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Abstract

Background: Chronic and/or extreme stress in early life, often referred to as early adversity, childhood trauma, or
early life stress, has been associated with a wide range of adverse effects on development. However, while early life
stress has been linked to negative effects on a number of neural systems, the specific mechanisms through which
early life stress influences development and individual differences in children’s outcomes are still not well understood.

Main text: The current paper reviews the existing literature on the neurobiological effects of early life stress and their
ties to children’s psychological and behavioral development.

Conclusions: Early life stress has persistent and pervasive effects on prefrontal–hypothalamic–amygdala and
dopaminergic circuits that are at least partially mediated by alterations in hypothalamic–pituitary–adrenal axis function.
However, to date, this research has primarily utilized methods of assessment that focus solely on children’s event
exposures. Incorporating assessment of factors that influence children’s interpretation of stressors, along with stressful
events, has the potential to provide further insight into the mechanisms contributing to individual differences in
neurodevelopmental effects of early life stress. This can aid in further elucidating specific mechanisms through which
these neurobiological changes influence development and contribute to risk for psychopathology and health disorders.
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Background
Early life experiences represent an important influence
on children’s neural, behavioral, and psychological devel-
opment, having long-lasting effects across a wide range
of domains [1, 2]. Experience shapes neural plasticity
and through this behavior and psychological processes
throughout the lifespan [3, 4]. Infancy and early child-
hood are periods of particularly high rates of synaptic re-
growth and remodeling in the brain, during which
experience can have long-lasting effects on development
[5, 6]. Neuroscience has greatly illuminated our under-
standing of how both positive and negative early life ex-
periences affect brain development, with implications for
children’s mental and physical health. In this paper, we
review the literature examining the neurobiological

effects of early experiences and discuss where there is a
need for further research related to individual differences
in children’s responses to their early environments.
An early experience that has garnered much attention

is that of chronic and/or extreme stress in early life. Ex-
periences of chronic and/or severe stress during early
childhood, often also conceptualized as early life stress,
childhood adversity, child maltreatment, or childhood
trauma, have persistent and pervasive consequences for
development [7, 8]. The term stress refers to the psycho-
logical response elicited when an individual perceives
themselves to be under threat or challenge and is generally
beneficial, eliciting a range of behavioral and physiological
changes aimed at addressing the perceived threat. However,
chronic and/or extreme stress results in extended activation
of these psychological, behavioral, and physiological stress
response systems leading to dysregulation and negative psy-
chological and behavioral outcomes [9, 10]. Here, we use

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: kesmith23@wisc.edu
Department of Psychology and Waisman Center, University of Wisconsin–
Madison, 1500 S Highland Blvd, Rm 399, Madison, WI 53705, USA

Smith and Pollak Journal of Neurodevelopmental Disorders           (2020) 12:34 
https://doi.org/10.1186/s11689-020-09337-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s11689-020-09337-y&domain=pdf
http://orcid.org/0000-0002-6689-7346
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:kesmith23@wisc.edu


the term early life stress broadly to refer to stress occurring
in childhood (prior to the age of 18). It is a term which
encompasses many different kinds of adverse experi-
ences a child might encounter, including, but not lim-
ited to, exposure to toxins, nutritional restriction,
abuse, neglect, and limited family resources. Severe and
chronic exposure to these types of situations has long-
term negative consequences on a wide range of cogni-
tive, emotional, and behavioral processes [11–13].
However, the neural mechanisms supporting these ef-
fects are less well understood, and advances in neuro-
science are critical for uncovering causal mechanisms
linking exposure to early life adverse experiences with
well-being across the lifespan.
Below, we review the current state of the literature on

the effects of early experiences of stress on neurobio-
logical circuits and the implications these effects have
for children’s development. We start by introducing two
prevalent approaches toward conceptualizing early life
stress and its effects on development. We then highlight
common findings across these different approaches
related to the neural effects of early life stress, with a
particular focus on the effects on prefrontal–hippocam-
pal–amygdala and dopaminergic circuits. Finally, we ad-
dress opportunities for new ways in which to advance
our understanding of the mechanisms through which
early life stress shapes the developing brain, and in turn
children’s health outcomes. Together, these data can
inform the development of more effective and targeted
interventions for at risk children.

