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Abstract 

Background:  The pathogenesis of systemic lupus erythematosus (SLE) is poorly understood but has been linked to 
defective clearance of subcellular particulate material from the circulation. This study investigates the origin, forma-
tion, and specificity of circulating microparticles (MPs) in patients with SLE based on comprehensive MP proteome 
profiling using patients with systemic sclerosis (SSc) and healthy donors (HC) as controls.

Methods:  We purified MPs from platelet-poor plasma using differential centrifugation of samples from SLE (n = 45), 
SSc (n = 38), and two sets of HC (n = 35, n = 25). MP proteins were identified and quantitated after trypsin digestion 
by liquid chromatography-tandem mass spectrometry. The abundance of specific proteins was compared between 
the groups using univariate statistics and false discovery rate correction for multiple comparisons. Specific proteins 
and protein ratios were explored for diagnostic and disease activity information using receiver-operating characteris-
tic curves and by analysis of correlations of protein abundance with disease activity scores.

Results:  We identify and quantitate more than 1000 MP proteins and show that a subpopulation of SLE-MPs (which 
we propose to call luposomes) are highly specific for SLE, i.e. not found in MP preparations from HC or patients with 
another autoimmune, systemic disease, SSc. In SLE-MPs platelet proteins and mitochondrial proteins are significantly 
diminished, cytoskeletal proteins deranged, and glycolytic enzymes and apoptotic proteins significantly increased.

Conclusions:  Normal MPs are efficiently removed in SLE, but aberrant MPs, derived from non-lymphoid leukocytes, 
are less efficiently removed and abundantly produced leading to an altered MP proteome in SLE. The data suggest 
that an abnormal generation of MPs may partake in the pathology of SLE and that new diagnostic, monitoring, and 
treatment strategies targeting these processes may be advantageous.
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Background
Cells and tissues release subcellular membrane-enclosed 
fragments (extracellular vesicles). These vesicles are het-
erogeneous and include cell membrane-derived micro-
particles (MPs), exosomes from multivesicular bodies, 
and larger membrane particles from apoptotic and 
necroptotic cells and from cells undergoing other types 

of cell death [1]. Extracellular vesicles carry out physi-
ological functions [2] and potentially are easily accessible 
markers of specific pathology [3].

Systemic lupus erythematosus (SLE) is an autoim-
mune disease characterized by chronic and fluctuating 
inflammation, circulating autoantibodies, and immune 
complex-mediated tissue damage [4]. Clearance defects 
have long been implicated in the SLE pathogenesis [5, 
6] and experimental data support that waste genera-
tion and removal are associated with pro-inflammatory 
mechanisms in SLE [7–12]. It is, however, unsettled if 
the common human SLE phenotype primarily involves 
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clearance defects, i.e., if the production and release of 
MPs to the circulation is normal while their clearance 
is compromised or if there is an aberrant production of 
MPs overwhelming or bypassing normal removal mecha-
nisms leading to systemic accumulation of autoinflam-
matory and autoimmunogenic material. Under normal 
conditions, circulating MPs derive predominantly from 
platelets, leukocytes, and endothelial cells [13] and may 
be extensively profiled by mass spectrometry [14, 15]. 
Abnormal MPs [16–18] with anomalous protein profiles 
[19] were shown to circulate in SLE.

To understand the genesis and function of abnormal 
MPs in SLE we here perform an unbiased, comprehen-
sive, and detailed characterization of MP-proteomes in 
SLE and controls using large sample sets and high-resolu-
tion, quantitative protein analysis. We identify and quan-
titate about 1100 different proteins in MPs from SLE, 
systemic sclerosis (SSc), and healthy controls. Data indi-
cate that the clearance of normal MPs in SLE is increased 
but that abnormal, SLE-specific MPs, which we name 
luposomes, derived from non-lymphoid leukocytes, are 
increased in SLE and bear hallmarks of apoptosis and 
metabolic stress.

Methods
Patients and controls
Forty-five SLE patients (42 women, 3 men) were included 
(Additional file 1: Table S1). Of these 44 fulfilled at least 
four of the 1997 ACR criteria for SLE while one had pri-
mary antiphospholipid syndrome (APS) [20, 21]. Twelve 
patients had SLE with secondary APS. Overall, 15 of 44 
(34%) had serological and/or clinical evidence of active 
disease (SLEDAI > 4) and 30% had active or prior lupus 
nephritis. The age and gender matched controls for 
the SLE cohort consisted of 35 healthy individuals (31 
women, 4 men), median age 45 years (range 24–71 years). 
Additionally, 38 SSc patients were included, all Cau-
casians (29 women and 9 men), median age 57  years 
(range 35–74), median disease duration 12  years (range 
0–53  years). Patients fulfilled the SSc criteria [22], 18 
with limited cutaneous SSc and 20 with diffuse cutaneous 
SSc [23, 24]. The SSc age and gender matched controls 
consisted of 25 healthy individuals (6 male, 19 female), 
median age 45  years (range 31–62). The study was 
approved by the Scientific Ethical Committees for the 
Capital Region, Denmark (approval numbers H-B-2007-
130 and H-B-2008-131) and carried out according to the 
principles of the Declaration of Helsinki. All participants 
were included after giving written informed consent. 
Disease activity was scored with the SELENA version of 
the SLE Disease Activity Index (SLEDAI) [25]. Stand-
ard hematology parameters were acquired on a Sysmex 
XN-9000 hematology analyzer (Sysmex Corporation).

