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Abstract

Heterotrimeric GTP binding proteins (G proteins) and cytokinin play important roles in regulating plant growth and
development. However, little is known about the mechanism by which they coordinate the regulation of grain size
in rice. We functionally characterized one gene, RGGI, encoding a type-A Gy subunit. Strong GUS staining was
detected in young panicles and spikelets, suggesting a role for this gene in modulating panicle-related trait
development. Overexpression of RGGT in Nipponbare (NIP) and Wuyunjing 30 (WYJ30) significantly decreased plant
height, panicle length and grain length by regulating cell division. However, rggl mutants generated by the CRIS
PR/Cas9 system exhibited no obvious phenotypic differences, which may be due to the extremely low expression
level of this gene in vivo. The transcriptomes of young panicles of NIP, the NIP-rgg7—2 mutant and the NIP-OE2
overexpression line were sequenced, and the results showed that many differentially expressed genes (DEGs) were
associated with the cytokinin biosynthetic pathway. We confirmed this result by measuring the endogenous
cytokinin levels and found that cytokinin content was lower in the overexpression lines. Additionally, increased
expression of RGGT decreased sensitivity to low concentrations of 6-benzylaminopurine (6-BA). Our results reveal a
novel G protein—cytokinin module controlling grain size in rice and will be beneficial for understanding the
mechanisms by which G proteins regulate grain size and plant development.
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Background

Heterotrimeric GTP binding proteins (G proteins) are key
regulators of a multitude of transmembrane signalling path-
ways in animals and plants. The heterotrimeric G protein
complex is composed of Ga, GB, and Gy subunits, which
cycle between active and inactive forms. G protein signalling
is activated by seven-pass transmembrane G protein—
coupled receptors (GPCRs) that function as guanine nucleo-
tide exchange factors and then transduce the signal to down-
stream effectors (Pandey 2019). In plants, G proteins are
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involved in multiple fundamental growth and development
pathways, including panicle branching (Huang et al. 2009;
Zhou et al. 2009), seed size (Liu et al. 2018; Mao et al. 2010;
Sun et al. 2018), shoot apical meristem (SAM) development
(Bommert et al. 2013), nitrogen utilization (Sun et al.
2014), and stress tolerance (Yu and Assmann 2015;
Zhang et al. 2015).

Although G proteins are evolutionarily conserved,
their numbers vary widely between humans and plants.
For example, at least 23 Ga, 5 G and 12 Gy have been
identified in humans. In contrast, the rice genome con-
tains only one Ga (RGAI), one GP (RGBI), and five Gy
homologs (RGGI, RGG2, GS3, qPE9-1/DEPI, and
GGC2) (Sun et al. 2018). Mutation in RGAI causes
severe dwarfing and small grain size (Zong et al. 2018).
Additionally, RGAI is involved in regulating rice gibber-
ellin and brassinosteroid signalling (Ueguchi-Tanaka
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et al. 2000; Wang et al. 2006). The G} gene RGBI posi-
tively regulates cellular proliferation to modulate inter-
node elongation and grain size (Utsunomiya et al. 2011).
Evidence also shows that RGBI functions as a posi-
tive regulator of ABA to modulate rice drought tol-
erance (Zhang et al. 2015). The five Gy proteins
antagonistically regulate grain length in rice. In par-
ticular, GS3, qPE9-1/DEP1, and GGC2 competitively
interact with GP to control grain size (Sun et al.
2018). qPE9-1/DEP1 could directly interact with the
MADS-domain transcriptional factor OsMADS1 and
enhance its transcriptional activity to modulate grain
size (Liu et al. 2018). RGG2, encoding a type B Gf
subunit, negatively regulates grain size and is also
involved in gibberellin signalling (Miao et al. 2019).
These prior studies in rice reveal that G proteins
play vital roles in the determination of grain size as
well as in phytohormone regulation.

Phytohormones play diverse roles in plant growth and
development (Blazquez et al. 2020). Cytokinin, one of the
most important phytohormones, has been shown to
modulate panicle traits. Gnla encodes a cytokinin oxi-
dase/dehydrogenase enzyme that is responsible for cytoki-
nin degradation in vivo. Mutation in Gnla results in
cytokinin accumulation and causes an increase in grain
number per panicle (GN) (Ashikari et al. 2005). Con-
versely, the cytokinin-activating enzyme LONELY GUY
(LOG) directly converts inactive cytokinin to biologically
active forms. The Jog mutant has highly reduced SAMs
and panicles and abnormal branching patterns (Kurakawa
et al. 2007). Cytokinin signalling plays important roles in
regulating meristem cell proliferation and differentiation
(Stahl and Simon 2010). Studies have shown that G pro-
teins are also involved in stem cell fate determination.
Maize COMPACT PLANT2 (CT2), which encodes a Ga
subunit, interacts with FASCIATE EAR2 (CLV2) to regu-
late inflorescence meristem size (Bommert et al. 2013). In
Arabidopsis, Gp mutants showed an enlarged meristem
size (Ishida et al. 2014). AGBI interacts with RPK2, one of
the CLV3 peptide hormone receptors, to regulate meri-
stem development. However, rice G proteins involved in
CLAVATA signalling have not been reported.

