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Abstract

As a significant way to manufacture revolving body composite, the composite prepreg tape winding technology
is widely applied to the domain of aerospace motor manufacture. Processing parameters, including heating
temperature, tape tension, roller pressure, and winding velocity, have considerable effects on the void content and
tensile strength of winding products. This paper was devoted to studying the influence of process parameters on
the performances of winding products including both void content and tensile strength and trying to provide the
optimal parameters combination for the objectives of lower void content and higher tensile strength. In the
experiments, tensile strength and void content were selected as the mechanical property and physical performance
of winding products to be tested, respectively. An integrated approach by uniting the Grey relational analysis,
backpropagation neural network, and bat algorithm was presented to search the optimal technology parameters
for composite tape winding process. Then, the composite tape winding process model was provided by
backpropagation neural network utilizing the results of Grey relational analysis. According to the bat algorithm, the
optimal parameter combination was heating temperature with 73.8 °C, tape tension with 291.2 N, roller pressure
with 1804.1 N, and winding velocity with 9.1 rpm. The value of tensile strength increased from 1215.31 to 1329.62
MPa. Meanwhile, the value of void content decreased from 0.15 to 0.137%. At last, the developed method was
verified to be useful for optimizing the composite tape winding process.

Keywords: Composite tape winding process, Tensile strength, Void content, Backpropagation neural network, Bat
algorithm

Background
Advanced composites have made great achievements in
the field of military, aerospace, industry, and civil applica-
tion for the advantages of high specific intensity and
specific rigidity. As a significant way to manufacture rotary
composite parts, the composite prepreg tape winding
technology is widely used to fabricate the aerospace prod-
ucts [1–4], such as ablation resistance parts, rocket motor
nozzle, some high-temperature resistance components,
and rocket launch tube. Therefore, composite winding
products play an important role in the development of

national defense and aerospace industry. In the composite
tape winding process, four technological parameters in-
cluding tape tension, heating temperature, roller pressure,
and winding velocity have major impact on the composite
winding products [4–7]. However, as a representative
form of product defect, an excess of voids will markedly
reduce the compactness and strength of final winding
products. Meanwhile, for the composite manufacturing
process, product strength is an important item which
needs to be considered. Therefore, to research the com-
posite winding process more comprehensively, not only
physical performance but also mechanical properties of
winding products should be given a good attention at the
same time.
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Recent years, composite prepreg tape winding technology
has made a huge contribution for the aerospace industry.
In the manufacturing field of high-strength rotational com-
posite, especially for rocket motor nozzles, the tape winding
process shows huge advantages and vitalities, such as high
efficiency and high reliability. Currently, a large number of
scholars in the world have carried out a lot of research
about the composite tape winding process. Firstly, modeling
the composite tape winding process is beneficial for re-
searchers to comprehend the entire technological process
from a macro level. The thermodynamic modeling of com-
posite tape winding process proposed by Tannous et al. [8]
showed that composite tape winding process could be car-
ried out with a small tape tension in the event that the high
frictional contact existed between the tape and compaction
roller. However, during the filament winding process, the
fiber bundle, more or less, will suffer damage on different
degrees due to the tension and extrusion stresses. Accord-
ing to Akkus and Garip’s research [9], the damage of car-
bon fiber increases with the increasing of pretension force
on the carbon fiber during the tape winding process. There-
fore, to obtain the better performance of composite, the
defects and strength of composite winding products should
be lucubrated. Cui et al. [10] studied the influence rule of
the winding tension on the appearance and performance of
bearing composites using the T300/epoxy prepreg tape.
Similarly, Okuya et al. [11] enhanced the bonding strength
of winding products by co-curing the carbon fiber-rein-
forced plastics strand with end tabs. Then, the modified
method was employed to two kinds of carbon fiber-rein-
forced plastics strands and generated the responsible tensile
strength. Last but not least, the performances of composite
winding products are intensively subjected to the four
process parameters. A preferable winding parameters com-
bination will improve both physical and mechanical per-
formance for the composite winding products. As in
Nayani Kishore Nath’s [12] article, the optimum set of
composite tape winding technological parameter were
found and used to improve the performances of throat back
up liners based on robust design method. Besides that,
Yu et al. [13] provided a composite prepreg tape winding
technology theoretical model which could be applied to
selecting optimal parameters and prominently enhance
the interlaminar shear strength of winding products.
In summary, a good deal of the literatures concentrated

on the theoretical simulation, process control and techno-
logical optimizing on the composite prepreg tape winding
technology. We can see that modeling and optimizing of
the composite tape winding process has attracted many
scholars to study. Nevertheless, for optimizing of the com-
posite tape winding process, the current researches are
often about optimizing for one target or multiple targets
of the same type. In other words, the evaluation standard
for the performances of composite tape winding products

should be more comprehensive. Researches show that a
relative effective process parameter combination will have
a great contribution to the composite tape winding manu-
facturing. Therefore, in this optimizing process of the
composite tape winding technology, both physical and
mechanical performance of winding products should be
considered simultaneously instead of just only one of
them. In view of this, void content was selected to meas-
ure the physical performance of winding products in this
study process. At the same time, tensile strength was
chosen as the test index for the mechanical properties of
winding products. In the paper, an integrated method-
ology combining Grey relational analysis (GRA), backpro-
pagation neural network (BPNN), and bat algorithm (BA)
would be established to search the optimal technology pa-
rameters of composite tape winding process. The authors
wish the study will be beneficial for the composite prepreg
tape winding manufacturing technology and provide a
better performance for the composite winding products.