Sampling and preparation of platelet‑poor plasma
Platelet-poor plasma (PPP) was isolated using a standard-
ized protocol [17]. Briefly, venous blood was drawn into 
citrate tubes (Vacuette sodium citrate 3.8%, Greiner Bio-
One, Kremsmünster, Austria). Immediately after blood 
collection, cells were removed by centrifugation (1800 g, 
10  min, 21  °C) followed by centrifugation at 3000  g, 
10 min, 21 °C to remove platelets. Samples were divided 
into 1000 μL aliquots, snap-frozen in liquid nitrogen, and 
stored at −80 °C.

Microparticle flow cytometry
Flow cytometry using gating based on size-beads was 
performed exactly as previously described [17].

Isolation of microparticles and in‑solution protein 
digestion
MPs were isolated from 1  mL PPP by centrifugation at 
18,890×g, 30  min at room temperature as previously 
described [15]. After the last wash the MP preparations 
(50 μL) were precipitated by trichloroacetic acid/acetone. 
Proteins were resolubilized in 25  μL 8  M urea, 50  mM 
NH4HCO3 and digested 3  h at room temperature using 
endo-Lys C (0.5  μg/50  μL; Waco Pure Chemical Indus-
tries Ltd, Osaka, Japan) before dilution to 2 M urea using 
50 mM NH4HCO3 and continued digestion overnight at 
room temperature in the presence of 1 μg/50 μL sequenc-
ing grade modified trypsin (Promega, Madison, USA). 
Samples were then frozen until analysis by LC–MS/MS.

Nano‑LC‑tandem mass spectrometry
The digested samples were thawed, mixed on a whirl-
mixer, acidified (5% (v/v) formic acid, final concentra-
tion), and centrifuged (12,000×g/2  min) to remove 
insoluble material. 10  μL was desalted on pre-equili-
brated homemade StageTip columns containing C18 
Empore Disks (3  M, Minneapolis, MN) [26] by wash-
ing with 20 μL 5% formic acid followed by elution of the 
peptides with 20 μL 50% methanol, 5% formic acid into a 
0.65 mL Eppendorf tube. The peptides were vacuum con-
centrated until almost complete dryness and re-dissolved 
in 20 μL 5% formic acid. Samples were then analyzed in 
random order within each sample cohort (SLE and HCs 
and SSc and HCs). LC–MS/MS was performed by load-
ing 5  μL of the peptides at 200  nL/min on an Acclaim 
PepMap100 C18 precolumn (100 μm × 2 cm, 5 μm par-
ticle size, 100 Å, Thermo Fischer Scientific) in line with 
an EASY-spray PepMap100 C18 analytical column with 
integrated emitter (75 μm inner diameter, 150 mm long, 
3 μm particle size, 100 Å, Thermo Fisher Scientific). Pep-
tides were eluted by a 90-min gradient controlled by an 
Easy-nLC II pump (Thermo Fisher Scientific) into an 
LTQ Orbitrap XL mass spectrometer (Thermo Fisher 
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Scientific) equipped with an EASY-spray nano-elec-
trospray source (Proxeon, Odense, Denmark). Mobile 
phases were: solvent A (2% (v/v) acetonitrile, 0.1% (v/v) 
formic acid) and solvent B (95% (v/v) acetonitrile, 0.1% 
(v/v) formic acid). The gradient went from 0 to 45% sol-
vent B in 80 min, followed by 10 min with 100% solvent 
B. The column was then re-equilibrated with solvent A. 
Full scan spectra (300–1800  mass/charge [m/z]) in the 
Orbitrap with 60,000 resolution at 400 m/z and MS/MS 
data were recorded in parallel in data-dependent mode, 
fragmenting the 5 most abundant ions (charge state +2 
or higher) by collision-induced dissociation in the LTQ 
ion trap at 35% collision energy. MS/MS spectra were 
recorded using dynamic exclusion (20  s) to minimize 
repeated fragmentation of the same peptides.

