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Abstract

Science and technology have always been the vitals of human’s struggle, utilized exclusively for the development of
novel tools and products, ranging from micro- to nanosize. Nanotechnology has gained significant attention due to its
extensive applications in biomedicine, particularly related to bio imaging and drug delivery. Various nanodevices and
nanomaterials have been developed for the diagnosis and treatment of different diseases. Herein, we have described
two primary aspects of the nanomedicine, i.e., in vivo imaging and drug delivery, highlighting the recent
advancements and future explorations. Tremendous advancements in the nanotechnology tools for the imaging,
particularly of the cancer cells, have recently been observed. Nanoparticles offer a suitable medium to carryout
molecular level modifications including the site-specific imaging and targeting. Invention of radionuclides, quantum
dots, magnetic nanoparticles, and carbon nanotubes and use of gold nanoparticles in biosensors have revolutionized
the field of imaging, resulting in easy understanding of the pathophysiology of disease, improved ability to diagnose
and enhanced therapeutic delivery. This high specificity and selectivity of the nanomedicine is important, and thus, the
recent advancements in this field need to be understood for a better today and a more prosperous future.
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Review
Introduction
As a matter of fact, nanotechnology is making progress
through all imperative fields of engineering and science,
and scientists are revolutionizing all the industries and
human lives by designing things capable of working on
the smallest scale length, atom by atom [1]. Nanotech-
nology involves the study of eminently small structures.
Nanotechnology can be defined comprehensively as the
study, creation, design, synthesis, and implementation of
functional materials, systems, and devices through con-
trolling matter within the size range of 1–100 nm at the
nanometer scale. Moreover, the manipulation of innova-
tive phenomena and improved properties of matter at
this nanometer scale, also referred as molecular nano-
technology, is a magical point on scale length where
smallest man-made appliances encounter the molecules
and atoms of the universe [2–4].
The early inception of the concept of nanotechnology

and nanomedicine sprang from the discerning idea of

Feynman that tiny nanorobots and related devices could be
developed, fabricated, and introduced into the human body
to repair cells at molecular level. Although later in the
1980s and 1990s, this innovative concept was advocated in
the famous writings of Drexler [5, 6], and in 1990s and
2000s in the popular writings of Freitas [7, 8]. Feynman
offered the first known proposal for a nanomedical proced-
ure to cure heart disease. In general, miniaturization of
medical tools will provide more accurate, controllable,
reliable, versatile, cost-effective, and quick approaches for
improved quality of human life [9]. In 2000, for the very
first time, National Nanotechnology Initiative was
launched; then from onwards, modeling of electronics and
molecular structures of new materials, establishment of
nanoscale photonic and electronic devices [10, 11], devel-
opment of 3D networking, nanorobotics [12], and advent of
multi-frequency force microscopy [13] have paved the way
for emergence of molecular nanotechnology.
Nanoparticles are considered as the essential building

blocks of nanotechnology. Presence of strong chemical
bonds, extensive delocalization of valence electrons varying
with size, and structural modifications in nanoparticles lead* Correspondence: arehman@qau.edu.pk; fudin@qau.edu.pk
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to different physical and chemical properties including
melting points, optical properties, magnetic properties, spe-
cific heats, and surface reactivity. These ultrafine nanoparti-
cles exhibit completely new and improved properties as
compared to their bulk counterpart due to variation in spe-
cific characteristics such as size, distribution, and of the par-
ticles which give rise to larger surface area to volume ratio
[14–16]. As the field of nanostructured materials has been
evolved, many different labels and terminologies are being
used including 3D nanoparticle, nanocrystals, nanofilms,
nanotubes, nanowires, and quantum dots with promising
potential of infinite number of properties [17]. Because of
the variety of potential applications (including industrial
and military), governments have invested billions of dollars
in nanotechnology research. The USA has invested 3.7
billion dollars through its National Nanotechnology Initia-
tive, and European Union has also subsidized 1.2 billion,
and 750 million dollars were invested by Japan [18].
Today, nanotechnology is one of the most innovative,