Experiment Procedure and Results
The composite prepreg tape winding technology can be
summarized as the hoop winding process prepreg tapes
aiming at fabricating the revolving body composite. At the
beginning, the prepreg tapes need to be heated to an ap-
propriate temperature by the electric heating device which
is located inside of the compaction roller. Meanwhile,
magnetic powder brakes are utilized to guarantee that the
prepreg tape keeps a certain constant tension. Simultan-
eously, the compaction roller pressure provided by the air
cylinder is applied to the winding tape. Subsequently, the
mandrel, following the spindle’s turning, rotates at an
invariable speed. Then, the unwinding tapes are continu-
ously winded to the outer layers of the mandrel. Figure 1
shows a three-dimensional diagram of the composites pre-
preg tape winding process. From the picture, we can see a
tension measuring mechanism has been applied to ensure
the correct tape tension. In order to reduce the product
defects, a high-precision partial adjust mechanism is uti-
lized to keep the proper winding trajectory. In the winding
process, the heating temperature is conducive to bring
down the resin viscosity and improve the interlaminar
contact degree. In addition, the positive force produced by
compaction roller will be applied on the prepreg tape. As
the roller pressure squeezes out the bubbles among the
interlaminar contact interfaces, the prepreg tape and lami-
nated layers will not only contact intimately but also has a
lower void content. Then, a suitable tape tension can
greatly enhance the tensile strength for winding products.
Last but not least, the mandrel velocity will have a major
impact on the properties of winding products, for
example, compactibility and uniformity. Therefore, both
the mechanical and physical performances of winding
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products are deeply affected by the above four process
parameters.

Experiment Design and Sample Preparation
During the experiments, four critical process parameters
of the composite tape winding technology including heat-
ing temperature, tape tension, roller pressure, and winding
velocity were chosen as the design variables. At the same
time, two key performances characterizations for tape
winding products, tensile strength and void content, were
selected as the evaluation indexes. And, more remarkably,
the interval of each process parameter was designed on
the basis of actual processing requirements. Therewith,
the experiment was designed according to a four-factor
and three-level Box–Behnken design (BBD) based on
response surface theory. The experimental level of four
key process parameters can be seen in Table 1.
In the experimental process, the composite prepreg

tape, fabricated by Gloway Composite Materials Co.,
Ltd., was composed of carbon fiber and epoxy resin.
The carbon fiber was T-300 provided by Toray Industries,
Inc., and the epoxy resin matrix was YH-69 coming
from Wuxi Resin Factory of Bluestar New Chemical
Materials Co., Ltd. Furthermore, the fiber volume
content of the composite prepreg tape was near 55 ±
2%. The width and thickness of the prepreg tape were
80 mm and 0.25 mm, respectively. The structure of
composite prepreg tape was plain weave with the

braided angles of 0°/90°. All the experiments were
carried out on the Automate Tape Winding KUKA
Robot (XGD-1200). This proprietary CNC equipment
was designed and manufactured by Northwestern
Polytechnical University, China, as shown in Fig. 2.
Meanwhile, the XGD-1200 can be also applied to the
composite prepreg tape placement process. The
machine body is a horizontal structure with a full
closed-loop control system. The size of the machin-
able parts (including the core mold) is less than 1500
mm in length and 50~ 1000 mm in rotary diameter.
In addition, the winding mechanism uses the six-axis
robot KR 180 R2500 extra fabricated by KUKA
Aktiengesellschaft, Germany. The robot has a repeat
accuracy of ± 0.06 mm and a working radius of 2500
mm. Furthermore, the technical parameters of tape
winding process including winding temperature, roller
pressure, and tape tension are controlled by SIMATIC
S7-1200 PLC.
The winding specimens were manufactured with a

manner of hoop winding. The ambient temperature
and relative humidity of these experiments were 20 ±
2 °C and 25 ± 2%, respectively. The size of the com-
paction roller was 160 mm in external diameter and
150 mm in width with a material of 45 steel. The
winding mandrel was a 45 steel cylinder which was
150 mm in external diameter and 1200 mm in length.
A high-precision online rectifying deflection system
was employed to ensure proper winding trajectory for
decreasing the product defects. Ultimately, the wind-
ing products produced by multilayer prepreg tape
were cured by autoclave provided by TEDA Industrial
Equipment Co., Ltd. (Tianjin, China). During the
cured process, the heating rate was kept at 2.5 °C/min. It
is worth noting that the curing temperature needs to be
kept for 150min when the temperature rose from room
temperature to 150 °C. Meanwhile, the curing pressure
stayed around 0.15MPa.

