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A New Recessive Gene Conferring
Resistance Against Rice Blast
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Abstract

Background: Rice blast (causative pathogen Magnaporthe oryzae) represents a major biotic constraint over rice
production. While numerous genes for resistance have been found in both japonica and indica germplasm, as yet
the diversity harbored by aus germplasm has not been widely exploited.

Results: The blast resistance present in the aus type cultivar AS20-1 was shown, via an analysis of segregation in
the F, generation bred from a cross with the highly blast susceptible cultivar Aichi Asahi, to be due to the action
of a single recessive gene, denoted pi66(t). The presence of pi66(t) gave an intermediate level control to plants
infected with the blast pathogen isolate EHL0635. A bulked segregant analysis indicated that four microsatellite
loci (SSRs) mapping to chromosome 3 were probably linked to pi66(t). Localized mapping using chromosome
3-based SSRs and Indels defined a genetic window for pi66(t), flanked by the markers F04-j2 and M19-i12, which
physically equals to 27.7 and 49.0 kb, respectively, in the reference genomes of cultivars Nipponbare and 93-11.
This physical interval does not harbor any major gene currently associated with disease resistance.

Conclusion: pi6(t) is one of just three recessive genes controlling rice blast, and is the first major gene for resistance

to be mapped to chromosome 3.
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Background

Rice, a crop which feeds half of the world’s population,
has been cultivated for at least 8,000 years (Khush 1997;
The 3,000 rice genome project 2014; Travis et al. 2015).
Five distinct groups of rice germplasm have long been
recognized: they are referred to as indica, aus, basmati/
sadri, tropical japonica and temperate japonica (The
3,000 Rice Genomes Project 2014; Travis et al. 2015).
The aus group has developed in the north-eastern region
of the Indian sub-continent, where both the climate and
the growing environment are highly variable (Mahender
et al. 2012; Travis et al. 2015). In recent years, aus germ-
plasm has grown in importance as a source of genes for
rice improvement, especially in the context of breeding
for resistance/tolerance to abiotic and biotic stress (Travis
et al. 2015 and references therein).
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Rice blast (causative pathogen Magnaporthe oryzae) is
a major constraint over rice production, inducing grain
yield losses of up to 90 % (He et al. 2012; Singh et al.
2015). Although breeders have so far been able to rely
on a number of sources of genetic resistance, the pathogen
is adept at evolving new races, with the result that
mongenic resistances typically break down quite rapidly
(Wu et al. 2014; Singh et al. 2015; Zhang et al. 2015).
To date, some one hundred rice blast resistance (Pi)
genes have been identified, many of which have been
shown to map within a cluster or even in form of a tan-
dem array; they are dispersed on eleven of the twelve
rice chromosomes (Sharma et al. 2012; Singh et al. 2015;
Tanwaeer et al. 2015 and references therein). All but two
of the Pi genes are functionally dominant (Fukuoka et al.
2009; He et al. 2012), and about 30 have been isolated:
their products mostly belong to the large group of
nucleotide-binding site (NBS)-leucine-rich repeat (LRR)
proteins. The two exceptions are Pid-2 and pi21 (Chen et
al. 2006b; Fukuoka et al. 2009; Liu et al. 2011). Here, a
third recessive gene, denoted pi66(t), has been identified
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in the aus cultivar (cv.) AS20-1, and its genomic position
has been defined.

Results

Resistance Reaction and Spectrum

Numerous differential reactions were identified among
the four cvs in the five Mo populations, suggesting that
the Pi gene(s) carried by the donor cv. AS20-1 could be
distinguished from the other Pi genes with these reactions
(Table 1 and Additional file 1: Table S1). Intermediate and
even lower resistance frequencies were evaluated among
the four cvs in the five M. oryzae populations, indicating
that all the four Pi genes should be incorporated with
other Pi genes to stand the higher level of resistance
in a given cultivar, if it will be released in the five M.
oryzae populations.