Data analysis
Recorded.raw files were analyzed using MaxQuant ver-
sion 1.2.2.5 (SLE samples) and version 1.1.1.36 (SSc sam-
ples) for label-free peptide quantitation by MS1-intensity 
and for protein identification using the Andromeda search 
engine. Settings were: FASTA-file: ipi.HUMAN.v3.68.fasta 
(UniProt__3AUP000007640.fasta was used for Epstein-
Barr virus proteins), fixed modifications: none, variable 
modifications: oxidation (M), acetyl (protein N-terminal), 
Peptide FDR 1%, Protein FDR 1%, match between runs 
2 min, Keep low-scoring version of identified peptides: on; 
all other settings were left at their default. For each identi-
fied protein we used the summed MS1-peptide intensities 
calculated by MaxQuant (in short “the protein intensi-
ties”) for the respective comparisons of protein expression 
between groups. Differences in MP numbers across sam-
ples were accounted for by using the protein intensity of 
the high abundance MP protein β-actin as a surrogate 
parameter for the number of isolated vesicles from each 
sample and normalizing protein intensities of all proteins 
by the β-actin intensity as follows [15]: The normalized 
intensity of a given protein is found by multiplying the 
value with the ratio between the average β-actin intensity 
for all samples divided by the β-actin intensity in the spe-
cific sample. To compare relative abundances of proteins 
within individual samples we used IBAQ (intensity-based 
absolute quantification) values [27]. Inadvertently, two 
MaxQuant software versions were used to extract pro-
tein identification and quantitation data in the two sample 
cohorts (SLE & controls and SSc & controls), respectively. 
We therefore do not compare across sample cohorts but 
only within sample cohorts. Also, in a subset of samples 
we performed the data extraction using both versions 
of the software and observed linear (R2  >  0.99) correla-
tions of intensity values and that missing identifications 
only occurred among low abundance proteins  (data not 
shown). Data files are provided as Additional files 2 and 3.

Statistical methods
For comparison of specific proteins between groups we 
used Mann–Whitney two-tailed tests and corrected p 
values by the false discovery rate [28] using q  <  0.05 as 
the significance level. Only proteins with q-values below 
0.05 and SLE/HC mean ratios >1.25 or <0.75 were con-
sidered differentially abundant. For correlations of dis-
ease activity scores (SLEDAI) with protein intensity 
values we used Spearman’s rank correlation. Calculations 
and graphs were performed with Prism v. 6.0 (GraphPad 
Software, Inc., La Jolla, CA). Clustering heat maps were 
made using Genesis (v. 1.7.6, Institute for Genomics and 
Bioinformatics, Graz University of Technology).

Results
Cytoskeletal changes in SLE‑MPs
Both β-actin and myosin-9 intensities correlated lin-
early with MP concentrations determined by flow 
cytometry (data not shown), but while the average 
raw intensity value of myosin-9 (MYH9) in the HC 
group was 2.7 times higher (p  <  0.0001) than in the 
SLE group, the β-actin (ACTB) value was only 1.4 
times higher (p  =  0.014). Unlike β-actin myosin-9 in 
MPs is unaffected by snap-freezing [29] but as it was 
here consistently greatly decreased in SLE-MPs it 
was not suitable for normalization. The slightly lower 
β-actin values in SLE-MPs probably reflect the overall 
tendency to lower total MP numbers in SLE samples 
[17]. β-Actin values were therefore used to normalize 
all protein intensity data. Plots of β-actin versus myo-
sin-9 and other cytoskeletal proteins (Fig.  1; Addi-
tional file 1: Fig. S1) indicated specifically altered ratios 
between myosins and β-actin in SLE-MPs. The con-
sistent differences in the slopes of the regression lines 
(highly significant difference for MYL6 but not sig-
nificant for MYH9 and MYL12A) suggested that about 
half the myosin per β-actin is present in SLE-MPs as 
compared with HC-MPs (Fig. 1a, left column). Myosin 
light and heavy chains ranked among the most signifi-
cantly altered proteins in SLE-MPs [3 out of 5 proteins 
with q  <  1  ×  10−9 were myosins (MYL12A, MYL6, 
MYH9)] (Fig.  1b) and were unaltered in the SSc–HC 
MP data set. Microtubule proteins (α and β tubulins) 
were also decreased in SLE-MPs (Fig. 1b). In contrast, 
myosin light chain kinase (MLCK) was highly signifi-
cantly increased (q = 0.0027) (Fig. 1b) but not in SSc-
MPs. Other cytoskeletal proteins including vimentins, 
desmins, and nuclear lamins were not identified, and 
cytokeratins (24 different types identified) were not dif-
ferent between SLE and HC MPs. Unlike myosins, most 
other actin-binding proteins (Additional file 1: Fig. S2), 
except for decreased α-filamin (data not shown), were 
significantly increased in SLE-MPs.
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Proteomic profiles of circulating MPs
In total, 1098 unique proteins were identified in the SLE–
HC samples. Of these, 312 were present in all samples 
and 743 were present in at least 80%. In the SSc–HC sam-
ples, 1029 proteins were identified with 401 proteins pre-
sent in all samples and 715 in at least 80%. The volcano 
plot (Fig. 2a) depicts the distribution of proteins accord-
ing to abundance, statistical significance (q-values) and 
SLE/HC abundance ratio. Data show, in accordance with 
flow cytometry [30], that SLE-MPs have a heavy load of 
immunoglobulins and complement proteins (encircled 
Ig + C area) as well as large increases in galectin-3 bind-
ing protein (G3BP) and serum amyloid A (SAA) (small 

encircled area). Acute-phase proteins showed a dichoto-
mous behavior—serum amyloid A1 and A2 proteins were 
highly upregulated in SLE-MPs while orosomucoids, 
hemopexin, and fibrinogens were unchanged (Fig.  2b). 
In contrast, acute-phase proteins were more consist-
ently elevated in the SSc-MPs (Additional file 1: Fig. S3). 
C-reactive protein was detected in 50% of the SSc sam-
ples but was not found in any SLE sample.