Fig. 1 Three-dimensional diagram of composites prepreg tape winding process

Table 1 Level of process parameters

Experimental
parameters

Symbol Units Level of experimental parameters

Level 1 Level 2 Level 3

Temperature T °C 50 75 100

Tension F N 100 300 500

Pressure P N 1000 1500 2000

Speed V rpm 5 10 15
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Measurement Method
Tensile Strength
The tensile strength measurement for winding speci-
mens was proceeded based on the GB/T 1458-2008
standard [14]. At first, the standard testing ring, as
shown in Fig. 3a, was obtained by mechanically cutting
the cures winding specimen along the tape winding
direction. Then, the STRs having a dimension of 150 ±
0.2 mm in inner diameter, 6 ± 0.2 mm in width, and 3 ±
0.1 mm in thickness would be utilized to test the
strength. At last, the tensile strength tests were carried
out with the help of electronic universal testing machine
DDL100 (Fig. 3b) produced by Changchun Research
Institute for Mechanical Science Co., Ltd. Meanwhile,
the force-displacement tensile curve was provided in Fig. 3c.
Then, the computational formula for the tensile strength of
the fiber-reinforced composite can be described as

σ t ¼ Fb

2b � h ð1Þ

where σt denotes the tensile strength TS, Fb means the
maximum load, and b and h are the width and thickness
of specimens for tests, respectively.

Void Content
Figure 4 gives the simplified schematic of how the test
samples were obtained from a multi-layered cured wind-
ing product. The void content measurement for winding
specimens was processed based on the GB/T 3365-2008

standard [15]. The dimension of the test sample was 20
mm in length, 10 mm in width, and thickness of ring
component in height. Three samples were cut out from
three cubical equidistant locations along the toroidal
direction of winding component (Fig. 4). Whereafter,
rough polishing for winding samples was carried out on
the surface grinding machine in horizontal HZ-800/2CK
produced by Hangzhou Hangji Machine Tool Co., Ltd.
Then, corresponding polishing paste and cloth were
employed to fine shine the experimental samples. For
fiber reinforcement composite, micrography is a signifi-
cant method to measure the void content of composite
winding products [16]. Finally, the scanning electron
microscope HITACHI S-3400 provided by Hitachi High-
Technologies (Shanghai) Co., Ltd. was used to take
photographs from the direction of A (red italics in Fig. 4).
Then, post-processing including graying and binarizing
for the micrographs was implemented in MATLAB ver-
sion R2017a. Then, the computational formula for the
void content of fiber-reinforced composite can be de-
scribed as the ratio of all the voids acreage to the entire
cross-sectional area, i.e.,

VC ¼ Avoid

Atotal
� 100% ð2Þ

where VC denotes the void content of winding sam-
ples, and Aviod and Atotal are the area of all voids and
total cross-sectional acreage of the testing sample,
respectively.

Fig. 2 Automate tape winding KUKA robot (XGD-1200). a Mechanical arm of XGD-1200. b Tape winding head. c Cured winding product
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Experiment Results
The testing data results including tensile strength and
void content are pulled together as shown in Table 2. In
the table, T denotes the heating temperature, F denotes
the tape tension, P denotes the roller pressure, and V
denotes the winding velocity. For tensile strength, the
maximum and minimum values are 1215.31 and 783.26,
respectively. For void content, the maximum and mini-
mum values are 2.19 and 0.13, respectively.

Multi-objective Optimization Method
The composite prepreg tape winding technology is a multi-
factor and multi-object process. In order to optimize the
parameters of composite tape winding process, this paper
provided an innovative solution which combined three
optimization technologies including the Grey relational
analysis (GRA), backpropagation neural network (BPNN),
and bat algorithm (BA). First of all, the GRA is widely
employed to obtain the approximation ratio among the

Fig. 4 Process of measuring void content for composite tape winding products

Fig. 3 Experiment test samples machining and tensile strength testing process. a Standard testing ring. b Electronic universal testing machine
DDL100. c Force- displacement tensile curve
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data series in virtue of Grey relational grade (GRG). Mean-
while, the discrete sequences produced by GRA will be
used to carry out the correlation analysis such as mul-
tiple factors, processing indetermination, and discrete
data. At the same time, the backpropagation neural
network (BPNN) is an artificial learning algorithm for
multilayer neural networks and has a strong retrieval
ability for functions. Due to the advantage of strong
nonlinear interpolation ability, BPNN has been effect-
ively used to find the interrelation between the process
parameters and two performance characterizations of
winding products in this study. At last, the bat algo-
rithm, a patent evolutionary algorithm inspired by
microbats’ echolocation behavior, can be usefully uti-
lized to find the best process parameters combination

quickly and reliably. Compared with other algorithms,
bat algorithm has more superior accuracy and efficiency
and does not have the need to adjust many parameters
of the algorithm.
In the paper, Grey relational analysis, backpropaga-

tion neural network, and bat algorithm are integrated
as a GRA-BPNN-BA method to model and optimize
the complex multi-objective composite tape winding
process. In order to improve efficiency and simplify the
counting process, we choose to compute the signal-to-
noise ratio (S/N) ratio of data sequence in the first
place. The S/N ratio is defined as the ratio of signal
power to the noise power, often expressed in decibels.
In the composite tape winding process, a large value of
tensile strength is expected, while the lower value of

