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Abstract

of flexible devices.

Silver nanowires (Ag NWs) are the promising materials to fabricate flexible transparent electrodes, aiming to replace
indium tin oxide (ITO) in the next generation of flexible electronics. Herein, a feasible polyvinylpyrrolidone (PVP)-
mediated polyol synthesis of Ag NWs with different aspect ratios is demonstrated and high-quality Ag NWs
transparent electrodes (NTEs) are fabricated without high-temperature thermal sintering. When employing the
mixture of PVP with different average molecular weight as the capping agent, the diameters of Ag NWs can be
tailored and Ag NWs with different aspect ratios varying from ca. 30 to ca. 1000 are obtained. Using these as-
synthesized Ag NWs, the uniform Ag NWs films are fabricated by repeated spin coating. When the aspect ratios
exceed 500, the optoelectronic performance of Ag NWs films improve remarkably and match up to those of ITO
films. Moreover, an optimal Ag NTEs with low sheet resistance of 11.4 Q/sq and a high parallel transmittance of 91.
6% at 550 nm are achieved when the aspect ratios reach almost 1000. In addition, the sheet resistance of Ag NWs
films does not show great variation after 400 cycles of bending test, suggesting an excellent flexibility. The
proposed approach to fabricate highly flexible and high-performance Ag NTEs would be useful to the development
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Background

Flexible transparent electrodes (FTEs) play an import-
ant role in the next generation of flexible electronics
[1-4]. FTEs can be applied to many optoelectronic
devices as conductive components, involving touch
screens [5, 6], portable solar cells [7, 8], organic light-
emitting diodes (OLEDs) [9-11], fuel cell electrode
[12-17], sensors [18, 19], PM filter [20], transparent
heaters [21, 22], and wearable electronics [23, 24].
The dominant transparent electrodes (TEs) used
currently is indium tin oxide (ITO) owing to the low
sheet resistance (<100 Q/sq) and high transmittance
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(>80%). But its intrinsic brittleness limits the applica-
tions in flexible electronics. Moreover, it requires high
temperature deposition process and is challenged by
the scarcity of indium [25-27]. Therefore, several new
conductive films with good flexibility and optical
transparency, such as metal grids [2, 28, 29], carbon
nanotubes (CNTs) [30-33], graphene [34-36], Ag
NWs [5, 37-41], Cu NWs [42, 43], conductive poly-
mers [44, 45], and hybrids of these [46-48], have
been fabricated, striving to replace ITO. Among these
candidates, Ag NWs films have been investigated
extensively in both the scientific and industrial insti-
tutions, owing to the excellent electrical conductivity
and high optical transparency. In addition, Ag NWs
exhibit outstanding flexibility and stretchability, which
is the one of the appealing advantage to fabricate
stretchable transparent conductors than fragile ITO
[49-51]. Moreover, the solution-processed Ag NWs
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films are more cost-effective than ITO. All of these
properties make Ag NWs films become promising
alternatives to ITO for the applications in flexible
electronics.

However, several issues need to be addressed to
commercialize Ag NWs films as FTEs. Firstly, Ag NWs
with different aspect ratios need to be facilely synthe-
sized in controlled manner because the alluring proper-
ties of Ag NWs films deeply rely on the dimensions of
Ag NWs and a well-designed length and diameter are of
very importance for different applications [52, 53].
Generally, polyol process is the most widely used
method to prepare Ag NWs. Ran et al. [54] synthesized
thin Ag NWs with aspect ratios larger than 1000 by
using the mixed PVP with the average molecular weight
of 58,000 and 1,300,000 as the capping agent. However,
the influence of the aspect ratios on the optoelectronic
performance of Ag NTEs was not carefully investigated in
their work. Although Ding et al. [55] prepared Ag NWs
with different diameters varying from 40 to 110 nm and
fabricated Ag NTEs with a transmittance of 87% and a
sheet resistance of ca.70 Q/sq, many parameters need to
be simultaneously adjusted to control the diameters of Ag
NWs and the optoelectronic performance of the as-
obtained Ag NTEs would not be satisfactory. Li et al. [56]
synthesized thin Ag NWs with diameters of 20 nm
through altering the concentration of bromide. And they
have fabricated high-quality Ag NWs films with a trans-
mittance of 99.1% at 130.0 Q/sq. Ko et al. [57] developed
a multistep growth method to synthesize very long Ag
NWs over several hundred micrometers and the fabri-
cated films demonstrated superior transmittance of 90%
with sheet resistance of 19 Q/sq. The optoelectronic
performance of these Ag NWs films are comparable to or
even better than those of ITO films. But the minimum as-
pect ratio of Ag NWs, which has the ability to fabricate
TEs rivaling commercial ITO in terms of sheet resistance
and transmittance, is still uncertain. Therefore, it is neces-
sary to synthesize Ag NWs with various aspect ratios and
study their influence on the optoelectronic performance
of Ag NWs films.