Resistance Inheritance

When challenged by the blast isolate EHL0635, cv. AS20-1
was scored as moderately resistance (MR), cv. Aichi Asahi
as susceptible (S) and the cv. AS20-1 x cv. Aichi Asah F;
as highly susceptible (HS) (Fig. 1). The qPCR-based assay
confirmed that the hybrid was more susceptible than
cv. Aichi Asahi. The F, progeny segregated as 101 R,
282 MR, 254 MS and 883 S, fitting a monogenic 1R:3S
ratio when the R/MR and MS/S classes were combined
(Y*=0.02; P>0.80; Table 2). Together, these results
indicated that the blast resistance expressed by cv. AS20-1
relied on homozygosity for the recessive allele of a
single gene.

Gene Locus

BSA analysis revealed that four SSR markers (RM487,
RM16, RM55, and RM168) on rice chromosome 3 were
candidate markers linking to the target Pi gene, exclu-
sively, in the F, population. The first round of linkage ana-
lysis with 750 viable F, plants revealed that there were 64
and 37 recombinants, respectively, at RM487 and RM16
loci on the centromere side, 35 and 22 distinct recombi-
nants, respectively, at RM168 and RM55 loci on the telo-
mere side, indicating that the four candidate markers were
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indeed linkage markers with the target Pi gene (Fig. 2a).
Because no major Pi gene had been previously identified
in this region, the novel Pi gene in AS20-1 was designated
as pi66(t).

Additional nine polymorphic SSR markers developed
in the region defined by the flanking markers RM16 and
RM55 were subjected to the second round of linkage
analysis (Additional file 2: Table S2). The results showed
that there were 31 to 22 recombinants detected among
the seven marker loci [BO7 (31), GO2 (30), H15 (30),
NO3 (30), P23 (30), N11 (29), L18 (25), M23 (22)] on the
centromere side, and only 8 distinct recombinants at
RM135 locus on the telomere side (Fig. 2a). A total of
14 additional Indel markers developed in the narrower
region flanked by markers M23 and RM135 were sub-
jected to the third round of linkage analysis (Additional
file 2: Table S2). The results showed that there were 15
to 2 recombinants detected among the six marker loci
[D21 (15), E06 (9), 120 (7), 124 (2), FO4 (2), F04-j2 (2)]
on the centromere side, and 7 to 1 recombinant(s) de-
tected among the eight marker loci [G23 (7), EO1 (4),
M19 (3), M19-4 (3), M19-3 (2), M19-2 (2), M19-1 (1),
M19-i12 (1)] on the telomere side (Fig. 2a). The target
locus, pi66(t), was closely flanked by F04-j2 and M19-i12,
which equals to 27.7 and 49.0 kb, respectively, in the refer-
ence genomes of cvs Nipponbare and 93-11 (Fig. 2a).

Candidate Genes

The pi66(t) region was represented by the two cv. Nip-
ponbare overlapping BACs OSJNBbO0O09F04 and OSJN-
Ba0092M19 (Fig. 2b). The number of genes present within
this region was six in cv. Nipponbare and 14 in cv. 93-11
(Additional file 3: Table S3). Genome comparison and
presence/absence (P/A) analyses revealed that there
were three substantial Indel events that resulted in six
genome-specific genes in the region. That is, both pi66-2j
and pi66-3j in Indel I present in two genomes of cvs Nip-
ponbare and AS20-1; pi66-1i-2 (a duplication of pi66-1i-1)
in Indel II, pi66-5i and pi66-6i in Indel III in that of both
cvs 93—11 and AS20-1; and pi66-2i in Indel II in that of
cv 93-11, only (Fig. 2¢, Additional file 4: Figure S1).