Main text
Models for conceptualizing early life stress: elucidating
neurobiological mechanisms
Researchers have employed a variety of models aimed at
conceptualizing early life stress, with the goal of better
elucidating the neurobiological mechanisms through
which stress exerts effects on development. While the
question of how to best conceptualize early childhood
adversity and stress has shifted over time [14, 15], the
two predominant models of early life stress fall into the
categories of (1) General or “lumping” models, in which
various types of stressors are treated as a heterogeneous,
broad category, often labeled “adversity,” “early life
stress,” or “negative life events” [16–19]; and 2) Specific
or “splitting” models, which are based on the premise
that different types of adversity each confer specific ef-
fects, and links to neurobiological or cognitive systems
may be masked by heterogeneous samples [20–22]. Both
types of models have provided a wealth of knowledge
surrounding early childhood adversity and its effects on
development and provided initial insight into some of
the potential neurobiological mechanisms underlying
these effects. However, there is still much the field does

not understand about what bio-behavioral mechanisms
account for individual patterns of developmental change
following extreme adversity. In the following sections,
we will review the literature supporting general and spe-
cific effects of early life stress on neurobiological
systems.

Insights from general models
One common general approach to conceptualizing early
adversity is that of cumulative measures of adversity. In
this approach, individuals are queried about whether
they experienced a pre-defined set of potential adverse
events in childhood, and their total exposure to events
from that list is summed [23, 24]. Examples of these
methods include variations on Life Stressors Checklists
[25] and the Adverse Child Experiences Scale (ACES)
[18, 26]. This approach is based in animal literature that
suggests repeated exposure to stress, regardless of type,
through chronic activation of stress response systems
(i.e., HPA, immune, and autonomic nervous system), al-
ters neural synaptic plasticity leading to cognitive defi-
cits, anxiety, and depressive-like behaviors, and poorer
health [9, 27]. Similarly, in humans, cumulative measures
of adversity have been linked to differences in hippo-
campal, PFC, and amygdala volume, and changes in pre-
frontal–amygdala connectivity [28–30]. These models
have also been associated with changes in peripheral
stress responses systems, including altered cortisol and
autonomic nervous system reactivity to laboratory
stressors [31–33], epigenetic changes [34, 35], and in-
creases in markers of inflammatory activity and immune
dysregulation [36, 37]. Longitudinal studies tend to pro-
vide support for cumulative or general effects [38–40]. A
recent longitudinal study from 18 months to mid-
adulthood found that cumulative stress rather than
physical abuse alone was predictive of adult depressive
symptoms [40]. Another study, which followed children
from birth to age 37 years, found that childhood stress
interacted with current life stress, regardless of type of
stressor, to predict diurnal cortisol patterns in adulthood
[38]. However, while cumulative models have greatly in-
formed our understanding of the aggregate effects of
stress on individuals, they have lacked consistent insight
into the neurobiological mechanisms underlying individ-
ual differences to children’s responses to stress [14]. This
suggests that counting types of stressors alone is not suf-
ficient to explain variation in children’s development
outcomes after early life stress.

Insights from specific methods
Specific models represent a reaction to cumulative
models and an attempt to more precisely identify the
neurobiological mechanisms linking early experience to
development [20, 41]. These approaches are based in
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animal models that demonstrate some specificity in the ef-
fects of certain types of stressors on neurobiological systems
[42, 43]. Based on this evidence, specific models assume that
different types of stressors will have distinct and separable
effects on developing neural systems. While there are many
different variants of this approach [41, 44, 45], an increas-
ingly prevalent one is to conceptualize potential stressors as
a lack of expected inputs (i.e., “deprivation”—consisting of
things like neglect, food deprivation, and institutionalization)
or a presence of direct threat to the child (i.e., “threat”—con-
sisting of things like physical abuse, sexual abuse, and expos-
ure to violence) [46–48].
The rapidly expanding literature taking this approach