vanguard areas of scientific study, and it continues to
progress at staggering rates [19]. Through advancement
in nanotechnology, many state-of-the-art technologies
became available for the drug delivery. Researchers have
extensively investigated the potential of nanodevices for
target specific and controlled delivery of various micro-
and macromolecules including drugs, proteins, mono-
clonal antibodies, and DNA (deoxyribonucleic acid) in
multifarious biomedical applications like cancer [20, 21],
vaccination [22], dental [23], inflammatory [24], and
other health disorders. It is therefore a need of the day
to demonstrate efficient use of nanotechnology applica-
tions ranging from in-vivo imaging system to controlled
drug delivery, to mark the current progress and get
directions for impending research in medical fields.

Pharmaceutical Nanosystems
Pharmaceutical nanotechnology can be classified into two
main categories of nanotools, i.e., nanomaterials and
nanodevices. Nanomaterials can be further categorized on
the basis of three basic parameters including structure,
dimension, and phase composition. Nanostructures are
further classified into polymeric and non-polymeric struc-
tures including nanoparticles, micelles, dendrimers, drug
conjugates, metallic nanoparticles, and quantum dots [25].
On the basis of their dimensions, nanomaterials are classi-
fied in four groups, i.e., zero, one, two, and three nanodi-
mension materials. According to phase composition, these
nanomaterials can be categorized in three groups.
Nanodevices are subdivided in three groups, including
microelectromechanical systems/nanoelectromechanical
system (MEMS/NEMS), microarrays, and respirocytes.
These structures and devices can be fabricated with a high
degree of functional property for use in medicine to inter-
act with cells at a molecular level, thus allowing an extent

of integration between biological systems and latest tech-
nology that was not achievable previously [26]. Detailed
classification of pharmaceutical nanotools is described
with their examples in Table 1.

Manufacturing Approaches
Nanosizing technologies have achieved great importance
for the formulation of poorly water soluble drugs. By re-
ducing the particle size to nanoscale range, the dissolution
rate and bioavailability increase because of the increase in
surface area, according to the Noyes-Whitney equation
[27]. Approaches used for the manufacturing materials are
categorized into bottom up techniques, top down tech-
niques, and the combination of bottom up and top down
techniques. Bottom up techniques involve built up of
molecules. Some of the techniques that follow bottom up
approach for manufacturing of nanoscale materials in-
clude liquid phase techniques based on inverse micelles,
chemical vapor deposition (CVD), sol-gel processing, and
molecular self-assembly. The components produced by
bottom up are significantly stronger than the macroscale
components because of the covalent forces that hold them
together. In top down techniques, materials are micron-
ized by cutting, carving, and molding for manufacturing
of nanomaterials. Examples include milling, physical vapor
deposition, hydrodermal technique electroplating, and
nanolithography [28]. Different manufacturing approaches
with their respective types are described in Table 2.

Biomedical Applications of Advanced Nanotechnology
Imaging
Tremendous advancements were reported during the last
decade, using the nanotechnology tools for the imaging
and therapy in research particularly targeting the cancer
cells. Nanoparticles, with size 10–100 nm, offer a very
suitable medium to carry out molecular level modifica-
tions such as the site-specific imaging and targeting in
cancer cells [29]. The following section summarizes some
recent advancement in the imaging techniques.

Radionuclide Imaging
Because of the inability of small molecules to be viewed with
the noninvasive technique, the site-targeted contrast agents
are employed to identify a selected biomarker that is impos-
sible to be separated from the normal surrounding tissues
[30]. The radionuclide imaging has been developed with the
concept that the expressed protein is probed with a radio-
pharmaceutical or isotope-labeled agent or cell and is
tracked further in vivo [31]. The positron emission tomog-
raphy (PET) imaging is used in the cancer patients
successfully to image the multidrug resistance through P-
glycoprotein transport using 99 m tetrofosmin and sestamibi
as the radiolabeled substrates for the P-glycoprotein [32, 33].
The mechanism of imaging is determined by the type of
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Table 1 Pharmaceutical nanosystems (classification of nanotools)