Table 1 Reactions shown by four rice cultivars infected by a M. oryzae isolate representative of each of the five Chinese populations,
and the frequency of resistance exhibited among the collected isolates from each population

Mo population  Selected  Specific reactions selected from the five Mo populations® Resistance frequencies in the five Mo populations (%)°
isolateyo50-1 Aichi Asahi Kasalath IRBLta2-Pi AS20-1 Aichi Asahi  Kasalath  IRBLta2-Pi
Guangdong CHL3417 R R R S 45.0 450 483 39.7
Guangxi EHL1622 S S S R 250 26.7 36.7 383
Yunnan EHLO210  MS S MS MS 36.7 36.7 533 733
Sichuan CHL892 MR S S S 20.0 20.0 483 56.7
Heilongjiang EHL1379 S S R S 6.7 1.7 63.3 56.7

°R resistant, S susceptible, MS moderately susceptible, MR moderately resistant

PResistance frequencies were based on 60 isolates except for Kasalath and IRBLta2-Pi in the Guangdong population, in which only 58 isolates were tested
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Fig. 1 The effectiveness of pie6(t) to resist infection by M. oryzae. a The infection phenotype of cvs AS20-1 (resistant), Aichi Asahi (susceptible) and the
cv. AS20-1 x cv. Aichi Asahi Fy hybrid (highly susceptible). b gPCR-based quantification of infection. Each bar represents the mean + standard deviation
(n = 3). Similar results were obtained from two biological replications each with three technical repeats. W: mock inoculation with water, P: inoculation
with the pathogen isolate EHL0635

Notably, there were six transposon-like genes (pi66-1j,
-2j, -3j, 1i-1, 1i-2, -6i), of which both pi66-2j and -3j
were scattered across the entire genomes except for the
target region of cv. 93—11, thereby ruling out for P/A
analyis (Additional file 4: Figure S1; Additional file 3:
Table S3). Furthermore, there were three chimeric
genes in both 93-11 and AS20-1 genomes (Fig. 2c and
Additional file 4: Figure S1). By excluding six transposon-
like genes, there were three most possible candidates (pi66-
Sa, -6a, -7a) for pi66(t) (Fig. 2c; Additional file 3: Table S3).

Discussion

Chinese rice breeders have to date largely ignored aus
germplasm, even though it has acquired a growing
reputation for harboring genes for resistance/tolerance
to abiotic and biotic stress (Travis et al. 2015). Rather,
efforts to improve indica have concentrated on materials

Table 2 Segregation for resistance in the F, population bred
from the cross cv. AS20-1 x cv. Aichi Asahi, following inoculation
with the M. oryzae isolate EHL0635

Parents/F, plants No. of plants®

Segregation® x> P

R MR MS S Total "fON
AS20-1 9 19 1 0 29 na
Aichi Asahi o 0 0 32 32 na
F, population 101 282 254 883 1520 1R3S 002 >0.80

°R resistant, S susceptible, MS moderately susceptible, MR moderately resistant
®na not applicable

“Chi-square test using the Yates correction comparing resistance [R + MR] with
susceptibility [MS +S]

developed in SE Asia, while those directed at japonica
have relied on germplasm from Japan (Wu et al. 1991). In
addition to pi66(t), aus germplasm has also yielded both
Pil6 and an allele of Pik (Pan et al. 1999). More recently,
nine already recognized Pi genes have been identified as
present in materials originating in NE and E India (Imam
et al. 2014), which is the center of origin of aus germ-
plasm. Notably, the donor of pi66(t) also harbors a gene
conferring resistance against the brown plant hopper; this
gene also lies on chromosome 3, but at some distance
from pi66(t) (Chen et al. 2006a). Such works clearly in-
dicated that aus cvs are valuable and promising genetic
resources for withstanding biotic pressures including
rice blast disease, and will greatly enlarge the gene pool
for rice breeders.