Specific protein categories (inserts Fig.  2a) such as 
mitochondrial proteins and platelet membrane proteins 
were decreased, and pentose phosphate shunt and gly-
colytic enzymes and several small GTPases were highly 
increased in SLE-MPs but not in the SSc-MPs (data not 

Fig. 1  Specifically altered myosin:actin ratio in SLE-MPs. a Individual, raw β-actin intensity values as a function of myosin and other cytoskeletal 
protein intensities. Correlation coefficients (r2) and slopes (α) are given for the regression lines of the SLE-MPs (red) and the HC-MPs (HC, blue). In 
the SLE-MPs the slope of the lines for the myosin heavy chain (MYH9) and the myosin light chains are approximately twice the slopes found for the 
HC-MPs while no differences are observed for the α-actinin, α-actin-2, and actin-related protein. UniProt identifiers are included on the X-axes. b 
Intensity values of actin-normalized myosins, tubulins, and myosin light chain kinase in the SLE-MP and HC-MP cohort (red and blue symbols, respec-
tively), medians (horizontal lines) and p values are indicated (Mann–Whitney, two-tailed)
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shown). Most SLE/HC protein ratios were consistent 
within protein categories, e.g. decreased for platelet pro-
teins, unaltered for erythrocyte membrane proteins, and 
increased for glycolytic enzymes and did not correlate 
with the abundance of the individual proteins (Fig. 2b).

Specific immunoglobulin entries show highly vari-
able expression in the individual SLE samples. We there-
fore simplified the data by removing about 200 entries 
corresponding to immunoglobulin and complement 
proteins (as well as unknown, hypothetical, and non-
human entries). In this data set, 240 proteins were sig-
nificantly (q < 0.05) decreased (SLE/HC ≤ 0.75) and 182 
were increased (SLE/HC  ≥  1.25). The largest group of 
decreased proteins were mitochondrial. Thus, 64 signifi-
cantly decreased mitochondrial proteins together with 19 

platelet/integrin proteins constituted 35% of all decreased 
proteins. Heat shock proteins, GTPases, and glycolytic 
enzymes represented about 15% of all increased proteins. 
Hierarchical clustering of the selected group of 422 sig-
nificant proteins almost completely separated SLE from 
HC samples (Fig. 3a). This was also accomplished using 
all 930 proteins remaining after removing immunoglobu-
lins, complement proteins, hypothetical and unknown 
proteins and Bos taurus proteins. Thus, a total of 40 out 
of 45 SLE samples clustered together only interspersed 
with 3 HC samples (Additional file  1: Fig. S4). To illus-
trate the potential for new diagnostic tools in the data-
set we randomly picked a glycolytic enzyme (α-enolase, 
marked 1 in Fig. 3a) and a decreased mitochondrial pro-
tein (cytochrome bc1, marked 2) for a disease-specific 

Fig. 2  Comparison of the MP proteomes in SLE and HC. a Fold-change, abundance, and statistical difference of all proteins (n = 1098) identified in 
the SLE-MP versus HC-MP cohort. Protein abundances for all proteins (n = 505) with q < 0.05 are divided into 3 ranges (between 13,550 and 38,700 
and values either below or above this range. Significant entries (n = 15) in the SLE group which have zero median IBAQ values (intensity-based 
absolute quantification analysis) are included as open symbols. X-axis is the SLE/HC average intensity (LFQ) value ratio depicted as Log2(SLE/HC). 
Y-axis is −log(q). Vertical lines mark twice up- or downregulation, while values above the horizontal line all are below q = 0.05, i.e. are statistically 
significant. Areas of the plot containing the serum amyloid A (SAA1, SAA2) and galectin-3 binding (G3BP) proteins and a number of immuno-
globulins and complement proteins (Ig + C) are indicated. The two insets show the position in the plots of 4 chosen categories of proteins: platelet 
membrane and mitochondrial proteins which are highly significantly decreased in SLE-MPs and glycolytic and pentose pathway enzymes and 
small GTPases and their regulators that are highly upregulated in SLE-MPs. b Relative protein abundance based on the abundance ranking in SLE 
samples) and SLE/HC ratios (log(2) Y-axis) for chosen categories of proteins. Acute phase proteins and galectin-3 binding protein (G3BP) have been 
labelled: SAA1, SAA2, serum amyloid A protein, isoform 1 and 2, respectively; ORM, orosomucoid isoforms; HPX, hemopexin; FGA, FGB, FGG, fibrino-
gen α, β, and γ chains, respectively
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index. This index yielded a discriminatory power of 0.93 
for SLE versus HC (area under the ROC curve) (Fig. 3b). 
In contrast, for SSc versus HC (green, Fig. 3b), the area 
under the ROC curve was only 0.54, which is close to 
the equivalent of random chance. To fully show the 

applicability of this index it should be validated in inde-
pendent samples.