Classification Sub types Examples Structures Applications References

Pharmaceutical
nanosystems

Nanomaterials On basis of
structure

Polymeric Drug
conjugates

• Deliver cytotoxic agents
• Provide controlled release
• Increase potency,
tolerability and activity
of drugs

[130]

Micelles • Amphiphilic block
copolymers

• Extremely small structure
• Increase aqueous
solubility of drugs

[131]

Dendrimers • Photodynamic therapy,
boron neutron capture
therapy

• Potent anticancer agents

[132, 133]

Nonpolymeric Quantum
dots

• Luminescent nanoprobes
• Improved efficacy and
bioavailability

• Reduced side effects

[134]

Carbon
nanotubes

• Increase drug solubility
and stability

• Targeted drug delivery
• Combination therapy

[135]

Metallic
nanoparticles

• Contrast agents
• Provide controlled,
targeted delivery

[136]

Silica nanoparticles • Improved
pharmacokinetic
profile

• Enhanced bioavailability
• Cornell dots

[137]

Dimension
wise

Zero-
nanodimension

Spheres, clusters
(fullerene)

• Production of
nanoparticles

• Functionalization of
nanoparticles by
dendritic structures

[138]

One-
nanodimension

Fibers, wires,
rods

• Increase stability
• Use in nanodevices,
fibrils of nanodimensions,
fabrication of polymer
nanocomposites

[139, 140]

Two-
nanodimension

Films, plates,
networks

• Used in sensing,
electronics and
optoelectronics

[141]
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modality used for the imaging such as nanocarriers includ-
ing liposomes [34], dendrimers [35], Bucky balls [36], and
numerous polymers and copolymers [37]. They can be filled
with the large number of imaging particles such as optically
active compounds and radionuclides for the detection with
imaging equipment. The BODIPY (boron dipyrromethane)-
labeled jasplakinolide analogs have been used to visualize
the long lived actin filaments inside the living cells [38, 39].
The enormous growth of nanotechnology is leading the

research in the molecular imaging with many contrast
agents. To obtain an appropriate imaging, the contrast
agent selected should have longer half-life, low background

signal, specific epitope binding, and enhanced contrast to
noise enhancement. Large number of carrier availability is
able to define more advancements in imaging with particu-
lar focus on the molecular and cellular mechanisms of the
disease; this will create more opportunities for the rational
development of imaging and drug delivery systems [30].

Quantum Dots
Semiconductor quantum dots are now used as a new class of
fluorescent labels. These semiconductor nanocrystals are a
promising tool for visualization of the biological cells owing
to their easy surface chemistry, allowing biocompatibility and

Table 1 Pharmaceutical nanosystems (classification of nanotools) (Continued)

Three-
nanodimension

Tri and tetra
pods, nanocombs

• Used in separation,
catalytic, biomedical
and heat transfer

[142]

Phase
composition
wise

Single phase
solids

Amorphous
particles and
layers

• Increase drug solubility
• Increase the shelf life
of drugs

[143]

Multi-phase
solids

Matrix composites • Long term, repeated,
on demand delivery of
drugs for pain,
chemotherapy, and insulin

[144]

Multi-phase
system

Colloids, ferro
fluids

• Diagnosis and drug
targeting

• Deliver vaccines, toxoids,
anticancer, gene and
anti HIV drugs

[145]

Nanodevices NEMS/MEMS • Microscopic devices with length more
than 100 nm but less than 1 mm, possess
combined electrical and mechanical
components

• Used for optical activities, electronic or
biological applications and micro machines

[146]

Microarrays • Mapping of biological pathways, analysis
of bio molecular interactions, assay
development for compound screening,
delivery of protein and peptides

[147]

Respirocytes • Artificial nanospherical robotic erythrocytes
with internal pressure 1000 atm of combined
oxygen and carbon dioxide

• Preserve living tissues, treat anemia, asphyxia,
and other respiratory problems

[148]
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Table 2 Different approaches for manufacturing of various nanomaterials with their respective types

Approach Subtypes Principle Example of drug Nanostructure/
nanodevice

References

Nanoprecipitation-
dependent
techniques

Anti-solvent
precipitation

Supersaturation in which
dissolution of a lipophilic drug
in organic solvent followed by
in anti-solvent (water).
It leads to the nucleation of
drug followed by precipitation
of particles.

