise precise road roughness condition and potholes
by lane accuracy (probably less than 0.5 m accuracy) is
crucial to make the PBPM comparable to conventional
Pavement management system, in which APP instru-
ments currently measure road surface lane-by-lane.
Higher GPS localisation of potholes also serves to opti-
mise the trajectories of following vehicles in the con-
nected platooning to avoid road defects by passing the
vibration information from the leader to the followers.
This can be done with the help of the future development
of sensor technology. Lastly, the intensive on-going re-
search on RIF and TWIT [95–101] as the alternatives for
IRI in connected vehicle environment will be promising for
large-scale implementation.
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