Regarding correlations with a validated SLE disease 
activity index (SLEDAI), the anti-oxidant glutathione 
peroxidase 3 (GPX3, strongly decreased, q = 2.2 × 10−7) 
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Fig. 3  MP proteome profiling distinguishes SLE-MPs from HC-MPs. a Hierarchical clustering of SLE samples (red color above heat map) and HC 
samples (blue color) based on MP protein intensity data for a selection of 422 proteins that are significantly (q < 0.05) different between SLE and HC 
and with SLE/HC ratios ≥1.25 or ≤0.75. Heat map color code is based on the tiered color bar at the top of the plot going from 3 standard deviations 
below (green) to 3 standard deviations (red) above the mean value. b Receiver operating characteristics (ROC) curves for the ratio of α-enolase/
cytochrome b-c1 complex subunit 2 (mitochondrial) (proteins marked with 1 and 2, respectively, in a) in the SSc–HC sample set (green, AUC = 0.54) 
and the SLE–HC sample set (red, AUC = 0.93)
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inversely correlated (p = 0.0005, Spearman rho = −0.52) 
with SLEDAI scores (Fig.  4b). Further, the glyco-
lytic enzymes were most highly increased in samples 
from patients with the highest SLEDAI scores (i.e., >4, 
n = 15/44) (Fig. 4a). Also, there was a correlation (p = 0.02, 
rho  =  0.37) between SLEDAI and macrophage migra-
tion inhibitory factor (MIF) (Fig.  4b). No significant cor-
relations with active nephritis at time of sampling (n = 10) 
remained after correction for multiple comparisons.

Contributions from normal MPs
In SLE-MPs the abundance of platelet membrane pro-
teins was markedly decreased (by about 75%) (Fig.  2) 
while being unaltered in the SSc-MPs. Reduced numbers 
of platelet-derived CD42a (GP9)-positive MPs (PMPs) 
were previously noted in flow cytometry of MPs from 
SLE cases [17]. In the present sample set, despite normal 
counts (platelet mean ±  SD =  242 ±  79 ×  109/L), the 
average number of PMPs in the SLE samples as deter-
mined by flow cytometry was decreased by 60% (data not 
shown), corresponding roughly to the proteomics esti-
mate. PMP numbers correlated with the MS-determined 
abundance of GP9 (p = 0.0012, rho = 0.41) in the SLE–
HC sample set and with the platelet counts (p =  0.03, 
rho  =  0.33). Thus, the circulating MPs in SLE contain 
reduced numbers of PMPs despite normal platelet levels. 
T-lymphocyte membrane markers such as CD4, CD8, 

CD3 and traditional B cell markers, including e.g. CD19, 
CD20, CD38 and MHC class II molecules were not 
observed in any samples.

Red blood cell markers showed no significant differ-
ences between SLE or SSc and HC MPs (Fig.  2b). This 
was also the case for a number of identified CD molecules 
(examples in Additional file  1: Fig. S5) including CD45 
(common leukocyte antigen), CD11b and CD18 (leuko-
cyte integrin), CD14 (monocyte/macrophages, dendritic 
cells), CD16B (FcγRIIIb), and CD99 (leukocytes). Other 
integrins, CD49 and CD49B (platelet membrane gly-
coprotein Ia), integrin β6, fibrinogen receptor β subunit 
(VLA-4), as well as P-selectin (CD62P), CD36 (platelet 
glycoprotein IIIb), CD31 (PECAM-1, platelets, leuko-
cytes, endothelial cells), and CD226 (NK cells, platelets, 
monocytes, T-cell subsets), were all strongly decreased in 
SLE-MPs (q < 0.0001). This was also the case for CD47/
MER6 and for CD107/LAMP-1, an abundant lysosomal-
associated glycoprotein. In contrast, cathepsin D, the 
principal lysosomal aspartic protease, was not signifi-
cantly changed. Finally, CD9 was significantly decreased 
in SLE-MPs (Additional file 1: Fig. S5). CD9 is present in 
many types of extracellular vesicles together with CD63 
and CD81 [31]. The latter two proteins were not detected 
here. Other decreased membrane-associated proteins 
in SLE-MPs were flotillins 1 and 2, which are often con-
sidered exosomal markers but which are also found in 

Fig. 4  SLE-MP proteins and correlations with SLE disease activity indices (SLEDAI). a Levels of glycolytic enzymes in SLE samples from patients 
divided into two groups based on SLEDAI scores ≤4 (red symbols, low disease activity, n = 29) or above 4 (brown symbols, high disease activity, 
n = 15). Levels in the HC group are also shown. Except for a non-significant difference for glucose-6-phosphate dehydrogenase the glycolytic 
enzymes were increased significantly [*p < 0.05; **p < 0.01 (Mann–Whitney, two-tailed)] in the group with SLEDAI scores >4. b Correlation between 
protein intensities and SLEDAI scores for macrophage migration inhibitory factor (MIF, Spearman r = 0.37, p = 0.0156) and glutathione peroxidase 3 
(GPX3, Spearman r = −0.52, p = 0.0005). Two SLE samples with zero MIF were removed from the sample set
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other extracellular vesicles [32] (Additional file 1: Fig. S6). 
The ER protein GP96 (endoplasmin, HSP90B1) that was 
recently nominated as a marker of large extracellular ves-
icles [32] was present at equal levels in SLE- and HC-MPs 
(data not shown).