Furthermore, the electronic conductivity of Ag NWs
films is relatively poor, resulting from the high nanowire
junction resistance [58]. In the polyol synthesis of Ag
NWs, PVD, as the surfactant, adsorbs on the surface of
Ag NWs, resulting in insulated contact between the
wires in the random network [59, 60]. Consequently,
different physical and chemical post-processes, involving
thermal annealing [38, 39, 61, 62], mechanical press
[63], nanosoldering with conductive polymers [64],
plasmonic welding [65], laser nanowelding [66—68], and
integration with other materials [60], have been explored
to reduce the junction resistance. Among these post-
treatments, thermal annealing at almost 200 °C is usually
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employed. It is incompatible with flexible plastic sub-
strates which cannot withstand high temperature, and
hence limits the applications of Ag NWs films in flexible
optoelectronic devices.

Herein, a series of Ag NWs with different aspect ra-
tios varying from ca. 30 to ca. 1000 are controllably
synthesized and used to fabricate high conductive and
transparent Ag NTEs. First, Ag NWs are prepared by
facile PVP-mediated polyol process where the mixture
of PVP with different average molecular weight can
efficiently reduce the diameters. Subsequently, the as-
synthesized Ag NWs with different aspect ratios are
employed to fabricate Ag NWs films without high-
temperature annealing, respectively. And the corre-
sponding optoelectronic performance are comparative
investigated. The best sheet resistance and parallel
transmittance can achieve 11.4 Q/sq and 91.6% when
the aspect ratios reach almost 1000. Moreover, the
sheet resistance of as-fabricated Ag NWs films is nearly
constant after inner-bending and outer-bending tests.

Methods

Materials and Chemicals

Silver nitrate (AgNO;, AR) and anhydrous ethanol
(C,H50H, AR) were purchased from Sinopharm Chem-
ical Reagent Co., Ltd. Copper (II) chloride dehydrate
(CuCl,-2H,0, AR) and PVP (MW=58,000, marked as
PVP-58) were purchased from Shanghai Aladdin
Reagents Co., Ltd. Ethylene glycol (EG, 98%) and PVP
(MW=10,000, 40,000 and 360,000, marked as PVP-10,
PVP-40, and PVP-360, respectively) were purchased
from Sigma-Aldrich. Deionized water (18.2 MQ) was
used in the whole experiments.

Synthesis of Ag NWs

Ag NWs with different aspect ratios are prepared by a
facile one-pot PVP-mediated polyol process. Typically,
0.170 g of AgNOs; is dissolved in 10 mL of EG under
magnetic stirring. Then, 0.15 M of PVP-40 and
0.111 mM of CuCl,-2H,O mixed solution in 10 mL of
EG is added dropwise to the above solution. Afterwards,
the mixture is transferred into Teflon-lined stainless
steel autoclave with a capacity of 50 mL and heated at
160 °C for 3 h. After cooling down to room temperature
naturally, pure Ag NWs are obtained by centrifugation at a
speed of 2500 rpm for 5 min and washed three times with
ethanol and deionized water. Finally, the products are
dispersed in ethanol for further characterization and appli-
cation. Moreover, the concentration and average molecular
weight of PVP are very important to control the morph-
ology and size of products. Therefore, different types of
PVP molecules are simultaneously used to regulate the
diameters of Ag NWs in the polyol process. Detailed
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experimental parameters are listed in Additional file 1:
Table S1, nominated as S1-S13, respectively.