has provided insight into some of the potential mecha-
nisms supporting the effects of early life stress on devel-
opment. For example, this literature appears to find
more consistent evidence for the association between
“threat” and psychopathology being mediated by alter-
ations in stress response systems (including autonomic
and HPA reactivity). In contrast, it finds less evidence
for the association between “deprivation” and psycho-
pathology being mediated by alterations in stress re-
sponse systems [49, 50]. However, there are also findings
that suggest similar effects of “threat” and “deprivation”
experiences on stress response systems and the neural
systems supporting them [51–54]. As an example, both
threat and deprivation have been linked to negative
PFC–amygdala connectivity in late childhood and ado-
lescence [51, 55]. Additionally, both threat experiences
such as abuse and deprivation experiences such as neg-
lect have been demonstrated to have specific effects on
hippocampal volume [53, 56, 57].
One potential explanation for these commonalities in

the effects of different types or categories of stressors is
that different types of stressors often co-occur [58, 59].
This co-occurrence creates a number of conceptual is-
sues and makes it difficult to determine if one specific
type or dimension of stressor is indeed driving an effect
(for extensive discussion see [60]). To illustrate, imagine
a study in which a sample of children exposed to phys-
ical abuse demonstrate dampened PFC–amygdala con-
nectivity in response to threat. It could be this
association is driven by exposure to physical abuse. But,
given physical abuse is associated with many other co-
occurring risk factors [61–63], it could also be driven by
any one of these other risk factors. This makes it diffi-
cult to determine what effects are the causal result of
just physical abuse, or even if physical abuse itself elicits
a neurobiological response. Despite these issues, together
general and specific models have provided insight into
how early life stress may be shaping neurobiological sys-
tems; below, we review commonalities in findings across
the two approaches on the development of neurobio-
logical systems.

Neurobiological consequences of early life stress
While strong arguments have been made for using one
type of conceptualization over another [14, 15, 47], care-
ful examination of this literature suggests that there are
commonalities in findings across the two approaches.
Here, we focus on some general recent themes across
this literature with implications for human development.
Early life stress is consistently associated with altered
functioning of the hypothalamic pituitary adrenal (HPA)
axis and autonomic nervous system [33, 54, 64]. These
systems are critical to facilitating motived psychological
and behavioral responses to the environment, particu-
larly environmental threats and challenges [65, 66]. Add-
itionally, growing evidence suggests that early life stress
is associated with alterations in the immune system and
inflammatory activity, which is increasingly implicated in
producing shifts in individuals’ behavioral responses to
their environment [46, 67]. Together, these changes in
peripheral physiological systems are critical for facilitat-
ing adaptive responses to threat and challenge. In
addition, altered activity of these systems is associated
with negative mental and physical health consequences
after stress exposure [68–70]. The effects of early life
stress on these peripheral stress response systems are
thought to be a result of altered neural plasticity in cir-
cuits integral to stress responses, including the pre-
frontal cortex (PFC), hippocampus, amygdala, and
striatal circuits [15, 71]. There is also a growing corpora
of research implicating epigenetic changes in the regula-
tion of many of these effects [34, 72]. Many of these
changes have been hypothesized to represent adaptive re-
sponses to environments of high threat which become
problematic within the broader social context [73, 74].
Below, we review the current state of the literature linking
early life stress to altered brain function, and some of the
potential hormonal, psychophysiological, neural, and gen-
etic mechanisms thought to support these effects.

Neural consequences of early life stress and their proposed
mediating mechanisms

Alterations in prefrontal–hippocampal–amygdala
circuits Research in both non-human animals and
humans suggests that early life stress is linked to pro-
nounced effects on the development of prefrontal–hip-
pocampal–amygdala circuits. These circuits play an
important role in facilitating peripheral stress responses
through the release of corticotrophin reducing hormone
(CRH) and glucocorticoids and regulation of the auto-
nomic nervous system [9, 75]. Additionally, these circuits
are implicated in emotion processing, self-regulation, and
memory and learning [76–78]. Rodents exposed to abu-
sive maternal behaviors or maternal separation as pups
show decreased dendritic arborization throughout the
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PFC and hippocampus [79, 80]. Experiences of chronic re-
straint stress in adult rodents result in increased dendritic
arborization in the amygdala [81, 82], and there is some
evidence for similar effects in the amygdala after experi-
ences of stress as pups [83]. In association with these
structural changes, rodents demonstrate modifications in
synaptic signaling and epigenetic changes in the hippo-
campus and amygdala [34, 84–86]. These changes in syn-
aptic structure and signaling are thought to produce
increased sensitivity to threat in the environment, through
decreased regulation of the amygdala by the PFC and
hippocampus [87, 88]. Additionally, they have been associ-
ated with increased anxiety and depressive-like behaviors
in animals after experiences of early life stress [89–92].
Changes in hippocampal synaptic plasticity have also been
linked to altered memory and learning processes, with ro-
dents’ demonstrating reduced spatial memory [93, 94] and
enhanced threat learning [95, 96].
The changes throughout the PFC, hippocampus, and