Itraconazole Amorphous
nanoparticles
(<250 nm)

[149]
[150]

Curcumin Nanoparticles [151]

Flash
nanoprecipitation

Dissolution of a hydrophobic
drug and amphiphilic
copolymers in a water miscible
organic solvent. Then, the
organic solvent is mixed with
an anti-solvent (water). High
supersaturation level is
achieved that triggers
nanoprecipitaion.

Curcumin Nanoparticles
(40 nm)

[152]

AIE (aggregation-
induced emission)
active dye of EDP

Fluorescent
nanoparticles
(20–60 nm)

[153]

Doxorubicin Nanoparticles
(<100 nm)

[154]

Sono precipitation Crystallization by ultrasonic
waves

Fenofibrate Nanocrystals [155]

Felodipine Nanosuspension [156].

Herceptin (HCT)-
functionalized
paclitaxel

Nanocrystals [157]

Lovastatin Rod shaped
nanocrystals

[158]

High gravity
controlled
precipitation

High gravity conditions are
maintained for precipitation by
passing solution across
rotating bed packing.

Hydroxyapatite
(nHAP)

Nanoparticles
(1.9–14.2 nm)

[159]

Milling-dependent
techniques

Wet milling
technique

Attrition is involved in which
microsized particles are
commuted by milling beads in
a milling chamber to obtain
nanosized particles (usually
smaller than 400 nm).

Griseofulvin and
Indomethacin

Nanoparticles
(<100 nm)

[160]

Itraconazole
adipic acid

Nanocrystals [161]

Repaglinide Nanocrystals [162]

Salt-assisted
milling

Milling along with salts like
NaCl with steel balls to
produce nanosized particles.
NaCl is incorporated in milling
medium to prevent
degradation and aggregation
of nanoparticles [28].

Nanodiamond
aggregates
(50–1000 nm)

Nanodiamond
colloids (5–10 nm)

[163]

Co-grinding Grinding of APIs with specific
additives to produce
nanosized particles
[164].

Ibuprofen–
glucosamine HCl

Co-ground particles [165]

Piroxicam Cryogenic co-ground
solid dispersions

[166]

High-pressure
homogenization

Milling of suspended drug
particles under high pressure
by using homogenizer.

Myricetin Nanosuspension [167]

α-chitin Nanofibers (<100 nm) [168]

Spraying-dependent
techniques

Spray drying Dispersion or liquids are
transformed into solid
powdered form upon spraying
into drying medium at high
temperature [169].

Cyclosporine A Nanoparticles
(317 to 681 nm)

[170]

Electrospraying Strong electric field is applied
to atomize a liquid into fine
dispersed particles at normal
pressure and ambient
temperature and without use
of surfactants.

Piroxicam Nanospheres [171]

Mir et al. Nanoscale Research Letters  (2017) 12:500 Page 5 of 16



hereto conjugation with elongation of fluorescence time [29,
40]. The visualization properties of quantum dots (fluores-
cence wavelength) are strongly size dependent. The optical
properties of quantum dots depend upon their structure as
they are composed of an outer shell and a metallic core. For
instance, grapheme quantum dots (GQD), a type of green
fluorescence carbon nanomaterials, are made by cutting
grapheme oxide solvothermally and are found to be dominat-
ing the visualization properties [41].
Quantum dot core is usually made up of cadmium selen-

ide, cadmium sulfide, or cadmium telluride. The outer shell
is fabricated on the core with high band gap energy in order
to provide electrical insulation with preservation of fluores-
cence properties of quantum dots. The fine-tuned core and
shells with different sizes and compositions with visualization
properties of specific wavelength provide a large number of
biomarkers [40]. Quantum dots are conjugated with different
ligands in order to obtain specific binding to biological re-
ceptors. The tumor-targeting ligands are linked with amphi-
philic polymer quantum dots and used to carry out the
imaging studies of prostate cancer in mice [42]. Similarly,
quantum dots offer significant advantages over the conven-
tional dyes such as narrow bandwidth emission, higher
photo stability, and extended absorption spectrum for the
single excitation source. Moreover, the challenge of hydro-
phobicity in quantum dots has been overcome by making