Fabrication of Ag NTEs

Polyethylene terephthalate (PET) with a thickness of
150 pm is cut to pieces with the dimension of 20 x 20 mm.
Briefly, the as-prepared Ag NWs are dispersed in ethanol
(6 mg/mL), and 50 puL of Ag NWs solution is spin coated
at 2000 rpm for 30 s on PET substrate. Finally, the Ag
NWs films are heated to 140 °C for 15 min without any
additional post-process treatments. The aspect ratios
of Ag NWs, rotation speed, concentration, and vol-
ume of Ag NWs solution are investigated to fabricate
high-quality NTEs. Regarding to the repeated spin
coating, each volume of Ag NWs solution is altered
to 25 pL and the rotation speed is set to 2000 rpm.
A time interval in each spin coating is needed to
volatilize the ethanol. Other parameters are same as
the aforementioned processes.

Characterization and Performance Test

Scanning electron microscopy (SEM) images are
recorded using a cold field-emission SEM (Hitachi S-
4800). The transmission electron microscopy (TEM) and
the high-resolution TEM (HRTEM) images are obtained
by using a JEOL JEM-2100F. The UV-vis absorption
spectra of Ag NWs and the optical transmittance spectra
of Ag NWs films are carried out on a Shimadzu UV-

3600 spectrophotometer. The sheet resistance is
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measured at room temperature by using 4-point probe
resistance tester (FP-001).

Results and Discussion

Generally, Ag NWs are synthesized by polyol process in
which PVP is employed as capping agent to ensure the
growth of one-dimensional Ag NWs [69, 70]. During the
synthesis, many parameters such as reaction temperature,
stirring speed, PVP concentration, PVP chain length, addi-
tive agents, and ratio of chemicals can affect the yield and
morphology of synthesized Ag NWs. For example, an
inappropriate reaction temperature less than 110 °C or
higher than 180 °C allows more Ag atom to form Ag
nanoparticles (NPs) rather than Ag NWs [70, 71]. The
length of synthesized Ag NWs increase as slowing down
the stirring speed [72, 73]. In this paper, we mainly investi-
gate the concentration of PVP and their average molecular
weight on the effect of morphology and size of Ag NWs.
The corresponding morphology and size distribution of
Ag NWs are demonstrated in Fig. 1 and Additional file 1:
Figure S1. Firstly, the concentration of PVP is increased
from 0.05 M (sample S1, Additional file 1: Figure Sla) to
0.15 M (sample S2, Fig. 1a). The corresponding morph-
ology of products is changed from near-spherical Ag NPs
to pure Ag NWs with an average diameter of 104.4 nm and
length of 12.3 um. The mixture of Ag NWs and Ag NPs
are observed when the concentration of PVP is increased
to 0.25 M (sample S3, Additional file 1: Figure S1b).
By further increasing the concentration of PVP to
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Fig. 1 a, b SEM images of as-synthesized Ag NWs with PVP-40 and PVP-360, respectively. Both the concentration of PVP are 0.15 M. a' b’
Corresponding statistical distribution of diameter and length. (The insets in a and b are the corresponding SEM images with high magnifi-
cation and all the scale bars are 500 nm)
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0.55 M (sample S4, Additional file 1: Figure Slc), a
large number of Ag NPs with different shapes (in-
cluding near-sphere and triangular plate) are formed.
The results indicate that a lower or higher concentra-
tion of PVP are not beneficial to produce pure Ag
NWs, further resulting in the absence of Ag NWs.
The formation of Ag NPs in the products upon changing
the concentration of PVP can be attributed to the failure
of anisotropic growth over the entire surface of multiply
twinned nanoparticles (MTPs) [69, 74].

In addition, the influence of PVP with different mo-
lecular weight on the morphology and size of Ag NWs is
also discussed. Only Ag NPs and aggregated nanorods
are produced when using PVP-10 (sample S5, Additional
file 1: Figure S1d). When employing separately PVP-58
(sample S6, Additional file 1: Figure Sle) and PVP-360
(sample S7, Fig. 1b), the corresponding morphology and
size of products are changed from stubby Ag NW's (with
average diameter of 235 nm and length of 6.7 pm) to
high aspect ratio Ag NWs (with average diameter of
132.1 nm and length of 69.9 pum). According to the
abovementioned results from samples S2, S5, S6, and S7,
the average molecular weight of PVP not only plays a
vital role in the morphology formation of Ag NWs but
also has a significant influence on the diameter and
length of Ag NWs products. The influence of PVP with
different average molecular weight on the morphology
and size of Ag NWs can be ascribed to three factors: (i)
PVP as the capping agent prefers to adsorb on the side
faces of MTPs [69]. The strong chemical adsorption
promotes the growth of long Ag NWs [75]. (ii) The
steric effect of PVP capping layer allows silver atoms to
deposit on the side faces through the gap between adja-
cent PVP molecules, further resulting in the formation
of thick Ag NWs [54]. (iii) The high viscosity of PVP
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with high average molecular weight in EG solution
would slow down the growth rate, which are benefit to
form MTPs [76, 77]. As a result, the low average
molecular weight of PVP, like as PVP-10, would not
efficiently adsorb on the (100) crystal faces to restrict the
lateral growth. Meanwhile, the small steric effect and low
viscosity would not prevent the aggregation of silver nano-
structures. PVP with high molecular weight, like as PVP-
360, possesses strong chemical adsorption on the side
faces to produce long Ag NWs. But the large steric effect
of PVP-360 would lead to the increase of diameter.