Table 2 Experiment and measurement results

No. Process parameters Tensile
strength
(MPa)

S/N
ratio

Void
content
(%)

S/N
ratioT F P V

1 75 300 1000 15 896.92 59.0551 1.64 − 4.2969

2 50 300 2000 10 942.36 59.4843 1.19 − 1.5109

3 100 300 2000 10 1012.24 60.1057 0.25 12.0412

4 75 500 1500 15 951.33 59.5666 1.26 − 2.0074

5 75 300 1500 10 1210.68 61.6606 0.13 17.7211

6 75 300 2000 5 1123.47 61.0112 0.35 9.1186

7 100 500 1500 10 1062.27 60.5247 0.73 2.7335

8 50 500 1500 10 920.61 59.2815 1.45 − 3.2274

9 75 300 1500 10 1212.53 61.6739 0.15 16.4782

10 75 300 1500 10 1209.32 61.6508 0.17 15.3910

11 75 500 1000 10 1029.13 60.2494 1.39 − 2.8603

12 75 100 1500 5 967.14 59.7098 0.95 0.4455

13 75 500 2000 10 1018.74 60.1613 0.71 2.9748

14 100 100 1500 10 951.72 59.5702 0.87 1.2096

15 75 100 2000 10 866.58 58.7562 0.59 4.5830

16 75 300 1500 10 1213.24 61.6789 0.14 17.0774

17 75 300 1500 10 1215.31 61.6937 0.15 16.4782

18 100 300 1500 15 1130.29 61.0638 0.28 11.0568

19 50 100 1500 10 823.21 58.3102 0.79 2.0475

20 75 100 1500 15 876.68 58.8568 0.38 8.4043

21 75 100 1000 10 846.43 58.5518 1.68 − 4.5062

22 50 300 1500 5 1116.38 60.9562 0.31 10.1728

23 50 300 1500 15 783.26 57.8781 2.12 − 6.5267

24 75 300 2000 15 911.07 59.1910 1.16 − 1.2892

25 100 300 1500 5 1134.81 61.0985 0.27 11.3727

26 100 300 1000 10 997.85 59.9813 1.06 − 0.5061

27 75 500 1500 5 1053.11 60.4495 0.73 2.7335

28 50 300 1000 10 921.39 59.2889 2.19 − 6.8089

29 75 300 1000 5 1106.54 60.8793 0.79 2.0475
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void content, the preferable performance of the winding
product. Thus, the S/N ratio of the tensile strength and
void content can be given as

η ¼ −10 log10
1
N

XN
i¼1

1

T2
Si

 !
1; 2;…;Nð Þ ð3Þ

η ¼ −10 log10
1
N

XN
i¼1

V 2
Ci

 !
1; 2;…;Nð Þ ð4Þ

where TSi and VCi represent the values of tensile
strength and void content for the ith result in N tests,
respectively; ηTS and ηVC are the corresponding S/N
ratio value of the tensile strength and void content,
respectively.
The results of S/N ratio are displayed in Table 2. For

tensile strength, the maximum and minimum S/N ratio
values are 61.6937 and 57.8781, respectively. For void
content, the maximum and minimum S/N ratio values
are 17.7211 and − 6.8089, respectively. At the begin-
ning, the experiments for tensile strength and void con-
tent of winding products were carried out respectively.
The experimental data should be carefully recorded and
conformed to the corresponding test group. Thereafter,
the GRA method was employed to describe the influ-
ence degree of technological parameters on the tensile
strength or void content of winding products. Then,
the BPNN method was applied to build the nonlinear
mapping relations between technological parameters
and GRG generated by the GRA. Finally, the BA method
would be used to provide the optimal solution after a
finite number of iterations. To verify the accuracy of the
optimizing method, some validation tests were necessary
to be carried out at the last step.

Optimization Process and Discussion
Grey Relational Analysis
The idea of the Grey theory is produced by the combin-
ation of multi-intelligence theory such as system the-
ory, space theory, and control theory. Grey systems
method can be applied to cope with numerous ambigu-
ities caused by imprecise human decision-making. Even
though the number of data is small or the variability of
factors is great, the Grey system theory also can pro-
duce the satisfactory results [17, 18]. Through proper
processing and regularization of data aggregation, Grey
relational analysis can reveal the uncertain relationship
between one major factor and all other factors in the
system [19, 20]. When the expectancy characteristic is
the larger the better or the smaller the better, the
normalized value of Grey relation can be described as
formula (5) and (6), respectively:

x�i kð Þ ¼ x0i kð Þ− min x0i kð Þ� �
max x0i kð Þ� �

− min x0i kð Þ� � i ¼ 1 � m; k ¼ 1 � nð Þ

ð5Þ

x�i kð Þ ¼ max x0i kð Þ� �
−x0i kð Þ

max x0i kð Þ� �
− min x0i kð Þ� � i ¼ 1 � m; k ¼ 1 � nð Þ

ð6Þ
where x�i ðkÞ denotes the ith value’s normalized value

from the kth data series, x0i ðkÞ represents the ith value
of initial result from the kth data series, m signifies the
quantity of element from the data series, and n denotes
the quantity of data series.
Grey relational coefficient for the data series expresses

the connection between the perfect and practical data
arrays. The Grey relational coefficient is defined as:

γ x�0 kð Þ; x�i kð Þ� � ¼ Δmin þ ξΔmax

Δ0i kð Þ þ ξΔmax
i ¼ 1 � m; k ¼ 1 � nð Þ

ð7Þ
here

Δ0i kð Þ ¼ x�i kð Þ−x�0 kð Þ�� �� ð8Þ
Δmin ¼ min

∀i
min
∀k

Δ0i kð Þ ð9Þ

Δmax ¼ max
∀i

max
∀k

Δ0i kð Þ ð10Þ

where x�0ðkÞ is the reference series and x�i ðkÞ is the com-
parability series; ξ is the distinguishing coefficient,
ξ ∈ [0, 1], usually ξ = 0.5; furthermore, Δmin ¼ min

∀i
min
∀k

Δ0iðkÞ, Δmax ¼ max
∀i

max
∀k

Δ0iðkÞ.
The Grey relational grade reveals the degree of inter-

relation between the reference sequences and compar-
ability series. Therefore, a greater value of GRG tends to
show the relevant parameter combination is nearer to
the optimal parameters set. In fact, GRG is the weight
sum of the Grey relational coefficients. Then, the GRG
can be calculated as:

γ x�0; x
�
i

� � ¼Xn
k¼1

βkγ x�0 kð Þ; x�i kð Þ� �
k ¼ 1 � nð Þ

ð11Þ
where γðx�0; x�i Þ denotes the GRG; βk is the weight value
of the kth response variable which can be obtained from
the principal component analysis.
Grey relational grade is a significant way to reduce

two optimal objectives to one. In addition, the GRG
indicates the degree of influence of parameter levels
on the quality characteristics. In the multi-objective
optimization process, the experiment and measure-
ment results in Table 3 were normalized at first.
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Subsequently, the deviation sequence Δ0i were calculated
with the help of formula (8). And then, the Grey relational
coefficient was obtained by means of formula (7). The re-
sults of deviation sequence and Grey relational coefficient
are shown in Table 3. According to the principal compo-
nent analysis, β1 = 87.306% and β2 = 12.694%; here, β1 and
β2 are the weight value of the tensile strength and void
content, respectively. So, the tensile strength is the first
principal component, followed by void content. Then, the
results of GRG were calculated on the basis of formula
(11) as shown in Table 3. From the table, we can see the
maximum and minimum values of the GRG are 0.9686
and 0.3337, respectively. It means that the combination
with the heating temperature of 75 °C, tape tension of 300
N, roller pressure of 1500N, and winding velocity of 10
rpm are the best parameters combination for the

composite winding process. Meanwhile, the heating
temperature of 50 °C, tape tension of 300 N, roller pres-
sure of 1500N, and winding velocity of 15 rpm are the
worst parameters combination.

Modeling of Backpropagation Neural Network
The backpropagation neural network generally includes
three layer constructions which are input layer, hidden
layer, and output layer. In order to obtain better results, a
supervised learning algorithm needs to be employed to
train the neural networks. Later on, the object minimizing
the summation of the mean square error for all output
layers is used to regulate the weights and thresholds of be-
fore and after layer [21, 22]. Particularly, during the train-
ing process, the neural network’s weights and thresholds
are amended in a manner of repeated iteration until the