SLE‑MPs and markers of apoptosis and clearance
While annexin V (ANXA5) was significantly increased in 
SLE-MPs, annexin A1 displayed no difference (Fig.  5a). 
Another apoptosis-related molecule, calreticulin (CRTC) 
was selectively increased in SLE-MP (about twofold, 
q  <  0.0001). Calreticulin is externalized upon apoptosis 
[33]. The calcium-independent phosphatidylserine-bind-
ing proteins lactadherin and growth arrest-specific pro-
tein 6 (Gas6) were also identified but at the same levels 
in SLE- and HC-MPs. The anionic phospholipid-bind-
ing plasma protein β2-glycoprotein I was significantly 
decreased in SLE-MP but not identified in the SSc–HC 
sample set. The type I interferon-inducible G3BP which 

previously was found to be highly abundant on SLE-MPs 
[19, 34] was also increased here (cf. Fig. 2).

Mediators and effectors of apoptosis: Caspase-3, BH3-
interacting domain death agonist (BID), cytochrome c, 
calpains, and PDCD6 interacting protein (PDCD6IP, 
Alix) were all significantly increased in SLE-MPs 
(Fig. 5b). These proteins were all unchanged in SSc versus 
HC-MPs. Caspase-3 was present at low levels (undetect-
able in 20% of the SLE samples) but still clearly increased 
compared with HC samples (q =  0.0071) (Fig.  5b), and 
caspase-3 and cytochrome c levels correlated (p = 0.007) 
in SLE-MPs (Additional file  1: Fig. S7). No other cas-
pases were detected. The granzyme A-activated DNAse 
(NME1) which induces a caspase-3 independent, TREX1-
dependent, cell death pathway [35] was highly increased 
(q  =  2.9  ×  10−8) in SLE-MPs (Fig.  5c). This was also 
the case for the apoptosis-modulating proteins [36, 
37] β-arrestin 1 (q  <  0.0001) and tumor necrosis factor 
α-induced protein 8 (TNFAIP8) (q =  0.0012). Histones 

Fig. 5  Increased levels of clearance proteins and proteins related to apoptosis in SLE-MPs. Intensities of specific clearance- (a) and apoptosis-related 
(b) proteins in HC (blue symbols) versus SLE-MPs (red symbols). Except for β2-glycoprotein 1 and CD47 (both significantly decreased) and annexin A1 
(no difference), all proteins were significantly increased (Mann–Whitney, two-tailed) in the SLE-MP samples. Univariate p values and UniProt identi-
fiers are indicated. Horizontal lines mark medians. c Levels of significantly increased granzyme A activated DNase/nm23-H1 and resulting ROC curve 
for SLE versus HC samples
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H2A, H2B, H3, and H4 were detected at variable but low 
intensities (abundance rank around 700/1139) and were 
found in HC, SSc, and SLE samples at similar levels.

As for proteins maintaining phospholipid bilayer asym-
metry, cell cycle control protein 50A (TMEM30A) and 
anoctamin-6 (TMEM16F), an ATP-dependent flippase 
and a scramblase, respectively, were both significantly 
decreased in SLE-MPs (Additional file 1: Fig. S8) and not 
altered in SSc-MP.

Metabolic and oxidative defense status of SLE‑MPs
Glycolytic and pentose phosphate pathway enzymes 
were strikingly, significantly, and uniformly upregulated 

in SLE-MPs. In contrast, all identified citric acid cycle 
enzymes were significantly down-regulated (Fig.  6). The 
eukaryotic initiation factor 4A-II (EIF4A2) was highly 
significantly (q < 0.0002) increased in the SLE-MPs (and 
not in SSc-MP). Its increase in SLE-MPs might reflect 
increased protein synthesis in parent cells. Additional 
indications of metabolically highly active and stressed 
progenitors of SLE-MPs were increases in non-mito-
chondrial heat shock proteins—including HSP90β, 
HSP90α, HSP73, HSP70 (Additional file  1: Fig. S9), and 
HSC70. This was not observed among the SSc-MPs.

Alterations in oxidative defense proteins showed a com-
plicated pattern which might reflect increased oxidative 

Fig. 6  Specific metabolic profile of SLE-MPs. Simplified diagrams of pathways with box plots (medians and interquartile ranges, whiskers at 10–90 
percentiles; red SLE; blue HC) of the intensities of 15 specific enzymes inserted. PGI, phosphoglucose isomerase; 6-PFK, 6-phosphofructokinase; 
Aldol., transaldolase; GAPD, glyceraldehyde-3-phosphate dehydrogenase; PGM, Phosphoglycerate mutase; αENO, alpha-enolase; PK, Pyruvate 
kinase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; CiS, citrate synthase; ACON, aconitase; MDH, Malate dehydrogenase; G6PD, 
Glucose-6-phosphate dehydrogenase; PGD, 6-phosphogluconate dehydrogenase; TK, transketolase. All differences between SLE and HC are highly 
significant (q < 0.002, Mann–Whitney, two-tailed, Benjamini–Hochberg adjusted)
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stress in a specific cellular context. Thus, enzymatic anti-
oxidant scavengers superoxide dismutase 1, thioredoxin, 
and peroxiredoxins 1 and 6 were significantly increased 
in SLE-MPs while others such as peroxiredoxins 3 (mito-
chondrial) and 4 (endoplasmatic reticulum), glutathione 
peroxidase 3 (GPX3), a plasma protein, and manganese 
superoxide dismutase (mitochondrial) were significantly 
decreased. Catalase, peroxiredoxins 2 and 5 (mitochon-
drial), and glutathione peroxidase 1 were unchanged. 
Other oxidative stress-related and inflammation-induced 
proteins such as 4 of 5 identified protein disulfide 
isomerases were significantly upregulated in SLE-MP 
but unchanged in SSc-MP. Finally, chloride intracellular 
channel protein 1 (CLIC1), which is an oxidation sensor 
was highly increased in SLE-MPs (q = 2.9 × 10−8).