Decreased levels of cytokinin also lead to reduced
grain size in the root enhancerl (ren1-D) mutant due to
activation of OsCKX4 (Gao et al. 2014), and grain size
may be regulated in part by modulation of long-distance
transport of cytokinin by Big Grain3 (BG3), which
encodes a purine permease, OsPUP4 (Xiao et al. 2019).
Recently, the Gy subunit gPE9-1/DEP1 was found to
positively regulate grain filling by increasing endogenous
cytokinin and auxin concentrations in rice grains (Zhang
et al. 2019). However, how G proteins interact with cyto-
kinin signalling to control growth and development in
plants remains largely unknown.
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In this study, we functionally analysed the y-subunit
gene RGGI in rice. Overexpression of RGGI caused
reduced plant height and grain length. Further results
suggested that RGGI modulates endogenous cytokinin
accumulation and responses to regulate plant morph-
ology and grain development.

Results

RGG1 Encodes a Type-A Gy Subunit

In the rice genome, five Gy subunits have been identified.
Among them, RGG1 is relatively small and contains four
exons (Fig. 1a). Phylogenetic analysis showed that the G
proteins of rice, Arabidopsis, and maize were divided into
three groups (Fig. 1b). Among types A, B and C, the
amino acid sequences showed very little conservation, and
most of the similarities were limited to a highly conserved
GGL (G gamma-like) domain (Fig. S1). RGGI belongs to a
clade of type-A G proteins along with the AGGI and
AGG?2 proteins of Arabidopsis. SMART analysis predicted
that RGGI contains a nuclear location signal (NLS) at the
N-terminus, a GGL domain, and a CaaX isoprenylation
motif at the C-terminal end, typical of all canonical type-
A G proteins (Fig. S1).

We confirmed that RGG1 interacts with RGB1 using a
bimolecular fluorescent complementation (BiFC) assay.
The BiFC fluorescence signal was detected in the mem-
brane, cytoplasm and nucleus, suggesting the potential
function of the Gy dimer (Fig. 1c). To further explore
the interaction of RGG1 and RGBI, several truncated
RGG1 proteins were generated. As shown in Fig. 1d, the
GGL domain was necessary and sufficient for interaction
with RGB1. In addition, residues 55-67 of RGG1 were
required for the RGG1-RGBI1 interaction (Fig. 1d).

Expression Profiles and Subcellular Localization

To determine the expression pattern of RGGI1, the
tissue-specific expression of RGG1 was detected using
transgenic plants containing an RGGI promoter: GUS
fusion. GUS staining revealed different levels of expres-
sion of RGGI in panicles at different developmental
stages. As shown in Fig. 2a, the expression of RGGI
gradually decreased with panicle development. It was
also expressed in roots, with particularly strong staining
in the root tips (Fig. 2b). Additionally, GUS staining
showed that RGGI was abundantly expressed in leaves,
sheaths, nodes, stems, and spikelets (Fig. 2c-h). More-
over, the GUS results were in agreement with our quan-
titative reverse transcription-PCR (qPCR) analyses,
which showed particularly high expression of RGGI in
young panicles and decreasing panicle expression as
development progressed (Fig. 2i). In addition, we
detected RGGI transcripts in other tissues using qPCR,
including leaves, stems, nodes, sheaths, and roots
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Fig. 1 RGG1 encodes a type-A Gy subunit. a Gene structure of RGGI. b Phylogenetic tree of Gy subunits from rice, Arabidopsis and maize. c
Interaction between RGG1 and RGB1. Scale bars, 100 pm. d Yeast two-hybrid assay. In this assay, RGG1 was used as the prey (GAL4-AD, AD) due
to its autoactivation ability, and RGBT was used as the bait (GAL4-BD, BD). A represents deleted protein parts. The numbers show the different
lengths of each truncated protein. NLS is the predicted nuclear localization signal. GGL is the G gamma-like domain. U represents the
unknown domain

(Fig. 2i). These data suggest that RGGI may play an im-
portant role in panicle and seed development.