In order to obtain high aspect ratios of Ag NWs, the
adsorption strength and steric effect should be reached
to a state of balance in the PVP-mediated system. There-
fore, the mixed PVP molecules at different molar ratios
are employed as capping agent and the corresponding
morphology and size distribution of Ag NWs are showed
in Fig. 2 and Additional file 1: Figure S2. When mixing
PVP-58 with PVP-40 at the molar ratio of 1:1, Ag NWs
with average diameter of 47.5 nm and length of 16.1 um
are obtained. While the molar ratio of PVP-40 and PVP-
58 is adjusted to 1:2 or 2:1, the diameter of Ag NWs is
increased. In addition, the aspect ratios of Ag NWs dra-
matically enlarge when mixing PVP-40 with PVP-360
because the diameters are reduced significantly. When
the molar ratio of PVP-40 and PVP-360 is 1:1, the aspect
ratios reach almost 1000 and the diameters have a more
uniform distribution as shown in Fig. 2e.

The influence of mixed PVP with different chain
length on the diameters of Ag NWs could be interpreted
briefly in Scheme la. The long-chained PVP molecules
can retard the lateral growth of Ag NWs owing to the
strong adsorption to the (100) facets. The large steric
effect, resulting from the long chains, brings a relatively
large distance between adjacent PVP molecules. Ag

-

>

Fig. 2 SEM images of Ag NWs synthesized using different mixed PVP molecules. a PVP-40:PVP-58 = 2:1, b PVP-40:PVP-58 = 1:1, ¢ PVP-40:PVP-58 = 1:2,
d PVP-40:PVP-360 = 2:1, e PVP-40:PVP-360 = 1:1, f PVP-40.PVP-360 = 1:2, respectively. All the total concentration of PVP are 0.15 M, and different PVP
molecules are mixed at molar ratio. (The insets in a—f are the corresponding SEM images with high magnification, and all the scale bars are 500 nm)




Xue et al. Nanoscale Research Letters (2017) 12:480

Page 5 of 12

b K-40

K-58

o ® K-360
S
Al
MTPs
K-40:K-58

e
K-40:K-360

NWs are obtained by the PVP-mediated polyol process

Scheme 1 a Schematic illustration of the growth mechanism of Ag NWs using mixed PVP with different chain length. b Different aspect ratio Ag

J

atoms can still deposit on the surface of Ag NWs by dif-
fusion through the gap between adjacent PVP molecules,
and thick Ag NWs are produced. When using the mixed
PVP with different chain length, the short-chained PVP
can fill the gap between long-chained PVP. Therefore,
the (100) facets can be passivated more efficiently, lead-
ing to the formation of smaller Ag seeds and thinner Ag
NWs [76]. As shown in Scheme 1b, Ag NWs with
typical aspect ratios are obtained in our work. It could
be conjectured that higher aspect ratio Ag NWs may be
produced through this experimental route.

The microstructure and morphology of Ag NWs are
characterized by TEM and demonstrated in Fig. 3a, b. The
single nanowire is coated by the thin PVP layer with a
thickness of ca. 2 nm. Figure 3¢ shows the HRTEM image
of Ag NWs with a good crystalline structure. The HRTEM
image clearly exhibits that the spaces between periodic
fringes are 0.235 and 0.202 nm, in good correspondence

with the crystal plane spaces for (111) and (200) planes of
face-centered cubic (fcc) Ag. Meanwhile, Ag NWs grow
along the [110] direction, as marked by the white arrow,
and it is similar to the results in the earlier reports [70, 76].