them water soluble. An example of the aqueous quantum
dots with long retention time in biological fluids is the devel-
opment of highly fluorescent metal sulfide (MS) quantum
dots fabricated with thiol-containing charged groups [43].
Furthermore, the unique fluorescence properties of quantum
dots made them suitable imaging tools for the cancer cells
[42]. Quantum dots linked with A10 RNA aptamer conju-
gated with doxorubicin (QD-Apt-Dox) is the example of tar-
geted cancer cell imaging [44]. However, increased toxicity of
quantum dots has been observed due to the incorporation of
heavy metals, resulting in their limited use for the in vivo im-
aging. Nevertheless, recent approaches focus on the reduc-
tion in toxicity and the enhancement of biocompatibility of
quantum dots to the body cells. It is also worth to mention
that quantum dots with the diameter less than 5.5 nm are
rapidly and efficiently excreted from the urine resulting in re-
duced toxicity. This phenomenon was exhibited by the syn-
thesis of cadmium free, CulnS2/ZnS (copper indium sulfide/
zinc sulfide) as the core and shell of the quantum dots,
which resulted in enhanced stability in the living cells for
lymph node imaging with a clear reduction in acute local
toxicity [45, 46].

Biosensors
One of the greatest achievements in nanomaterials since last
few years is the development of biosensors. Biosensors are

Table 2 Different approaches for manufacturing of various nanomaterials with their respective types (Continued)

Supercritical
fluid technology

RESS (Rapid
expansion in
supercritical solution)

Drug is solubilized in a
supercritical fluid and the
solution is then expanded in
a low-pressure area through
a nozzle.
The drug becomes insoluble
in low pressure gas and then
supersaturation occurs and
this leads to the production of
micro and nanosized particles.

Olanzapine Nanoparticles
(150–350 nm)

[172]

RESS-SC
(Rapid expansion of
supercritical solution
with solid co-solvent)

In this technique, supercritical
fluid, i.e., CO2, is saturated with
several solid co solvents [173].

Theophylline Nanoparticles
(mean size: 85 nm)

[173]

SAS (supercritical
anti-solvent)

In this technique, precipitation
of drug occurs upon its
dissolution in an organic
solvent, due to antisolvent
effect.

Polyvinylpyrrolidone
(PVP)–folic acid (FA)

Microspheres [174]

BSA (bovine serum
albumin)

Nanoparticles
(60 nm ± 10 nm)

[174]

SAA (supercritical-
assisted atomization)

The organic solution and
supercritical carbon dioxide
(SC-CO2) are mixed; they
form an expanded liquid
in a saturator.
It is then atomized under
some specific conditions
results in the formation of
nanodroplets which produce
NPs by drying [175].

Rifampicin PLLA nanoparticles
(123 to 148 nm)

[176]

Gentamycin sulfate Microparticles (<2 μm) [177]
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the devices that contain the biological sensing element that
is either connected or integrated in the transducer. Biosen-
sor exhibits their action by recognition of specific molecules
in the body on the basis of their structure including anti-
body antigen, enzyme substrate, and receptor hormone. The
two major properties of biosensor including their specificity
and selectivity are dependent upon this recognition system.
These basic properties of the biosensors are most import-
antly used for the concentration that is proportional to the
signals [47–49].
In order to produce the biosensor with high efficiency,