To observe the subcellular localization of RGG1, both
green fluorescent protein (GFP) and an RGGI1-GFP
fusion protein driven by the CaMV 35S promoter were
transiently expressed in rice protoplasts. Similar to the
GFP signal, RGG1-GFP was detected in the plasma
membrane, cytoplasm and nucleus (Fig. 2j). To verify
the function of the predicted NLS at the N-terminus, we
also transiently expressed a truncated protein,
RGG1aN1s-GFP, in rice protoplasts. However, the fluor-
escent signal of RGG1 N s-GFP showed the same distri-
bution as that of RGGI1-GFP, suggesting that the
putative NLS domain may not be functional (Fig. S2).

Overexpression of RGG1 Resulted in Yield Reduction in
Nipponbare Rice
To elucidate the biological function of RGGI, overex-
pression and knockout vectors were generated and then
transformed into NIP using an Agrobacterium tumefa-
ciens-mediated method. Several successful transformed
lines were obtained and confirmed by qPCR and sequen-
cing. We chose two overexpression (OE) and two
mutant lines for further analysis (Fig. 3a, b).

The relative expression levels of RGGI in two OE lines
(OE1 and OE2) were detected. Compared to that in NIP,

the expression level of RGGI was higher by eight- and
twelve-fold in OE1 and OE2, respectively (Fig. 3b). As a
result, the OE1 and OE2 transgenic lines showed a semi-
dwarf phenotype at maturity (Fig. 3c). Further analysis
showed that all the internode lengths of the OE lines
were shorter than those of NIP (Fig. S3a, b). Addition-
ally, we quantified other yield components, such as pan-
icle length (PL), tiller number per plant (TN), GN and
1000-grain weight (TGW) (Fig. 3h, i, I, Table S1). Nei-
ther PN nor TN showed a difference between NIP and
the two OE lines (Fig. 3h, i). However, the TGW values
of OE1 and OE2 decreased by 19.20% and 19.44%, re-
spectively, compared to that of NIP (Fig. 3l). Further
analysis suggested that RGGI affects grain length and
width but has no influence on grain thickness (Fig. 3e-k,
Table S1). In particular, the grain lengths in the OE lines
were lower by 7.41% and 10.17%, respectively, than that
in NIP (Fig. 3j). As expected, OE1 and OE2 also exhib-
ited decreased grain yield per plant (Fig. 3m). Taken
together, these results indicate that overexpression of
RGGI can cause semi-dwarf height and shortened grain
length.

Additionally, two knockout mutants of RGGI were
generated using the CRISPR/Cas9 system in the NIP
background (Fig. 3a). Sequencing results showed that
both mutants, NIP-rggl—I1 and NIP-rggi-2, had large
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Fig. 2 Molecular characterization of RGG1. a GUS activity in young panicles at different developmental stages. Scale bar, 1T cm. b GUS activity in
roots. Scale bar, T mm. ¢ GUS activity in leaves. Scale bar, 50 um. d GUS activity in spikelets. Scale bar, 2 mm. e GUS activity in sheaths. Scale bar,
2mm. f GUS activity in stem nodes. Scale bar, 2 mm. g GUS activity in node cross-sections. Scale bar, 2 mm. h GUS activity in spikelets during
different developmental stages. Scale bar, 2 mm. i RGGT transcript levels in different tissues. P1-P5, young panicles with average lengths of
approximately 3cm, 6cm, 10cm, 13 cm and > 15 cm, respectively. L, leaf. St, stem. N, node. Sh, sheath. R, root. j Subcellular localization of RGG1 in
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deletions in the target site that abolished protein expres-
sion. However, the mutant plants of lines NIP-rggl—I
and NIP-rggl-2 did not show any obvious phenotype in
traits including plant height and other yield component
(Fig. 3c-m). This result may be due to the extremely low
expression level of RGGI in NIP (Fig. 3b). Whether the
role of RGGI in signal transduction is subject to genetic
redundancy needs further study.