As shown in Fig. 4, the UV-visible absorption spectra
of as-prepared Ag NWs are different from that of the
quasi-spherical Ag NPs. The spectra of Ag NWs appear
double characteristic peaks. A shoulder peak located at
around 350 nm could be ascribed to the plasmon reson-
ance of bulk silver film [70, 78]. The second peak could
be attributed to the transverse plasmon mode of Ag
NWs, and the peak position is related to the dimensions
of silver nanostructures [79]. While the peak at around
570 nm, resulting from the longitudinal plasmon reson-
ance, is absent in the spectra because the aspect ratios of
as-prepared Ag NWs are far more than 5 [70, 80]. In
addition, as marked by the dashed green line, the second
peak has a shift to red with the increase of diameters.
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Fig. 3 TEM (a, b) and HRTEM (c) images of Ag NWs synthesized by mixing PVP-40 with PVP-360 (at a molar ratio of 1:1)

50 nm
]

However, it is noteworthy that there is no obvious peak
when the diameters of Ag NWs become larger. For Ag
NWs from sample S6 (average diameter of 235 nm) and
S10 (average diameter of 222.8 nm), the absorption inten-
sity maximums locate at the wavelength of 408.5 and
406.5 nm, respectively. They are smaller than the peak
wavelength of Ag NWs with smaller diameters from sam-
ple S7 (average diameter of 132.1 nm, the peak wavelength
is 412 nm), indicating the detachment of red-shifted ten-
dency of the right peak wavelength with larger diameters.
It is necessary to optimize the spin-coating process to
fabricate high-quality Ag NWs films. As shown in Fig. 5a,
it is observed that the sheet resistance increases as
increasing the rotational speed because the number of Ag
NWs clinging on the surface of PET decreases, resulting
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Fig. 4 UV-visible absorption spectra of as-prepared Ag NWs with
different diameters

in the decline of conductivity. In addition, it is noteworthy
that the sheet resistance significantly decreases to 19.6 Q/
sq when using the 8 mg/mL of Ag NWs solution. And it
decreases almost fivefold compared with that of using
6 mg/mL, which could be attributed to the formation of
more efficient conductive percolation routes in the Ag
NWs network, whereas some macroscopic agglomerates
of Ag NWs appears as the concentration increases to
8 mg/mL. Then, the repeated spin-coating process is
carried out. As shown in Fig. 5b, both the transmittance
and sheet resistance decrease as increasing the times of
spin coating. More importantly, when the volume of Ag
NWs solution is added from 50 to 75 pL, the sheet resist-
ance dramatically decreases from 98.46 to 11.87 Q/sq. As
the volume further increases to 100 pL, the sheet resist-
ance decreases to 10.42 Q/sq with a transmittance of
80.95%. It indicates that the density of nanowires in the
nanostructured transparent conducting networks may
reach the tipping point where the transition from percola-
tion behavior to bulk behavior occurs [81], when the
volume is added to 75 pL. Moreover, to evaluate the per-
formance of NTEs, the figure of merit (FOM) is calculated
that correlates transmittance with sheet resistance. Gener-
ally, the transmittance (7)) and sheet resistance (R;) of a
thin metallic film satisfy the following Eq. (1):

188.5 aop(A)>‘2

T, = (1 +
Rs opc

oop(M) is the optical conductivity and opc is the direct
current conductivity of the film [37]. The value of opc,
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oop(A) are employed as FOM. And a higher value of
FOM means better optoelectronic performance. The
inset in Fig. 5b exhibits the FOM values of NTEs fabri-
cated by different volume of Ag NWs solutions. When
the volume is added to 75 pL, the Ag NWs has the high-
est FOM value, increasing dramatically from 23.3 to
162.6. It denotes that the balance is achieved between
low sheet resistance and high transmittance when
implementing three times of spin coating. In addition,
Fig. 5¢c—f shows the SEM images of Ag NWs films on
PET with different densities, corresponding to the volume
of Ag NWs solutions for 25, 50, 75, and 100 pl, respect-
ively. From the images, it is obvious that the Ag NWs
networks become ever denser and the distribution of Ag
NWs is more uniform, as increasing the volume of Ag
NWs solution. Therefore, the repeated spin-coating
process is available to fabricate uniform Ag nanowire
films with various transmittance and sheet resistance
for different applications.