amygdala and their associated effects on behavior, mem-
ory, and learning appear to be at least partially mediated
by chronic exposure to CRH and glucocorticoids in-
duced by chronic stress [93, 97–99]. For example, rat
pups exposed to chronic stress in the form of fragmen-
ted maternal behaviors demonstrate augmented expres-
sion of CRH in the hippocampus and memory deficits.
Blocking CRH receptors resulted in improved memory
performance and prevented dendritic atrophy in the
hippocampus [93]. Chronic maternal separation stress in
mice is associated with decreases in glucocorticoid re-
ceptor mRNA in the brain, especially so in the amygdala,
which is in turn associated with alterations in anxiety-
like and social behaviors. Restoring the glucocorticoid
receptor mRNA deficit in the amygdala reverses the
changes in anxiety and social behavior [100]. Addition-
ally, in male mice, enhanced freezing behavior in the
context of a conditioned threat paradigm after exposure
to fragmented maternal behaviors can be reversed by
blocking glucocorticoid receptors [95].
In humans, similar changes in brain structure and

function after experiences of stress in childhood are evi-
denced in the amygdala, PFC, and hippocampus. Indeed,
one of the most reliable findings in children exposed to
early life stress is reduced hippocampal volume [29, 53,
56]. Reduced hippocampal volume in children exposed to
a range of different types of early life stress, including
abuse, neglect, and living in poverty, has been linked to in-
creased symptoms of psychopathology [101–104]. Add-
itionally, changes in hippocampal volume are thought to
be associated with deficits in learning processes in chil-
dren who experience early life stress [7, 105, 106]. A grow-
ing literature also indicates that early life stress is
associated with changes in amygdala and PFC reactivity to
emotional stimuli as well as altered connectivity between

the two regions [51, 52, 107]. Cumulative stress, severe
neglect from early institutionalization, and abuse have all
been associated with heightened amygdala reactivity to
emotional images [28, 108, 109]. This heightened reactiv-
ity appears to be at least partially a result of altered PFC–
amygdala connectivity, leading to increased sensitivity to
emotionally salient cues [107, 110, 111]. Indeed, children
with a history of maltreatment, which includes emotional,
physical, and sexual abuse and emotional and physical
neglect, appear to demonstrate atypical connectivity be-
tween the amygdala and inferior frontal gyrus [112], and
children growing up in poverty is associated with atypical
ventrolateral PFC–amygdala connectivity [113]. Longitu-
dinal work suggests that children exposed to various
forms of early life stress demonstrate an atypical trajectory
of age-related changes in PFC–amygdala connectivity as
compared to peers who were not exposed to early life
stress [51]. The strength of PFC–amygdala connectivity
appears to mediate the relationship between maltreatment
exposure and anxiety and depressive symptoms [114,
115]. Structural and functional alterations in PFC–hippo-
campal–amygdala circuits in individuals exposed to vari-
ous forms of early life stress suggests that alterations in
these circuits play an important role in the relationship
between early life stress and its effects on development.
As with non-human animals, there is also evidence

that changes in CRH and glucocorticoid function may
partially mediate the neural effects described above [34,
54]. Indeed, there is some evidence that humans demon-
strate similar epigenetic changes in glucocorticoids to
those observed in non-human animals, and these alter-
ations are associated with changes in the hippocampus,
symptoms of psychopathology, and altered learning pro-
cesses [72, 116–118]. Additionally, abnormal hypothal-
amic pituitary adrenal responsivity is often observed
after a variety of experiences of early life stress, including
poverty, family violence, maltreatment, and institutional
deprivation, although this varies with age [54, 68]. This,
in parallel with the animal literature demonstrating that
extended exposure to glucocorticoids leads to hippocam-
pal atrophy and dysregulation of the HPA axis [119,
120], has given rise to the hypothesis that chronic activa-
tion of the HPA axis through exposure to severe and/or
extended stress leads to neural alterations in the PFC,
hippocampus, and amygdala. This in turn produces dys-
regulation in systems responsible for responding to po-
tential threats and challenges in the environment [64,
71]. This dysregulation of stress response systems can
lead to increased risk for both mental and physical
health issues [121–123].
The effects of early life stress on PFC–hippocampal–