Overexpression of RGG1 in Wunyunjing 30 Results in a
Similar Phenotype

To investigate whether RGGI shows similar effects to
those in the NIP mutants in the gpe9—1/depl mutant
background, we transformed Wunyunjing 30 (WY]30), a
high-yield variety of rice that naturally lacks a functional
qpe9—1/depl, with the RGG1 overexpression vector, and
we measured plant height and other yield-related traits
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Fig. 3 Overexpression of RGGT has multiple effects on agronomic traits. a Targeted mutation of RGG1 using the CRISPR/Cas9 system generated
two mutants (NIP-rgg1-1 and NIP-rgg1-2), which were confirmed by sequencing. b Relative expression levels of NIP and two RGG1
overexpression lines (NIP-OET and NIP-OE2). OsActin was selected as the internal control. ¢ Plant morphology of NIP, NIP-rggi1-1, NIP-rgg1-2, NIP-
OE1 and NIP-OE2 at the mature stage. Scale bar, 10 cm. d Panicle phenotypes of NIP, NIP-rgg1-1, NIP-rgg1-2, NIP-OE1 and NIP-OE2. Scale bar, 5
cm. e Grain sizes of NIP, NIP-rgg1-1, NIP-rgg1-2, NIP-OE1 and NIP-OE2. Scale bar, 1 cm. f-m Comparisons among NIP, the mutants and the OF
lines with respect to f plant height; g panicle length; h tiller number per plant; i grain number per panicle; j grain length; k grain width; I 1000-
grain weight; and m grain yield per plant. The data are given as the mean + SD (n 2 20). Different letters indicate significant differences ranked by
the LSD test (P < 0.05)

at maturity. Both the WYJ30-OE1 and WYJ30-OE2 lines  observed no changes in plant morphology or grain size
showed reduced plant height and PL compared to those between WT-WYJ30 and these two mutants (Table S2).
of WT-WYJ30 (Fig. S4a-d, Table S2). Additionally, Taken together, knockout of RGGI might not affect rice
compared to WT-WYJ30, the grain lengths of the two  growth and development.
OE lines were reduced by 3.29% and 3.42%, respectively
(Fig. S4e). There was no significant difference in grain =~ RGG1 Regulates Grain Size by Affecting Cell Division
width between the WYJ30 and OE lines (Fig. S4f). In  The spikelet hull has an important impact on grain size
contrast, overexpressing RGGI caused decreased TGW  determination. Compared with WYJ30, both OE lines
and grain yield in WYJ30 (Fig. S4g, h). These results had reduced grain lengths and grain widths (Fig. 4a, b).
suggest that the roles of RGGI in regulating plant height  Generally, organ size is determined by cell expansion
and grain length are independent of gPE9-1/DEPI. and division. To investigate the grain size differences be-
Pyramiding different Gy-encoding genes may be a suit- tween the WYJ30 and OE lines, histological cross-
able way to modulate grain size in rice. sections of the spikelet hulls were analysed (Fig. 4c-e).
We also used the CRISPR/Cas9 method in WYJ30 to  As shown in Fig. 4d and e, both the OE lines had signifi-
obtain several homozygous mutants of RGG1. We iden- cantly higher cell areas and lower cell numbers than
tified one line, WYJ30-rggl—1, with a 4-bp deletion and  WY]J30. Furthermore, the epidermal cells of WYJ30 and
another with a 1-bp insertion, WYJ30-rgg/—2 (Fig. S5). the transgenic lines were analysed using scanning elec-
Both mutations disrupted the GGL domain (Fig. S5). We  tron microscopy (SEM) (Fig. 4f). No obvious difference
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test (P < 0.05)

WYJ30 and OE lines. The data are given as the mean + SD (n 2 15). Different letters indicate significant differences ranked by the LSD

in cell length or cell width was found between the
WYJ30 and OE lines (Fig. 4g, h). However, the OE lines
had fewer longitudinal cells than WYJ30 (Fig. 4i). Over-
all, these results suggest that overexpressing RGGI sup-
pressed cell division in the spikelet hull and
consequently led to smaller grain size.

RGGT is Involved in Cytokinin Biosynthesis

Due to the significant influences of RGG1 on panicle
elongation and grain length that we observed, we then
performed a transcriptome analysis to investigate the
possible molecular pathway of RGG1 action in the young
panicles of NIP, NIP-rggl—2, and NIP-OE2. A total of
1463 differentially expressed genes (DEGs) were detected
in OE2 compared with NIP; 690 of these genes were up-
regulated, and 773 genes were downregulated (Fig. 5a).
Additionally, 754 DEGs, including 249 up- and 505
downregulated genes, were found in the young panicles
of the rggl-2 mutant. The detected DEGs were involved