Plant disease resistance genes have been classified
into two types, the most frequent of which encode an
NBS-LRR protein. Non-NBS-LRR genes encode a wide
diversity of products (Chauhan et al. 2015; Olukolu et
al. 2016), tend to confer partial (rather than complete) re-
sistance and are typically more durable than the NBS-LRR
type genes. The most well documented non-NBS-LRR type
is barley mlo, a gene which encodes a G protein-coupled
receptor residing in the plasma membrane (Kim et al.
2002); the gene confers durable resistance to a broad
spectrum of powdery mildew races (Acevedo-Garcia et
al. 2014). A second example is the wheat gene Lr34,
which encodes an ATP-binding cassette transporter; its
product protects against five distinct foliar fungal path-
ogens (Kratttinger et al. 2009; Chauhan et al. 2015).
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Fig. 2 The genomic location of pi66(t). a Physical maps of the pi66 region based on the reference sequences of cvs 93-11 and Nipponbare. The
numbers shown below the map represent the physical distance in kb, those shown in parentheses represent the numbers of recombinants/gametes
detected in the mapping population. b A BAC contig map of the pi66(t) region derived from the cv. Nipponbare tiling map. ¢ The predicted gene
content of the mapping interval harboring pi66(t). Three substantial Indel events, which results in six genome-specific genes presented in the region,
were determined via genome comparison and P/A analyses, of which three chimeric genes presented in both 93-11 and AS20-1 genomes. Candidate
genes of cvs Nipponbare, 93-11, and As20-1 were indicated with grey, black, and blank arrows, respectively

The maize gene ZmWAK encodes a plasma membrane-
related receptor-like kinase; its presence has been cor-
related with a reduction in the incidence of head smut
disease (Zuo et al. 2015). Finally, the rice gene xa5 en-
codes a small subunit of the transcription factor IIA
(TFIIA); this gene confers resistance against bacterial
blight (Iyer-Pascuzzi 2004). Before the identification of
pi66(t), all but two of the Pi genes characterized to date
act as dominant alleles. The exceptions are pi2l and
pi55. The former gene encodes a proline-rich protein
harboring a probable heavy metal-binding domain and
some predicted protein-protein interaction motifs; the
resistant allele differs from the wild type dominant one
by two deletions affecting the latter motifs, and which
are thought to be responsible for the allele's determination
of non-race-specific resistance (Fukuoka et al. 2009). One
of candidate genes for pi55 encodes a protein rather
similar to that encoded by pi21. Although a substantial
number of major Pi genes have been intra-chromosomally
mapped, pi66(t) is the first to be located on chromosome
3. Two quantitative trait loci mapping to this chromosome
(0s03g0122000 and Os03g0120400) have been associated
with blast resistance (Wang et al. 2014), but both lie out-
side the critical RM16-RM55 interval. The pi66 identified
in the current study that is the third recessive Pi gene lo-
cated on the virgin land, where no any known Pi protein

(domain) is identifiable (Additional file 3: Table S3). It is
noteworthy that the bphl9 derived from the donor cv.
AS20-1 was also recognized as non-NBS-LRR resistance
gene (Chen et al. 2006a). It has been argued that dur-
able and broad-spectrum resistance may be more read-
ily achieved by deploying non-NBS-LRR genes, perhaps
in combination with NBS-LRR ones, than by attempt-
ing to stack genes which each (at least for some time)
confer immunity (Fukuoka et al. 2009; Acevedo-Garcia
et al. 2014; Chauhan et al. 2015; Zuo et al. 2015). This
hypothesis can only be tested by exploiting genes such
as pi66(t) in a rice breeding program.

Conclusions

This research has confirmed that novel resistance genes
against blast can be recovered from aus germplasm. The
gene pi66(t) identified here is the third recessive Pi gene
to be identified, and is also the first major Pi gene to be
located on chromosome 3.