amygdala circuitry are thought to be in part related to
alterations in emotion processing produced by the types
of early inputs children in high stress environments
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experience. Relative to non-maltreated children, children
who experience physical abuse have heightened perceptual
and physiological sensitivity to angry facial expressions
[124, 125] and are more likely to perceive emotional situa-
tions as demonstrating anger as early as preschool age [41].
Physically abused children also more readily categorize
faces that are morphed between two different emotions as
angry [126] and require less perceptual information to iden-
tify faces as angry than non-maltreated children [124]. Add-
itionally, physically abused children show biases to angry
faces during cognitive tasks. They respond more quickly to
angry faces during a Go/No-Go paradigm [22] and seem to
require greater cognitive resources to disengage their atten-
tion from angry faces, showing delayed disengagement
when angry faces served as invalid cues in a selective atten-
tion paradigm [127]. Children who are exposed to extreme
threat appear to preferentially attend to and identify facial
movements that are associated with threat, such as a scowl-
ing facial configuration [125, 128–131], and more reliably
track the trajectory of facial muscle activations that signal
threat [132]. This close attention to cues of anger likely
shapes how abused children understand what facial
movements mean. For example, one study found that
5-year-old abused children tended to believe that al-
most any kind of interpersonal situation could result in
an adult becoming angry; by contrast, most non-abused
children understand that anger is likely in particular
interpersonal circumstances [133].
Studies of maltreated children (including those who

experience neglect and other forms of abuse) also show
less accurate identification of facial emotions in general
[41, 131] and particular difficulty identifying positive
emotions [134]. In addition, these children demonstrate
abnormalities in the expression and regulation of emo-
tions [135]. Neglected children show delays in perceiving
emotions in the ways that adults do [41]. Maltreated
children also show higher levels of rumination (repeat-
edly dwelling on past negative experiences), which has
been associated with an attention bias to sad faces [136]
and may contribute to risk for depressive symptomatol-
ogy. The combination of difficulties with emotional rec-
ognition, expression, and regulation may increase
children’s risk for a broad range of maladaptive out-
comes. For example, misreading others’ facial emotion
might impair peer interactions, while problematic emo-
tion regulation and expression may contribute to rumin-
ation and/or aggressive behavior. The effects of
maltreatment on children’s recognition of and attention
to emotion are thought to, in part, be shaped by the
broader environment in which they are raised. Children
who grow up in environments where emotional interac-
tions with caregivers are highly atypical have different
developmental trajectories than do those growing in
more consistently nurturing environments [8]. Parents

from these high-risk families signal emotions unclearly,
and express more anger [14, 29, 137, 138]. Together, this
suggests that exposure to increased levels of potential
threat alters children’s perceptual processes such that they
become more likely to perceive situations others may not
find threatening as threat, likely resulting in extending ac-
tivation of prefrontal–hippocampal–amygdala circuits and
associated peripheral stress response systems.

Alterations in prefrontal–striatal dopaminergic circuits
Recent evidence suggests that early life stress also has a
range of negative effects on dopaminergic circuits in-
volved in motivation, specifically those related to reward
processing [138, 139]. Animal models of early life stress
have been associated with changes in circuits classically
implicated in motivation to obtain and pursue rewards,
including the ventral striatum, prefrontal cortex, and
amygdala [140, 141]. Chronic repeated separation of
rodent pups from their mothers alters the number of
dopaminergic glial cells, affects rate of cell proliferation
and death, and promotes aberrant dopaminergic signal-
ing in the ventral tegmental area and substantia nigra in
adulthood [142–144]. Additionally, alterations in mater-
nal care have been associated with reduced connectivity
between the PFC and caudate putamen [145] as well as
structural and functional alterations in the nucleus ac-
cumbens [79, 146]. These changes have been linked to
increased anhedonia-like behaviors [147, 148] and al-
tered sensitivity to reward, both hyper- and hyposensitiv-
ity depending on the paradigm utilized [149, 150]. As
with changes in the hippocampus and amygdala, chronic
exposure to glucocorticoids, through interactions with
dopaminergic neurons, appears to play an important role
in mediating some of these effects [151–153].
In humans, disruptions during reward processing have