in diverse biological processes and metabolic pathways
(Fig. S6). Analysis of the DEGs using Gene Ontology
showed that the greatest enrichment was in the biological
process category. Additionally, Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses revealed that the
zeatin biosynthetic pathway was enriched in DEGs
(Fig. 5b). In particular, many DEGs were associated with
cytokinin biosynthesis (Fig. 5c). Notably, one gene, LOC_
0s01g40630, encoding the cytokinin-activating enzyme
LOG, which is responsible for converting inactive cytoki-
nin to biologically active forms, was downregulated in the
young panicles of NIP-OE2 (Fig. 5¢, d). The expression
levels of several cytokinin biosynthetic genes were con-
firmed using qPCR assays (Fig. S7a-c), and LOG was
found to be downregulated in the young panicles of the
OE lines and upregulated in rggl mutants. We also ana-
lysed two other cytokinin biosynthetic genes. CYP735A4,
encoding the key enzyme converting isopentenyladenine
(iP)-type to trans-zeatin (tZ)-type cytokinins, had
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J

decreased expression in the panicles of the OE lines,
while no significant changes were observed in the
mutants. OsIPT9 encodes IPP transferase for synthesiz-
ing cZ in rice (Tsai et al. 2012) and was downregulated in
the young panicles of the OE lines and upregulated in the
rggl mutants. These results suggest that RGGI might be
involved in the cytokinin regulatory pathway.

To test this hypothesis, we measured the concentra-
tions of cytokinin in young panicles (Fig. 5e-h). The total
contents of two cytokinin precursors, N6-(A2-isopente-
nyl) adenosine (iPR) and trans-zeatin-riboside (tZR), in
the OE lines were similar to those in NIP (Fig. 5e, f).
However, the contents of the active forms, iP and tZ,

were significantly lower in the OE lines than in NIP
(Fig. 5g, h). NIP-OE2 accumulated more tZR than NIP
did, and this effect may be due to an inefficient conver-
sion ability (Fig. 5f). These results suggest that overex-
pression of RGGI reduced the efficiency of the
conversion of cytokinin precursors to active forms, pos-
sibly as a result of lower expression of LOG or other
genes in the cytokinin pathway.

RGG1 Affects Cytokinin Signalling

Heterotrimeric GTP binding proteins (G proteins) are
involved in multiple signal transduction processes and
intracellular responses to stimuli in plants. We also
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investigated whether RGGI affects cytokinin signal
transduction in rice. Shoot and root elongation assays
were conducted to test the sensitivity of the overexpres-
sion and mutant lines to different concentrations of 6-
benzylaminopurine (6-BA) (Fig. 6a). These experiments
revealed an altered growth curve for the RGG1 overex-
pression lines when treated with 6-BA. At low concen-
trations, the shoot elongation of NIP and the two
mutants was more strongly inhibited than that of OE1
and OE2 (Fig. 6b). The inhibition of root elongation by
cytokinin was also compared between NIP and trans-
genic lines (Fig. 6¢). These results showed that the two
OE lines had reduced sensitivity to 6-BA with respect to
its inhibitory effect on root elongation (Fig. 6¢). All these
results indicated that RGG1 is involved in cytokinin bio-
synthesis and signal transduction in rice.

Discussion

Grain size is one of the important agronomic traits
affecting rice yield and quality. Although a complex
regulatory gene network related to grain size has been
proposed (Miao et al. 2019; Li and Li 2016), the crosstalk
between heterotrimeric G proteins and the cytokinin
regulatory pathway in grain size control is poorly under-
stood. In this study, we show that overexpression of
RGGI resulted in decreased plant height and grain
length (Fig. 2 and Fig. S4). Physiological measurements
suggested that the active cytokinin level was lower in OE
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lines than in NIP (Fig. 5), and a 6-BA treatment assay
showed that RGGI was involved in cytokinin signal
transduction. Thus, our findings demonstrate that RGGI
is involved in cytokinin biosynthesis and signalling and
thus controls grain size as well as plant height.
Phylogenetic analysis revealed that rice RGG1 is a
type-A Gy protein. It contains a conserved GGL domain
and a CaaX motif at the C-terminus that is characteristic
of Gy subunits among plants and animals and ensures
proper membrane targeting (Pandey 2019). Therefore,
RGGL1 represents a canonical Gy protein. Subcellular
localization results showed that RGG1 localizes to the
plasma membrane, cytoplasm, and nucleus (Fig. 2j).
Generally, Ga and Gy dimers perceive a stimulus at the
surface of the cell when in contact with the membrane
and then separate to transmit the signal to downstream
effectors (Hildebrandt et al. 1984). Previous studies have
shown that RGB1, RGG1 and RGG2 localize to the
plasma membrane (Kato et al. 2004). However, it is diffi-
cult to understand the roles of G proteins within the
nucleus. In the nuclei of mammalian cells, GPy heterodi-
mers interact with a transcription factor, AP-1, and thus
are likely have a transcriptional regulatory role there
(Chang et al. 2013; Robitaille et al. 2010). In rice, GS3-
GFP and DEP1-GFP are detectable in the membrane
and nucleus and function as cofactors of OsMADSI1 in
regulating grain size (Liu et al. 2018). More recently, the
type B GP subunit RGG2 was also found to be localized
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to the plasma membrane, cytoplasm and nucleus (Miao
et al. 2019). All of these results suggest that localization
of G proteins, including RGG1, to the nucleus is associ-
ated with G protein signalling and functions in tran-
scriptional regulation in rice.