For application in NTEs, the nanowire junctions have
a significant influence on the conductivity of random Ag
NWs network [58]. In polyol process, the as-synthesized
Ag NWs retain a residual insulated PVP layer, resulting
in high resistance at junctions and the deterioration of
conductivity. Lee et al. [59] reported that the repeated
solvent washing can reduce the PVP layer from ca. 4 nm
to 0.5 nm and allows for room-temperature welding of
the overlapping Ag NWs. Similarly, we repeated to wash
the as-synthesized Ag NWs for three times with ethyl
alcohol to remove the PVP layer as much as possible. As
the abovementioned results in Fig. 3a, thin PVP layer
with a thickness of 2 nm is left. It can not only efficiently

reduce the junction resistance but also ensure the good
dispersion of Ag NWs in the solvent. On the other hand,
for widthless sticks in two dimensions, the critical num-
ber density (NN,) of sticks to create a percolation network
is given by Eq. (2):

N, x [* =571 (2)

L is the length of nanowires [52]. This equation im-
plies that the number density of Ag NWs required for
percolation network is inversely proportional to the
square of length. Hence, long nanowires tend to build a
sparse and effective percolation network with a low
number density. It can not only increase the light trans-
mission but also improve the conductivity through
building long percolation routes with less nanowire
junctions.

Figure 6a shows the comparison of optoelectronic per-
formance of NTEs fabricated by Ag NWs with different
aspect ratios. For samples S2 and S9, the enlargement of
parallel transmittance could be attributed to the smaller
diameters which reduced from 104.4 to 47.5 nm because
nanowires with smaller diameters can scatter less light,
leading to a further decrease in haze. As the aspect
ratios exceed 500 (sample S7), Ag NWs films with a
parallel transmittance of 81.8% (87.2%) and a sheet
resistance of 7.4 Q/sq (58.4 /sq) are obtained. The
optoelectronic performance are comparable to those of
commercial ITO films (85%, 55 Q/sq) [5]. Furthermore,
when the aspect ratios reach almost 1000 (sample S12), Ag
NWs films show superior transmittance (91.6-95.0%) and
electronic conductivity (11.4-51.1 Q/sq) than ITO films.
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They sufficiently meet the performance requirements of
TEs in the application of solar cells or touch screens. More-
over, as shown in Fig. 6b, the biggest FOM value
achieves 387, higher than many other reported values
of various TEs [62, 73]. The excellent performance
could be attributed to the long and thin Ag NWs. In
addition, it is noteworthy that the FOM value dramat-
ically increases from 89 to 224 when the aspect ratios
enlarge from 339 (sample S9) to 529 (sample S7). The
main reason is probably that the longer Ag NWs from
sample S7 form a more effective percolation network
with a smaller number of nanowires, leading to much
more light transmission through the Ag NWs network.
It indicates that the long Ag N'Ws strategy is a facile
and effective way to obtain NTEs with promising
optoelectronic performance, when the thin Ag NWs
with a diameter less than 20 nm are not synthesized
successfully [52, 67]. Figure 6¢c demonstrates optical
transmittance spectra of Ag NWs films fabricated
from sample S12. The spectra show a wide flat region
from visible light to near infrared wavelength, which
can improve the utilization range of light and is ad-
vantageous for display and solar cell applications,
while the transmittance of ITO films displays dramatic
fluctuation over the region of visible light [7].

To further evaluate the optoelectronic performance of
Ag NWs networks, the percolative FOM, II, was
proposed in the Eq. (3) by De et al. [81]:

1 (Zo\"1|
14— (22
17 \Rs

Zy is the impedance of free space (377 Q). T and Ry
represent the transmittance and sheet resistance of Ag
NWs films, respectively. High values of /T mean low
sheet resistance and high transmittance. Percolative
FOM (71) and conductivity exponent (#) in this work are
calculated to be 89.8 and 1.50 by using Eq. (3), respect-
ively. The percolative FOM value is higher than other
reported values of various TEs (shown in Fig. 6d). It
could be attributed to two reasons: The thin PVP
layer (ca. 2 nm) can effectively reduce the nanowire
junction resistance. On the other hand, the long Ag
NWs (ca. 71.0 um) form long conductive routes in
the percolation networks, resulting in the decrease of
number of junctions. Interestingly, the value of # is a non-
universal exponent which has been related to the presence
of a distribution of nanowire junction resistance [82—-84].
Lee et al. [67] used a laser nano-welding process to reduce
the nanowire junction resistance, and the value of # is

T = (3)
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calculated to be 1.57. The value is close to that in our
work. It further suggests that the thin PVP layer and long
Ag NWs are efficient to allow low-temperature welding of
Ag NWs network.