been observed in the nucleus accumbens, ventral teg-
mental area, ventral striatum, and PFC after experiences
of early life stress [154–157], and these disruptions are
associated with depressive and anxiety symptoms in ado-
lescents and adults [158–161] as well as altered reward
learning [11, 15]. Specifically, children who experienced
maltreatment demonstrate decreased striatal, orbitofron-
tal cortex, and hippocampal activation during reward
learning [157], and children with high early life stress
demonstrate decreased activation of the putamen and
insula when anticipating future losses [138]. Addition-
ally, in children exposed to early life stress, ventral stri-
atal activation has been demonstrated to mediate
variation in reward related learning [162]. Importantly,
these circuits are highly connected with both the amyg-
dala and prefrontal cortex, which together play a key
role in psychological and behavioral responses to stress,
emotional and social learning, and self-regulatory pro-
cesses [163, 164]. These disruptions likely then place
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children at increased risk for maladaptive behaviors,
along with negative mental and physical health out-
comes later in life.

Summary
Despite the relationships between early life stress and al-
terations in both PFC–hippocampal–amygdala and
dopaminergic reward circuitry outlined above, we still
understand relatively little about how these changes are
associated with altered learning and behavioral patterns
and how they increase risk for mental and physical
health disorders and disease. Additionally, it is still un-
clear which changes are important for different types of
health risks and what supports individual differences in
children’s outcomes after experiences of early life stress.
While the frameworks for conceptualizing early life
stress outlined above were developed to try and address
this question, there are still many findings that are not
fully accounted for, suggesting that additional factors
may also be critical for shaping children’s neurobio-
logical responses to stress.

Promising future approaches to elucidating the
mechanisms of early life stress
A commonality across both general and specific models
is a focus on identifying types of events a child may or
may not be exposed to that meet the criteria of a stres-
sor based on some outside determination (be it criteria
set by child protective services for abuse or neglect, eco-
nomic guidelines for poverty, or researchers determin-
ation that one thing represents a stressor over another).
But an additional insight into the neurobiological mech-
anisms underlying the effects of early life stress may lie
with an individual child’s interpretation or perception of
those events. Even in non-human animal models, which
do evidence specificity in responses to stress [165, 166],
there are a range of individual differences in behavioral
responses to the same type of stressor [167]. These indi-
vidual differences in behavior are supported by different
physiological and neural mechanisms [168–170]. Similar
variability in response to adverse events is observed in
humans across neurobiological stress responses systems
[66, 171–173], and this variability has been linked to dif-
ferential health behaviors and symptoms [174–176].
This range of variability in neurobiological responses

to similar types of stressors has led to the proposition
that it is not the type or features of an adverse event, but
rather the organisms’ perception and interpretation of
that event, that that has different effects on neurobio-
logical systems [166, 177, 178]. There is now a wealth of
research in adults demonstrating that individual variabil-
ity in neurobiological responses to stress is informed
through the assessment of factors that shape perceptions
and interpretations of stress [10, 179, 180]. For example,

individual variability in cortisol responses to social
speech stress is positively related to how individuals rate
their perceived stress during the stressor [175]. Shifts in
how humans and animals perceive the controllability
and predictability of a stressor will change their physio-
logical responses to that stressor [181–184]. In humans,
individual differences in perceptions of control have
been linked to differential cortisol responses to acute la-
boratory stress, differences in brain volume, and differ-
ences in brain reactivity to stress in regions including
the hippocampus, amygdala, and prefrontal cortex [185–
187]. Additionally, perceived adversity, and its associated
neurobiological responses, can occur in the absence of
any specific identifiable environment event through ru-
mination over previous experience or events or anxiety
about future events [188–190]. Recent evidence in chil-
dren suggests a similarly important role for perception
in variability in stress responses. One study utilizing ma-
chine learning approaches found that event exposures
are not highly predictive of children’s outcomes [191]
and another found reported exposure to abuse or
neglect is more predictive of children’s mental health
outcomes than exposure identified through court
reports [192].
There is a growing literature suggesting that the