Our qPCR and GUS staining results showed that
RGG1 was constitutively expressed in diverse tissues,
especially in panicles and spikelets (Fig. 2a-i). To investi-
gate the roles that RGGI plays in panicle development,
we successfully generated RGGI knockout and overex-
pression lines. The knockout lines rggl—1 and rggl-2
had no obviously different phenotypes when compared
to NIP (Fig. 3, Tables S1 and S2). One possible reason is
that RGGI normally has very low expression levels in
rice (Fig. 3b). In Arabidopsis, the aggl and agg2 mutants
and agglagg? double mutant exhibit no changes in ros-
ette size, while triple agglagg2agg3 mutants show a
reduction in rosette size (Thung et al. 2012). Therefore,
another possible explanation is that RGGI has a redun-
dant function with respect to signal transduction. In
contrast, the overexpression lines OE1 and OE2 showed
decreased plant height and PL as well as small grains, all
of which are consistent with results from a previous
study (Liu et al. 2018). In addition, Swain et al. reported
that increased RGG1 expression resulted in increased
plant height and enhanced tolerance to salinity stress
(Swain et al. 2017). Therefore, we evaluated salinity
stress tolerance using our transgenic lines in the NIP
background. However, seedlings from the OE lines did
not show increased tolerance to salinity stress under
treatment with 200 mM NaCl (Fig. S8). Thus, our results
support yield reduction and reduced plant height when
RGGI is overexpressed but not increased height or salt
tolerance.

We also overexpressed RGGI in the WYJ30 back-
ground, which contains a loss-of-function allele of gpe9—
1/dep1. Similar phenotypes, including a semi-dwarf plant
architecture, shortened PL, decreased grain length, and
overall lower yield, were also observed in the OE lines
(Fig. S4, Table S2). Therefore, RGG1 and qPE9-1/DEPI
may function differently in controlling grain size and
grain yield characteristics, especially given that WYJ30 is
a high-yield variety. Although the roles of G and Gy
subunits in regulating grain size are well known, the
mechanisms by which G proteins mediate this process
remain poorly understood. For example, Sun et al
crossed GS3-1Ri with RGBIRi transgenic plants and
found that the RGB1Ri/GS3-1Ri hybrid showed reduced
grain length. This finding suggests that the effects of
grain length increase by GS3-1Ri were dependent on
RGBI. Similar results were also obtained in the RGB1Ri/
DEP1OE and RGBI1Ri/GGC20E plants. Therefore, GS3
may have no effect on regulating grain size by itself,
while DEP1 and GGC2 compete with RGB1 to modulate
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grain size. Additionally, a previous study showed that G
protein  and y subunits could physically interact with
the transcription factor OsMADSI to promote its tran-
scriptional activity, thereby controlling grain morphology
(Liu et al. 2018). Recently, we functionally analysed one
gene, RGG2, and found that RGG2 negatively regulates
grain size via the gibberellin pathway (Miao et al. 2019).
These prior studies and our present results suggest that
the mechanism of regulation of grain size by G proteins
is likely very complicated. However, a more complete
understanding of how G proteins operate to control
grain size in rice is urgently needed to better manipulate
rice grain size to meet global consumer demands.

To understand the possible regulatory pathway that
RGGI mediates, we performed a transcriptome analysis
using young panicles from NIP and transgenic plants.
The results showed that many DEGs were associated
with cytokinin biosynthesis (Fig. 5). In particular, one
gene, LOG, showed significantly lower expression in the
OE lines (Fig. 5¢ and Fig. S7a). LOG is responsible for
converting cytokinin precursors to bioactive forms, and
its mutant has a defect in inflorescence meristem devel-
opment (Kurakawa et al. 2007). Cytokinins are adenine
derivatives that play essential roles in regulating shoot
meristem development (Hwang et al. 2012). However,
the relationship between cytokinins and G proteins in
mediating developmental processes in plants is poorly
understood. In Arabidopsis, in addition to the canonical
Ga protein, there are three EXTRA-LARGE Ga-like
PROTEINSs (XLGs) that interact with U-box, PUB, E3 li-
gases, PUB2 and PUB4, and both the triple mutant x/gs
and the double mutant pub2/4 showed defects in cytoki-
nin response. Within the mutant lines, overexpression of
ARRI0, a positive cytokinin response regulator, partially
rescued the defective phenotypes (Wang et al. 2017). Re-
cently, Zhang et al. reported that gPE9-1/DEP1 posi-
tively regulates grain filling by increasing auxin and
cytokinin content in rice grains. Here, we revealed that
the concentration of endogenous cytokinin was
decreased in the OE lines compared with that in NIP
due to the decreased expression of genes encoding cyto-
kinin biosynthetic enzymes. Cytokinin signalling com-
prises a classic two-step phosphorelay system where an
initial signal is transferred to a response regulator
(Argueso et al. 2010; Hwang et al. 2012). Here, we also
found that RGGI is involved in cytokinin signal trans-
duction based on a 6-BA treatment assay (Fig. 6a-c).