Table 3 Grey relational grade results

No. Deviation sequence Δ0i Grey relational coefficient GRG

Tensile strength Void content Tensile strength Void content

1 0.6915 0.8976 0.4196 0.3578 0.4116

2 0.5790 0.7840 0.4634 0.3894 0.4538

3 0.4162 0.2316 0.5457 0.6835 0.5635

4 0.5575 0.8043 0.4728 0.3834 0.4613

5 0.0247 0.0000 0.9529 1.0000 0.9590

6 0.1789 0.3507 0.7365 0.5878 0.7173

7 0.3064 0.6110 0.6201 0.4500 0.5981

8 0.6322 0.8540 0.4416 0.3693 0.4323

9 0.0192 0.0697 0.9630 0.8777 0.9520

10 0.0312 0.0950 0.9412 0.8403 0.9282

11 0.3785 0.8390 0.5691 0.3734 0.5439

12 0.5200 0.7043 0.4902 0.4152 0.4805

13 0.4016 0.6012 0.5546 0.4541 0.5416

14 0.5565 0.6731 0.4732 0.4262 0.4672

15 0.7699 0.5356 0.3937 0.4828 0.4052

16 0.0169 0.0392 0.9673 0.9272 0.9622

17 0.0000 0.1607 1.0000 0.7568 0.9686

18 0.1651 0.2717 0.7518 0.6479 0.7384

19 0.8868 0.6390 0.3606 0.4390 0.3707

20 0.7435 0.3798 0.4021 0.5683 0.4236

21 0.8234 0.9061 0.3778 0.3556 0.3749

22 0.1933 0.3077 0.7212 0.6190 0.7080

23 1.0000 0.9885 0.3333 0.3359 0.3337

24 0.6559 0.7750 0.4326 0.3922 0.4273

25 0.1560 0.2588 0.7622 0.6589 0.7488

26 0.4488 0.7431 0.5270 0.4022 0.5109

27 0.3261 0.6110 0.6053 0.4500 0.5852

28 0.6303 1.0000 0.4424 0.3333 0.4283

29 0.2134 0.6390 0.7008 0.4390 0.6670

Deng and Shi Nanoscale Research Letters          (2019) 14:296 Page 8 of 14



trained network shows good agreement with the training
sets [23]. Meanwhile, the final configuration of backpropa-
gation neural network will be concluded by the input
series and output sequences. In this study, the tape wind-
ing process contains four process parameters, namely
heating temperature, tape tension, roller pressure, and
winding velocity. Hence, the variable of input layer includ-
ing four parameters is set to 4. The output layer has only
one neuron that is the calculated GRG. Meanwhile, the
hidden layer of BPNN has a major impact on the network
model’s robustness. In the paper, the quantity of hidden
layer is set to 6. Finally, the training process of BPNN can
be described as follows:

Step 1
Count outputs of nodes in the hidden layer. According
to the calculation principle of the neural network, the
hidden layer and the output layer can be respectively de-
scribed as:

y j ¼ f
Xn
i¼1

wijxi þ θ j

 !
i ¼ 1; 2;…; n; j ¼ 1; 2;…; lð Þ

ð12Þ

zk ¼ g
Xm
j¼1

vjk f
Xn
i¼1

wijxi þ θ j

 !
þ ηk

 !

ð13Þ

where xi denotes the ith input variable in the input
layer, yj denotes the jth neuron’s output from the
hidden layer, and zk denotes the kth neuron’s output
from the output layer; wij denotes the connection
weighs between neuron i in the input layer and
neuron j in the hidden layer; θi is the threshold value
of neuron j in the hidden layer; vjk denotes the
connection weighs between neuron j in the hidden
layer and the neuron k in the output layer; and ηk is
the threshold value of neuron k in the output layer.
In addition, f(x) denotes the transfer function between
input and hidden layer; here, we choose the Sigmoid
function, and g(x) is the transfer function between the
hidden layer and output layer; here, we select the
Purelin function just as shown in formula (14).

f xð Þ ¼ 1
1þ e−αx

g xð Þ ¼ axþ b

(
ð14Þ

where α, a, and b are all the coefficient of the model.
For simplicity, we can use α = a = b = 1.

Step 2
Count the output data of BPNN. Let z denote the final
output of the model, then the backpropagation neural
network model can be described as follow:

z ¼
X6
j¼1

ν j

1þ exp −
X4
i¼1

wijxi−θ j

 !þ η ð15Þ

Step 3
Minimize the mean square error. To improve and refine
the accuracy of the BPNN model, the mean square error
function between the actual and trained outputs should
be defined, that is,

E ¼ 1
2

Xm
k¼1

zk−Rkð Þ2 ð16Þ

where E is the mean square error; Rk denotes the desired
output.
Since we had obtained the GRG, the BPNN was ap-

plied to establish the non-linear mapping relationship
between process parameters and the GRG. In this step,
the BPNN was composed of three-layer networks includ-
ing one input layer with four neurons, one hidden layer
with six neurons, and one output layer with one neuron.
For the composite tape winding process, the foremost
parameters heating temperature T, tape tension F, roller
pressure P, and winding velocity V were selected as the
input neurons. The GRG was the only one output
neuron and also the ultimate optimal goal of the neural
network model.
The modeling process for BPNN was carried out via

the MATLAB version R2017a. The sample data coming
from Table 4 were applied to train the neural network
model. When the expected error precision was achieved,
the training process stopped. Figure 5 shows the training
process and results of backpropagation neural network.

Table 4 Experimental verification of BP neural network model

No T F P V Experiment results GRG value Error
(%)Tensile strength (MPa) Void content (%) Simulation Experiment