Methods

Phenotyping

The pi66(t) donor cv. AS20-1, along with the Pia carrier
cv. Aichi Asahi, the Pi36 carrier cv. Kasalath and the Pita-
2 carrier cv. IRBLta2-Pi were challenged with 60 M. oryzae
isolates collected from each of Guangdong (GD), Guangxi
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(GX), Yunnan (YN), Sichuan (SC) and Heilongjiang
(HLJ) provinces. Inoculation and scoring methods were
adapted from those described by Pan et al. (1996, 2003).
Plants were assigned a score of either 01 (resistant: R),
2-3 (moderately resistant: MR), 4 (moderately susceptible:
MS) or 5 (susceptible: S). The frequency of resistance
for each of the four cultivars within each of the five M.
oryzae populations was calculated from [(R + MR)/(R +
MR) + (MS + S)]. The typical reactions of cv. AS20-1, cv.
Aichi Asahi and the cv. AS20-1 x cv. Aichi Asahi F; plants
were quantified using a quantitative PCR (qPCR) assay,
according to the protocols previously described (Berruyer
et al. 2006; Kawano et al. 2010; Zhang et al. 2015). Oryza
sativa OsUbi (Gene ID: 4332169) and M. oryzae Pot2
(Gene ID: 2680652) were used as the reference genes for,
respectively, the host and the pathogen DNA.

Chromosome Mapping

The donor cv. AS20-1 was crossed with the highly suscep-
tible cv. Aichi Asahi, and their F, progenies were screened
for reaction to inoculation with M. oryzae isolate EHL0635.
The F, population showing monogenic segregation was
regarded as the mapping population, thereby subjecting
to the bulked-segregant assay (BSA) for quickly map-
ping chromosomal region involving the target gene.
Genomic DNAs of the F, plants as well as the parental
plants were extracted from frozen leaves using the CTAB
method. Two contrast bulks that were constructed by
pooling equimolar amounts of DNAs from 10 resistant or
10 susceptible F, plants. The two bulks, along with both
parental DNAs, were then assayed with a set of 180 simple
sequence repeat (SSR) markers (Temnykh et al. 2000,
2001), selected to span the full rice genome, following the
methods given by He et al. (2012).

Gene Mapping

Genomic map of target gene were established through
three rounds of linkage analysis using genomic position-
ready molecular markers (He et al. 2012). The first round
was carried out with candidate markers defined by BSA
for screening recombinants on both sides of the target
locus. The second round was carried out with additional
SSR markers in the target region flanked by the closest
markers derived from the first round of linkage analysis,
which were developed on the basis of reference sequence
of cv. Nipponbare, except for RM135 that was adopted
from the rice SSR marker maps (Temnykh et al. 2000,
2001). The third round was carried out in the recombin-
ant progeny with insertion/deletion (Indel) markers those
were developed de novo based on differential sequences
between the two reference sequences of japonica cv.
Nipponbare and indica cv. 93—11. Linkage marker search
and prime designation were performed in the way essen-
tially same way as previously described (Liu et al. 2005;
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Zeng et al. 2011; He et al. 2012). Genomic map of the
target locus was constructed on the basis of both refer-
ence sequences.

Candidate Gene Indentification

Candidates for pi66(t) were predicted based on gene
annotations provided by BLASTN (www.ncbi.nlm.nih.
gov/BLAST), RiceGAAS (ricegaas.dna.affrc.go.jp) and
FGENSH (www.softberry.com) software. The two refer-
ence sequences proved to be rather diverse in the target
region, so candidates that encode proteins with over
200 aa was validated by PCR-based presence/absence (P/A)
test against the four DNAs of cvs AS20-1, Aichi Asahi, 93—
11, and Nipponbare, following Zhai et al. (2011).

Additional Files

Additional file 1: Table S1. Sampling and phenotyping information
for the 300 isolates selected from five Chinese M. oryzae populations.
(XLSX 31 kb)

Additional file 2: Table S2. PCR-based markers mapping to the pi66(t)
region. (DOCX 50 kb)

Additional file 3: Table S3. The gene content of the region flanked by
the pié6-linked markers FO4-j2 and M19-i12. (DOCX 22 kb)

Additional file 4: Figure S1. Presence/absence analysis of nine candidate
genes. The upper panel shows the schematic gene structure used
for primer design, and the lower two panels show the amplicons.
93: cv. 93-11, Ni: cv. Nipponbare, AS: cv. AS20-1, Ai: cv. Aichi Asahi,
M1: size marker DL15,000; M2: size marker DL2,000. (PPTX 680 kb)
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