Proteasome activator 28 (PA28) α and β subunits were 
both significantly upregulated in SLE-MPs and were 
strongly correlated (p < 0.0001) in the individual samples 
(Additional file  1: Fig. S9). No MHC class II molecules 
were identified in any samples but 26 individual MHC 
class I molecules were found of which 5 were significantly 
decreased and one (HLA-Bw50) significantly elevated 
(data not shown). No significant differences were found 
in the HC-SSc data set regarding 22 identified MHC class 
I molecules.

Proteins of intracellular signaling
The Ras-related small guanosine triphosphate (GTP)-
binding proteins (GTPases) are involved in cell growth, 
cytoskeletal organization, and secretion. The Rab pro-
teins comprise the largest family within the Ras super-
family. Rho and Arf proteins are other subfamilies. A total 
of 14 Rab proteins and 2 Rab GDP dissociation inhibitors 
(GDI) were identified and showed a diverse behavior 
(Additional file 1: Fig. S10). Thus, Rab-8A/B and GDI1/2 
were significantly and specifically increased in SLE-MP 
while the remaining Rab proteins were either decreased 
(most pronounced for Rab-37) or not significantly differ-
ent. All identified Rho family proteins (including RhoA, 
cdc42, Rac-1, Rac-2) (Additional file  1: Fig. S10B) and 
Arf1/3 were significantly increased. Another GTPase, 
dynamin-1 like protein, was highly increased in SLE-MPs 
(q = 4 × 10−5)(data not shown). The same was true for 
yet another intracellular signaling and cytoskeletal regu-
lator, pleckstrin (q < 0.0001).

The Bruton tyrosine kinase (BTK), related to the Src 
family of cytoplasmic tyrosine kinases, was almost two-
fold increased in SLE MPs (q  <  0.0001). It was not sta-
tistically significantly altered in the SSc-MP proteome 
(Additional file  1: Fig. S11). Also, Src1 tyrosine kinase 
and protein tyrosine phosphatase, non-receptor type 
6 (PTNP6), were significantly upregulated in SLE-MPs 
(q < 3 × 10−7).

Discussion
In our cohort of SLE, SSc, and HC-MP samples, the 
SLE-MP proteomes proved to be very distinct and we 
therefore hypothesize the existence of an MP popula-
tion—which we call luposomes—that is specific for SLE 
patients. Apart from immunoglobulins and complement 
proteins—that are also associated with SSc-MPs—the 
luposomes are distinguished by lacking mitochondrial 
and platelet proteins and by having profound cytoskel-
etal alterations including losses of myosin heavy and light 
chains and increased actin-interacting proteins. MYH9 
is an apoptotic caspase substrate [38], and SNPs in the 
MYH9 gene are associated with increased incidence of 
lupus nephritis in European-Americans [39]. Myosin 
light chain kinase (MLCK), which is strongly increased 
in SLE-MPs, is involved in nuclear shrinkage and load-
ing of nuclear material into apoptotic bodies [40]. 
Luposomes are also distinguished by highly increased 
glycolytic and pentose phosphate shunt enzyme levels 
and increased levels of various small GTPases, tyros-
ine kinases, and phosphatases. Metabolic studies of SLE 
T-lymphocytes and neutrophils show decreased glucose 
uptake, increased aerobic glycolysis, decreased ATP, and 
an increase of basal lactate levels and cell apoptosis [41]. 
These metabolic aberrations may reflect mitochondrial 
deficiencies because of activation-induced cell death and 
chronic antigen stimulation. The diminished abundance 
of mitochondrial proteins in SLE-MPs is compatible with 
apoptosis-related mechanisms of mitochondrial dis-
solution, but could also be due to an increased number 
of MPs from cell types with relatively few mitochondria 
such as neutrophils and lymphocytes. Likewise, while the 
increased abundance of glycolytic enzymes agrees [33] 
with an apoptotic origin of SLE particles, an increased 
MP production from metabolically reprogrammed cells, 
i.e., cells relying on glycolysis for energy production (the 
Warburg effect [42]), may also contribute.