1 91 325 659 7.8 972.83 0.59 0.62854 0.67143 6.39

2 73 60 1327 5.6 1088.42 0.41 0.57304 0.54732 4.49

Deng and Shi Nanoscale Research Letters          (2019) 14:296 Page 9 of 14



According to Fig. 5a and b, we can see the best training
performance is 0.00099518 at the 98th training times. In
Fig. 5c, the points fall on the reference line which means
the two data sets come from the normal distribution.
Meanwhile, the prediction value is closely matched with
the measured results as shown in Fig. 5d. However, to
further verify the prediction accuracy of the model, some
additional validation experiments should be put into
effect. Three tests were selected randomly from the
process parameters interval of tape winding manufactur-
ing. As can be seen in Table 4, the error between the
experimental value and simulated value is less than 6.5%.
In a word, the validation test shows a high fitting accur-
acy for the trained model.
In order to describe the GRG changing with the

process parameters more intuitively, the response con-
tour for the GRG with respect to process parameters
based on the BP neural network model is drawn in Fig. 6.
Each slice in 3D view consists of different color values
which express the corresponding Grey relational grade
value. The corresponding color bar on the right side of
each thumbnail in Fig. 7 shows the congruent relation-
ship between color and GRG value. According to the
slice planes, it is quite clear that the GRGs have no
evident changes with the roller pressure increasing or
decreasing in most situations. The GRG increases with
the increase of the roller pressure only at the high wind-
ing velocity and heating temperature. The reason could
be that the roller pressure has a great impact on the void

content of winding products in the composite tape
winding process. However, the void content has a lower
proportion in the GRG according to the principal com-
ponent analysis. When the heating temperature is low,
the GRG decreases as the tape tension rises. Meanwhile,
in the higher tension range, the decreasing trend of
GRG as the increasing of tape tension is more obvious
than the other parameter range. At high temperature,
the GRG increase at the early stage and then decrease
with the increasing of tape tension. In the composite
tape winding process, winding velocity has an obvious
influence on the performances of winding products. The
GRG has a higher value at the lower winding velocity.
Looking at the slice planes as a whole, the high peak
values of GRG are located in the condition of medium
temperature, low velocity, and high tension. In general,
void content is more likely to be affected by roller pres-
sure, and tensile strength is more likely to be influenced
by tape tension.

Optimal Grey Relational Grade via Bat Algorithm
The bat algorithm is a patent evolutionary algorithm in-
spired by microbats’ echolocation behavior when looking
for preys or avoiding barriers in a condition of complete
darkness [24]. Actually, the microbat transmits the quite
loud acoustic pulses and concurrently listens to the
echoes bouncing off the ambient objects, so that the
microbats can be able to develop the hunting strategy
for prey taking full advantage of the sound pulses

Fig. 5 The training process and results of backpropagation neural network. a The error curve of GRG in BP network training process. b Error curve
of training process. c Normal quantile-quantile plot. d Comparison of measured value and prediction value
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Fig. 6 The slice in 3D view for process parameters influence on the GRG. a Speed = 5 r/min, parameters influence on GRG. b Speed = 7 r/min,
parameters influence on GRG. c Speed = 9 r/min, parameters influence on GRG. d Speed = 11 r/min, parameters influence on GRG. e Speed = 13 r/min,
parameters influence on GRG. f Speed = 15 r/min, parameters influence on GRG

Fig. 7 Bat-inspired optimization algorithm. a The schematic diagram of bat algorithm. b Iteration process with bat algorithm
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properties [25]. Figure 7a describes the hunting process
of microbats. From the picture, we can see each bat has
an individual location and emits a sound pulse which
has a steady loudness and frequency domain so as to
amend the location and velocity in real time.
At first, the microbat has a position xi and velocity vi

in the multi-dimensional predatory searching space.
Then, the updated position xti and velocity vti with a time
step t can be provided by

f i ¼ f min þ f max− f minð Þβ ð17Þ
vti ¼ vt−1i þ xti−x�

� �
f i ð18Þ

xti ¼ xt−1i þ vti ð19Þ
where β ∈ [0, 1] denotes a random vector extracted
from the uniform distribution; x∗ represents the latest
global optimal position selecting from all the n bats’
solutions; fi is the frequency of bat i and λi is the
wavelength of bat i; fi (or λi) is usually applied to
modify the velocity changing while fixing the other
factor λi (or fi). In general, we use fmin = 0 and fmax =
100. Originally, each bat has a random frequency ex-
tracted from [fmin, fmax]. When a solution has been
produced from the latest optimal solutions, a new re-
solve project for each bat will be produced as follow:

xnew ¼ xold þ εAt ð20Þ
where ε ∈ [0, 1] denotes a random number; At ¼< At

i >
denotes the average loudness of all the bats at time step
t.
With iterations going on, the loudness Ai and pulse

emission rate ri will be renewed synchronously. Natur-
ally, once a bat has found the prey, the sound loudness
will generally decrease. At the same time, the pulse
emission rate will increase, then the loudness can be set
as any random value. For simplicity’s sake, we choose
A0 = 1 and Amin = 0, and assuming Amin = 0 means that a
bat sends no sound provisionally as the reason for find-
ing a prey. Then, we can get

Atþ1
i ¼ σAt

i ð21Þ
rtþ1
i ¼ rtþ1

i 1− exp −γtð Þ½ � ð22Þ
where σ and γ both are constants. In practice, σ is analo-
gous to the cooling factor of the simulated annealing.