Figure 7a exhibits optical photographs of the uniform
Ag NWs film on PET. The film is highly transparent as
the school badge in the background can be clearly seen
through the film. Figure 7b, Additional file 1: Figure S3
and Additional file 2: Video S1 show that Ag NWs film
on PET turn on the LED bulb when applying a low
voltage. It indicates that the whole surface of Ag NWs
film is highly conductive. In addition, The Ag NW film
is very flexible as shown in Fig. 7c.

The mechanical stability of the fabricated Ag NTEs on
PET substrate is evaluated by a bending test. As shown
in Fig. 8, the bending test consists of 100 cycles of inner
bending and 300 cycles of outer bending with a bending
radio of 1.5 cm. No visible defects, such as cracking or
tearing of the surface, are observed even after more
than 400 cycles of bending test. And Ag NTEs exhibit
a stable electronic performance with little change of
sheet resistance. Its property to tolerate hundreds of
mechanical bending test could be attributed to the
flexibility of long Ag NWs and the benign adhesion
to the substrate.

Conclusions

In summary, Ag NWs with different aspect ratios vary-
ing from ca. 30 to ca. 1000 are prepared via a facile
PVP-mediated polyol process and are applied to the
fabrication of high-performance Ag NTEs with low-
temperature sintering. In the polyol process, the diame-
ters of Ag NWs are strikingly reduced and the aspect
ratios reach almost 1000 when employing mixed PVP
as the capping agent. Additionally, when the aspect
ratios exceed 500, the optoelectronic performance of
Ag NWs films show good transmittance (81.8—87.2%)
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Fig. 8 The bending test, including inner bending and outer
bending. Both the bending radios are 1.5 cm. The inset shows the
bent Ag NTEs is still conductive over the whole surface. (R and R,
represent the sheet resistance of films before and after bending

test, respectively)

and electronic conductivity (7.4-58.4 Q/sq), compar-
able to those of commercial ITO films (85%, 45 Q/sq).
Furthermore, high-performance Ag NTEs with a trans-
mittance of 91.6% and a sheet resistance of 11.4 Q/sq
are obtained, as the aspect ratios exceed 1000. The long
nanowires and thin PVP layer lead to less number of
nanowire junctions and reduced junction resistance,
respectively. It allows low-temperature sintering of Ag
NWs network, which is advantageous for the applica-
tions in the flexible plastic substrates. Moreover, Ag
NTEs show excellent flexibility against the bending test.
We believe that the ability to synthesize Ag NWs with
different aspect ratios and fabricate high-performance
NTEs with low-temperature welding are very valuable
to the development of flexible electronic devices.

Fig. 7 a Optical image of as-fabricated Ag NWs films on PET. b Ag NWs film is connected in an electric circuit in which an LED is lit. ¢ Optical
image of the flexible Ag NWs film
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Additional Files

Additional file 1: Table S1. Reaction parameters of Ag NWs with
different concentrations of PVP and mixed PVP molecules at different
mole ratios. Herein, silver nanoparticles and silver aggregated nanorods
are abbreviated to Ag NPs and Ag ANRs, respectively. Figure S1. SEM
images of Ag NWs under different reaction conditions: (a) 0.05 M PVP,
(b) 0.25 M PVP, (c) 0.55 M PVP, (d) PVP-10, (e) PVP-58, respectively. (f)
statistical size distribution of Ag NWs synthesized using PVP-58.

Figure S2. Statistic sizes distribution of Ag NWs synthesized using
different mixed PVP molecules. (a) PVP-40:PVP-58 = 2:1, (b) PVP-40:PVP-
58 = 1:1, (c) PVP-40:PVP-58 = 1:2, (d) PVP-40:PVP-360 = 2:1, () PVP-40:PVP-
360 = 11, (f) PVP-40:PVP-360 = 1:2, respectively. Figure S3. Ag NWs film
is connected in an electric circuit, being applied a low voltage.
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Additional file 2: The video of Ag NWs flexible transparent electrodes.

(AVI 9706 kb)
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