Overall, our findings, along with prior work, help to
show the complicated crosstalk between G proteins
and cytokinin. The critical nature of G proteins in
plant development is highlighted by recent reports of
knockouts of G (RGBI) or Gy (RGG?2) in rice or Gp
(ZmGB1) in maize causing lethal phenotypes (Gao
et al. 2019; Miao et al. 2019; Wu et al. 2020). This may
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be unsurprising given that G proteins probably medi-
ate shoot meristem size through interaction with
CLAVATA receptors (Bommert et al. 2013; Ishida
et al. 2014; Wu et al. 2020) and may impact embryo
formation via a network between G proteins and cyto-
kinin. We expect that further elucidating the interplay
between cytokinin and G proteins will be beneficial
for crop improvement via genetic engineering and mo-
lecular breeding.

Conclusions

Altogether, our results showed that overexpression of
RGGI significantly decreased plant height, panicle length
and grain length by regulating cell division in rice. Fur-
thermore, our findings suggested that RGGI is involved
in cytokinin biosynthesis and signalling pathway. Thus,
this study reveals a novel G protein—cytokinin module
controlling grain size in rice and will be beneficial for
understanding the mechanisms by which G proteins
regulate grain size and plant development.

Materials and Methods

Plant Materials and Growth Conditions

Both wild-type cultivars (NIP and WYJ30) and trans-
genic lines of the T3 generation were used for pheno-
typic analyses. These materials were grown on the
experimental farm of Yangzhou University following
normal agricultural practices. For analyses at the seed-
ling stage, plants were grown in hydroponic culture in a
growth chamber with a 12-h light (30 °C) and 12-h dark
(28 °C) photoperiod and 70% humidity.

Homologous Detection and Phylogenetic Analysis

The sequences of the rice, Arabidopsis and maize Gy
proteins were obtained from NCBI (https://www.ncbi.
nlm.nih.gov/). Multiple alignments were performed
using Clustal X. Maximum likelihood (ML) and
neighbour-joining (NJ) methods were adopted for the
phylogenetic analysis using MEGA v7.0. The ML phylo-
genetic analyses were conducted with the following
parameters: Jones-Taylor-Thornton (JTT) model, esti-
mated proportion of invariable sites, 4 rate categories,
estimated gamma distribution parameter, and optimized
starting BION] tree. In addition, the JTT model was
employed for the construction of NJ trees. A total of
1000 non-parametric bootstrap samplings were carried
out to estimate the support level for each internal
branch for both the ML and NJ trees.

Vector Construction and Rice Transformation

To construct the RGGI-OE vector, the full-length cod-
ing sequence was amplified from NIP cDNA and then
inserted into the p1301Ubi vector. To generate pC1300-
Cas9—gRGG] mutants, we designed a target sequence in
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the first exon, and the final fragment was inserted into
the pC1300-Cas9 vector. The 2.0-kb promoter sequence
of RGGI was cloned to drive the -glucuronidase (GUS)
gene, and the promoter-GUS vector was transformed
into NIP. All these vectors were introduced into
Agrobacterium tumefaciens strain EHA105 for subse-
quent transformation of NIP or WYJ30. Homozygous T,
generation plants were used for further analysis.

All primers used in this study are listed in Supplemental
Table S3.

Histochemical GUS Staining and Subcellular Localization
Analysis

For GUS staining, positive transgenic plants were se-
lected at different developmental stages using an X-Gluc
kit (Real-Times (Beijing) Biotechnology Co. Ltd.).
Leaves, nodes, sheaths, stems, roots, and young panicles
of different stages were collected and then soaked in so-
lution with X-Gluc in a 37 °C dark environment for one
night. Then, samples were cleared with absolute ethanol
for observation.