For simplicity, we can also use σ = γ = 0.9 in the
simulation.
Based on the Grey relational analysis, BP neural net-

works model for the tape winding process had been
established subsequently. Then, the bat algorithm was
applied to search the optimal parameters combination
for the GRG. Compared to other algorithms, bat algo-
rithm has more advantages such as high seeking velocity
and efficaciousness. The formulation of the process
optimization problem for producing maximum allowable
GRG can be expressed as follows:

Find : x ¼ T ; F ; P;Vð Þ
Maximize : GRG ¼ BPNN xð Þ

Subject to :

50 ℃≤T≤100 ℃
100N ≤ F ≤500N
1000N ≤P≤2000N
5 rpm≤V ≤15 rpm

8>><
>>:

ð23Þ

where T is the heating temperature, °C; F is the tape ten-
sion, N; P is the roller force, N; and V is winding speed,
rpm.
The optimization process is performed on the MATLAB

version R2017a software platform. Figure 7b shows the
iteration process of bat-inspired optimization algorithm. It
is obvious that the convergence was achieved within 20
iterations. According to the optimization results, the opti-
mal parameter combination is heating temperature with
73.8 °C, tape tension with 291.2 N, roller pressure with
1804.1 N, and winding velocity with 9.1 rpm. And the
highest GRG is 0.9829. The corresponding desirability
value is 0.9504 which demonstrates the high agreement
between the target data and the objective value. Moreover,
the optimal parameter combination conforms to the opti-
mized process parameter intervals based on the sensitivity
analysis which is published on the authors’ another article
[7]. From that paper, the optimized intervals of the
process parameters are as follows: heating temperature
within 62.5 and 75 °C, tape tension within 200 and 300N,
roller pressure within 1500 and 2000N, and winding
velocity within 5 and 10 rpm. Therefore, this paper testi-
fies the necessity and availability of “the optimal param-
eter interval for composite tape winding process” on
the other side.

Table 5 Comparison between the initial and optimal settings

T F P V Experiment results GRG

Tensile strength (MPa) Void content (%)

Initial 75 300 1500 10 1215.31 0.15 0.9686

Optimal 73.8 291.2 1804.1 9.1 1329.62 0.137 0.9796

Improvement + 15.69 − 0.013 + 0.0110
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Verification
To validate the optimal parameter combination, a con-
firmation experiment was carried out. Firstly, the highest
GRG value 0.9686 in the 17th experiment, namely heating
temperature of 75 °C, tape tension of 300 N, roller pres-
sure of 1500N, and winding velocity of 10 rpm, was
selected as the initial process condition setting. Then, the
comparison between the initial experiment and optimal
settings was accomplished as shown in Table 5. The cor-
responding desirability value is 0.9796 which demonstrates
the high agreement between the target data and the
objective value. The value of tensile strength increased
from 1215.31 to 1329.62MPa. Meanwhile, the value of
void content decreased from 0.15 to 0.137%. It is observed
that the changing of the void content had a minor impact
on the GRG of the research model. Nevertheless, it is
undeniable that the void has a non-negligible effect on the
properties of the winding product. The results make it
clear that the proposed method in this paper can be uti-
lized to guide the composite tape winding manufacturing
process. The optimal parameter settings can improve the
tensile strength and reduce the void content for the com-
posite tape winding products. And the performance of
winding products can be improved to a certain degree.

Conclusions
In this paper, an integrated methodology combining Grey
relational analysis, BP neural network, and bat algorithm
was established to obtain the optimal technology parame-
ters of composite tape winding process. In the composite
tape winding process, processing parameters including
heating temperature, tape tension, roller pressure, and
winding velocity play a crucial role. A satisfied composite
tape winding technological parameter combination aiming
at two different objectives, including physical perform-
ance, mechanical property, or others, would actively guide
tape winding process. Therefore, preferable winding
parameters combination will improve both physical and
mechanical performance for the composite winding pro-
ductions. In this paper, void content and tension strength
were selected as the two performance indexes for winding
products. At first, the Grey relational analysis successfully
transformed the multi-response problem into a single-ob-
jective optimization problem. According to the principal
component analysis, the weight value of the tensile
strength was much larger than the void content which
means the tensile strength occupies a more important
proportion in the GRG. BP neural networks were applied
to establish the nonlinear mapping relations between the
process parameters and GRG. Due to the high seeking
velocity and efficaciousness, bat algorithm was applied to
search the optimal parameters combination for the GRG
in the last step.

According to the optimization results, the optimal par-
ameter combination is heating temperature with 73.8 °C,
tape tension with 291.2 N, roller pressure with 1804.1 N,
and winding velocity with 9.1 rpm. And the correspond-
ing tensile strength increased by 15.69MPa and void
content decreased by 0.013%. It is observed that the
changing of the void content had a minor impact on the
GRG of the research model. Nevertheless, it is undeni-
able that the void has a non-negligible effect on the
properties of the winding product. The verification test
validated that the optimized intervals of the process
parameters were reliable and stable for winding products
manufacturing. The optimal parameter settings can
improve the tensile strength and reduce the void content
for the composite tape winding products. And the
performance of winding products can be improved to a
certain degree. At last, the developed method GRA-
BPNN-BA was verified to be useful for the multi-objective
optimization problem in the manufacturing industry.
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