chronicity, developmental timing, and intensity of adver-
sity exposure are important factors shaping the effects of
adversity on children [68]. In animal research, the pre-
cise timing of when during development a stressor oc-
curs can be tightly controlled, and has demonstrated
strong effects as described in a number of recent reviews
[46, 68, 193, 194]. However, the developmental period in
which adversity occurs is tightly intertwined with the
chronicity of adversity (that is, adversity that begins early
in a child’s life may be longer lasting and chronic than
adversity that begins later in a child’s life), which also
demonstrates profound effects on variability in responses
to stress [82, 195]. Children with high scores on the Life
Stress Interview (LSI), which quantifies the intensity of
children’s stress exposure, have smaller amygdala and
hippocampal volumes than children exposed to less in-
tense levels of early life stress [29]. Children with high
levels of early life stress demonstrate altered activation
in circuits involved in value processing during anticipa-
tion of rewards and losses [138]. Retrospectively re-
ported severity of early stress exposure in childhood has
also been associated with increased dorsal medial PFC
responses to a social stressor [196] and altered global
connectivity of the ventrolateral PFC [197]. Both severity
and amount of maltreatment in children have been
linked to epigenetic changes of the glucocorticoid recep-
tor gene [198]. Additionally, variations in intensity of
early adversity appears to modulate HPA responses with
retrospectively reported intensity of stress, rather than
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type of stress, during early childhood being associated
with increased levels of cerebrospinal fluid (CSF) CRH
[199], and increased cortisol responses to acute social
speech stress [200]. Children’s rated intensity of adver-
sity also interacts with age to predict cortisol awakening
responses [201].
Another potential factor in shaping child development

may be features of the early environment such as pre-
dictability and contingent responding of caregivers (or,
alternatively, chaos and lack of stability) [140, 202]. Par-
ent–child relationships are stereotypically repetitive,
highly predictable, and marked by contingent parental
responses. In normative contexts, adult caregivers reliably
respond to infant cries, comfort a child who is hurt, and
provide support to a child who is dysregulated [203, 204].
Lack of predictable and contingent input from caregivers
affects children’s expectations of the environment, leading
to uncertainty and perceptions of vulnerability [11, 137].
While there is limited research directly assessing variation
in the predictability of children’s environments, there is a
growing literature that suggests it has the ability to pro-
vide great insight into the mechanisms underlying experi-
ences of early life stress. Longitudinal research assessing
early influences on adolescents’ externalizing behaviors
finds that unpredictability of the environment during
childhood, quantified using changes in maternal employ-
ment, changes in residence, and changes in cohabitation,
is associated with increased externalizing behaviors in
adolescence while SES was not related [205]. Recent re-
search in rodents suggests that these observed effects are a
result of altered functioning in prefrontal–hippocampal–
amygdala circuits, finding that unpredictable maternal in-
puts are associated with altered connectivity between the
medial prefrontal cortex (PFC) and amygdala [91] as well
as decreased dendritic arborization in the hippocampus
[206] beyond effects produced by types of maternal inputs.
These effects are linked to PTSD and depressive-like be-
haviors as well as deficits in learning [140]. Together, this
body of work suggests that variation in the predictability,
stability, and/or degree of contingent responding of adult
caregivers to the needs of the developing child is a factor
in shaping children’s responses to adversity through
alterations in prefrontal cortical and subcortical stress
response circuits. It indicates that assessment of pre-
dictability of early environments, along with exposure
to negative events, has the potential to provide increased
insight into individual differences in the neurobiological
effects of early adversity on child development that is not
captured when focusing solely on types of adverse events.
Last, increasingly research supports a role for per-

ceived safety in contributing to variations in children’s
responses to stress. Safety/security in early childhood
has been characterized in a variety of different ways,
with things such as parental presence/adult “buffering,”