For subcellular localization analysis, the full-length
c¢DNA of the RGGI gene was amplified and cloned into
the pCAMBIA1300-221GFP vector to generate 35S:
RGG1-GFP. The construct was directly transformed into
rice protoplasts, and the GFP signals were observed by
confocal microscopy (Leica). The primers used are listed
in Supplemental Table S3.

Evaluation of Agronomic Traits

Before harvest, several yield-related agronomic traits
were measured, including plant height, internode length,
TN, and PL of the main stem. Grain-related traits,
including grain length, grain width, and TGW, were
measured after harvesting and stored at 37 °C for 1 week.
The total seeds of one plant, minus any empty grains,
were weighed to determine the grain yield per plant.
Data statistics and sample ¢-tests were analysed using
Excel (2016) software.

Histological Analysis

Fresh young spikelet hulls of WYJ30 and the WYJ30-OE
lines were collected, fixed in 2.5% glutaraldehyde for
more than 24 h and then dehydrated through a graded
alcohol-isoamyl acetate series. Images of cross-sections
were taken on a Zeiss Axioskop HBO 50 or a Leica
MZFLIII fluorescence stereomicroscope. For glume cell
observation, the outer surfaces of mature seeds were
observed by SEM (S-4800, Hitachi). The cell number
and cell area in the outer parenchyma cell layer were
measured using Image]J software.
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RNA Extraction and qPCR

Total RNA was extracted using an RNA extraction kit
(Beijing Tiangen Biotechnology Co. Ltd.). High-quality
RNA was used to generate cDNA using a FastQuant RT
Kit (Beijing Tiangen Biotechnology Co. Ltd.). Gene
expression levels were analysed using qPCR. The rice
Actin gene was used as an internal control. The qPCR
was carried out in a total volume of 20 uL, containing
2 pL of cDNA, 10 uM of each primer, 10 uL of 2x SYBR
Green PCR Master Mix, and 0.4 pL of 50 x ROX Refer-
ence Dye 2 (Vazyme Biotech Co. Ltd.), and performed
on an ABI ViiA 7 Real-Time PCR System. The primers
used for qPCR are listed in Supplemental Table S3.

Cytokinin Measurement and Treatment

For measurement of cytokinin, young panicles of NIP
and transgenic plants were collected in liquid nitro-
gen. Cytokinin measurement was performed as previ-
ously described (Cai et al. 2014). For cytokinin
treatment, one-week-old seedlings were grown in
hydroponic medium and then treated with different
concentrations of 6-BA. After 1week of treatment,
the shoot and root length were measured to analyse
the response to cytokinin. For gene expression ana-
lysis, 10-d-old seedlings were grown in hydroponic
medium containing 10 uM 6-BA. Leaves were col-
lected every 2h for RNA extraction, and the
expression level of OsRR9 was detected by qPCR.

RNA-Sequencing Analysis

Young panicles of NIP and the transgenic lines were
collected for total RNA extraction using a TRIzol re-
agent kit (Invitrogen, Carlsbad, CA, USA). Construc-
tion of the cDNA library and sequencing were
performed at Gene Denovo Biotechnology Co.
(Guangzhou, China) using the Illumina HiSeq 2500
platform (Illumina Inc., San Diego, CA, USA). The fil-
tered clean reads were aligned to the rice NIP refer-
ence genome and genes (http://rice.plantbiology.msu.
edu/) using HISAT2. 2.4. RNA differential expression
analysis was performed by DESeq2.

Yeast Two-Hybrid Assay

To detect the interactions between RGG1 and RGBI,
the full-length and truncated sequences of RGGI were
cloned into the pGADT7 vector, and RGB1 was cloned
into the pGBKT7 vector. Yeast two-hybrid assays were
performed according to the manufacturer’s user manual.
The primers listed in Supplemental Table S3.

BiFC Analysis

For the BiFC assay, the coding sequence of RGG1 was
cloned into pCAMBIA1300-35S-N-YFPn, and the coding se-
quence of RGB1 was cloned into the pCAMBIA1300-35S-
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N-YFPc vector. The plasmids were electroporated into A.
tumefaciens (strain GV3101) and coinfiltrated into tobacco
(Nicotiana benthamiana) leaves. After infiltration for 2—3
days, the GFP signals were observed by confocal microscopy
(Leica). The primers used for BiFC are listed in Supplemental
Table S3.

Statistical Analysis

The results are presented as the mean + SD. Microsoft
Excel 2016 was used for statistical testing. GraphPad
Prism 8 was used to produce bar charts and line charts.
Significance levels were determined according to
Student’s ¢-test: *P < 0.05, **P < 0.01.
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