Luposomes do not classify as exosomes since they are 
larger and there is no increase of markers [43] such as 
flotillins, vacuolar sorting proteins, integrins, tetraspa-
nins, and annexin A2 in the SLE-MPs. An exception is 
the programmed cell death 6 interacting protein (ALIX) 
which is markedly increased. However, this protein is 
not exosome-specific [43]. Further, luposomes are not 
conventional cell membrane-derived MPs (also called 
ectosomes) which contain mitochondrial, ribosomal, 
nucleolar, and centrosomal proteins [43]. SLE-MPs do 
display high levels of some of the putative ectosome-
specific proteins such as TKT, Rab8B, and GSTP1 and 
the recently proposed marker of medium sized EVs, 
actinin-4, but other markers, such as mitofilin and 
GP96, are drastically decreased and unaltered, respec-
tively [32, 43]. In contrast, in addition to the cytoskeletal 
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aberrations, increased MLCK, and increased glycolytic 
enzymes, the increased cytochrome c, caspase 3, BID, 
calpain 1, and ALIX as well as increased calreticulin 
(CRT) are all in agreement with an apoptotic origin of 
immunogenic luposomes. Since histones are often used 
to indicate apoptotic rather than cell membrane origins 
of MPs [44], the unremarkable differences in histone 
content and the absence of the high-mobility group 
protein 1 (HMGB1) seem to disagree with this notion. 
However, not all studies find that histones are enriched 
on apoptotic vesicles [33]. Also, protein identification 
in the present study depends on trypsin-mediated pro-
tein fragmentation, which may be inhibited in proteins 
complexed—and thus protected against proteolysis—
with autoantibodies, such as histones in self-antigens 
represented by MP-associated chromatin [11]. Finally, 
we did not analyze for acetylated, hypercitrullinated 
[45], or methylated histone variants [18]. As for the 
cellular origin of SLE-MPs it is interesting that BTK, a 
molecule normally mostly expressed in B-cells is heav-
ily upregulated in SLE-MPs. BTK has roles in apop-
totic cell uptake [46] and is a key molecule for TLR9 
signaling in plasmacytoid dendritic cells [47]. Even 
though transcripts in non-B-cells are normally down-
regulated, BTK may be expressed in all hematopoietic 
cell types including myeloid lineages [48] and thus its 
increased abundance in SLE-MPs cannot be concluded 
to be due to increased B-cell MP formation.

The presence of the Ca(II)-dependent phosphoserine-
binding annexin V as an MP-associated protein was 
surprising since annexin V is not expected to be surface-
bound to MPs from citrate plasma. Thus, the significantly 
increased annexin V associated with SLE-MPs must 
bind Ca2+-independently and/or be present inside MPs. 
Increased Ca2+-independent surface-bound endogenous 
annexin V may explain the decreased number of MPs 
binding exogeneously added annexin V in SLE samples 
[17]. A pro-clearance profile on SLE-MPs is also consist-
ent with the decreased level of phagocytosis-inhibiting 
CD47. Further, since CD47 restricts dendritic cell (DC) 
signaling, decreased CD47 in antigenic material (such as 
SLE-MPs) would increase e.g. splenic DC or plasmacy-
toid DC activation [49].

Regarding the cellular provenance of luposomes, 
platelets are unlikely because both flow cytometry and 
proteomics show the paucity of normal PMPs below 
1 μm in the SLE-MP population. An increase of larger 
(apoptotic) particles in the SLE samples suppressing 
the relative PMP abundance cannot be ruled out, but 
by EM we found no overt size-distribution differences 
between SLE- and HC-MP samples, and the findings of 
lowered total numbers of MP by flow cytometry per-
sisted also when using a gate limit of 2 μm [17]. Further, 

we find no evidence, despite recent reports [18], of 
increased endothelial cell-derived MPs. Instead, CD31 
(PECAM-1) is significantly decreased. In contrast to 
the strongly decreased platelet and endothelial cell 
markers there were no significant differences regard-
ing neutrophil markers such as CD11b and the possible 
relationship of SLE-MPs to lupus low-density granu-
locytes and NETosis [50] should be explored. Thus, 
except for clear indications of decreased numbers of 
conventional PMPs suggesting increased clearance of 
normal MPs in SLE, no classical blood cell or monospe-
cific endothelial cell surface marker was significantly 
decreased or increased in the SLE-MP proteome.

In short, luposomes lack mitochondria, contain a dis-
rupted cytoskeleton, and have a very high abundance of 
glycolytic enzymes. The observed luposome proteome 
is the result of an intricate combination of differentially 
regulated proteins in SLE, contributions of different par-
ent cells, and differences in the processes generating and 
removing MPs. It is not readily possible using the present 
data to discriminate between the relative impact of these 
factors. The data from the SSc-MPs, i.e., from another sys-
temic immunoinflammatory disease, strongly suggest that 
the SLE-MPs are not of a type arising with chronic inflam-
mation as such, but that they are an SLE-specific phenom-
enon. Further investigations of new sample sets using e.g. 
specific immuno-isolation in combination with proteomic 
methods will be necessary to elucidate luposome-gener-
ating mechanisms. The present data do, however, indicate 
that luposomes are attractive objects for refined diag-
nostics and for further unravelling and counteracting the 
molecular pathology associated with SLE autoimmunity.
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