sensitivity, responsivity, and support thought to be cues
of safety, and lack of parental input, through isolation,
maternal separation, or neglect, or abusive parenting be-
haviors being cues of lack of safety [207–209]. Cues of
safety early in development play an important role in en-
gaging the prefrontal circuits that inhibit threat response
circuits, which will have implications for how children
perceive and interact with their environment later in life
[210]. Indeed, evidence from non-human primate and
rodent models supports this finding that early parental
presence plays an important role in inhibiting neurobio-
logical threat response systems, with both rodent pups
and infant primates demonstrating reduced glucocortic-
oid release and decreased amygdala activation in the
presence of the mother [207, 211]. However, in cases of
abusive maternal rearing, maternal presence does not
appear to exhibit buffering effects. Under these circum-
stances, rodent pups and primate infants demonstrate en-
hanced glucocorticoid responses to stress [207, 212] as
well as alterations in both the structure and function of
the amygdala and prefrontal cortex [213–215]. From this
literature, it is clear that parental presence, a salient early
cue of safety, is important to supporting typical develop-
ment of the neurobiological stress response systems.
There is some evidence indicative of similar early

regulatory effects of parental presence on the develop-
ment of stress response systems in humans [208, 216].
In parallel to the rodent and primate literatures, parental
presence has been demonstrated to dampen both corti-
sol [217, 218] and amygdala reactivity [219] to stress in
children. Presentation of parent voice during speech
stress has been associated with faster cortisol recovery
post-stressor [218], suggesting that parent support does
not necessarily need to be physical to buffer children’s
responses to stress. There is also evidence that early ad-
versity is associated with altered prefrontal–amygdala
connectivity, and these alterations have been linked to
children’s risk for psychopathology [51, 114, 220]. This
points to disruptions in the development of these cir-
cuits in children lacking early cues of safety that have
implications for their behaviors and mental health. How-
ever, in cases of adversity where children still receive
high levels of support from their parents, these effects
are mitigated, with adolescents living in poverty showing
altered connectivity in prefrontal cortical networks in-
volved in executive functioning and emotion regulation,
but not if they reported having high levels of parent sup-
port [221]. Additionally, support provided by other
adults or peers may diminish some of the bio-behavioral
effects of adversity, with reported social support from
family and friends being associated with reduced risk of
psychopathology in children who experience maltreat-
ment [222, 223]. This suggests that, at least in humans,
individuals outside of the parent–child relationship may
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be able to supplement these safety cues when they break
down. Consistently incorporating assessment of factors
that represent early cues of safety, such as parental
support, when studying how children respond to early
adversity, has the potential to greatly illuminate the
neurobiological mechanisms through which negative
environments shape development.

Summary
There is consistent evidence that early life stress expos-
ure changes neural plasticity and function, and these
changes have implications for children’s mental and
physical health across the lifespan. Studies assessing dif-
ferential effects of events along with timing and intensity
of events, predictability and contingency of environmen-
tal inputs, and perceptions of safety and social support
suggest that these factors differentially shape biological
systems involved in stress. Of course, it is the case that
there are probably bidirectional effects between exposure
to potentially stressful events shaping children’s percep-
tions of their environment in turn resulting in children
perceiving their environment as more stressful. For this
reason, it may seem like it is easier to establish causality
through approaches focusing on identifying events and
their associated outcomes. However, while events them-
selves likely contribute to how children perceive their
environment, approaches which focus only on events are
missing a multitude of other sources of variation in these
perceptions. Further incorporation of factors that may
shift how individuals interpret their environment, in
combination with event based methods of assessment of
stress and rigorous longitudinal studies with assessments
at multiple timepoints, has the potential to provide in-
creased insight into the specific neurobiological mecha-
nisms influencing children’s development. This type of
approach can aid in identifying what may produce resili-
ency to negative mental and physical health outcomes in
children who experience early life stress.

Conclusions
In this article, we have highlighted recent research
speaking to the neural mechanisms underlying the ef-
fects of early life stress on development. The existing lit-
erature supports effects of early life on the development
of the prefrontal cortex, hippocampus, hypothalamus,
and amygdala, along with communication across those
areas, in ways that produces increased vulnerability to
mental and physical health disorders later in life. These
changes appear to be at least partially mediated through
hormonal and neuropeptide alterations in the HPA axis
along with interactions with genetic and epigenetic fac-
tors. Additionally, there is increasing evidence for a role
of dopaminergic reward circuits in these relationships.
However, to date, we still lack a good understanding

about how these changes come about, what aspects of
the child’s environment produces these changes, and,
given not all children who experience early life stress de-
velop later psychopathology, what their role is in individ-
ual differences in children’s outcomes after early life
stress.
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