the substrate selected for the sensing material dispersion is
prerequisite. Different types of nanomaterial including
quantum dots [50], magnetic nanoparticles [51], carbon
nanotubes (CNTs) [52], and gold nanoparticles (GNPs) [53]
are applied to the biosensors. The distinctive chemical,
physical, magnetic, optical, and mechanical properties of
nanomaterial lead to their increased specificity and sensitiv-
ity for detection. Biosensors containing GNPs have offered
a compatible environment for the biomolecules that has in-
creased the immobilized biomolecules concentration on
the surface of electrode. It has resulted in enhanced
sensitivity of the biosensors [54, 55]. The most widely used
electrode surfaces within the biosensors are the glassy car-
bon electrode (GCE), which are modified from GNPs.
Moreover, they have shown best sensitivity as well as elec-
trochemical stability. In this regards, methylene blue (MB)
and GNPs are easily assembled and modified through layer
by layer (LBL) technique in the form of films on GCE, in
order to detect the concentration of human chorionic go-
nadotrophin (HCG) [56]. Owing to the large surface area
contained by the nanoparticles in order to load anti-HCG,
these immunosensors have their potential to be used for
detecting the concentrations of HCG in the human blood
or urine samples. Similarly, CNTs have found great
applications in biomedical engineering, bio-analysis, bio-
sensing, and nanoelectronics [57–59]. Moreover, multi-
walled carbon nanotubes (MWNT) in the form of bio-
nanocomposite layers of polymers have the potential to be
used for the DNA detection [60]. Furthermore, magnetic
nanoparticles have also found wide applications because of
their magnetic properties, including magnetic resonance
imaging (MRI) contrast agent [61], hyperthermia [62], im-
munoassay [63], tissue repair [64], cell separation [65],
GMR-sensor [66], and drug or gene delivery [67].
Likewise, a new type of magnetic chitosan microspheres

(MCMS) has also been produced by simply using chitosan
and carbon-coated magnetic nanoparticles [68]. In this
study, hemoglobin was also immobilized successfully on
the MCMS modified GCE surface by using glutaraldehyde
as the crosslinking agent. Another important application
of biosensors is in the optical technology, which includes
the detection of various kinds of DNA oligonucleotides by
using SsDNA–CNT probes as the biosensors [69].

Similarly, liposome-based biosensors have also gained
considerable attention as they have been used in the mon-
itoring of the organophosphorus pesticides, including
paraoxon and dichlorvos on the minimum levels [70].

Magnetic Nanoparticles
Magnetic nanoparticles (MNPs) provide exclusive mag-
netic properties as they have the ability to work at the mo-
lecular or cellular level of the biological interactions,
which make them the best compounds as contrast agents
in MRI and as carriers in drug delivery. The recent
advancements in nanotechnology have gained attention as
it helped in the modification of the properties and features
of MNPs for the biomedical applications. In this respect,
the liver tumor and metastasis imaging via RES-mediated
uptake of superparamagnetic iron oxides (SPIOs) has been
shown to be capable of the differentiation of the lesions
that are as small as only 2–3 mm [70, 71]. Moreover, these
ultra-small supermagnetic iron oxides (USPIOs) are also
very effective in the imaging of the metastasis of the
lymph nodes with only 5 to 10 mm of diameter [72].
Furthermore, importance of this noninvasive approach
has also been shown in the detection of the lymphatic
dissemination as it is considered an important part in the
staging as well as in identifying the treatment approaches
for the breast colon and prostate cancers [73].

Drug Delivery
Nanotechnology is an attractive tool for disciplines ran-
ging from materials science to biomedicine because of
their different physical, optical, and electronic characteris-
tics. The most effective research areas of nanotechnology
are nanomedicine that applies nanotechnology principles
for the treatment, prevention, and diagnosis of diseases.
Moreover, many products of nanomedicine have been
marketed due to the surge in nanomedicine research
during the past few decades, around the globe. Currently,
nanomedicine is influenced by drug delivery systems,
accounting for more than 75% of the total sales [74]. In
this regards, nanoparticle-based drug delivery platforms
have gain the trust of scientists for being the most
appropriate vehicles in addressing the pharmacokinetic
drawbacks associated with conventional drug formulations
[75]. Hence, various nanoforms have been attempted as
drug delivery systems such as liposomes, solid lipid nano-
particles, dendrimers, and solid metal-containing NPs, to
enhance the therapeutic efficacy of drugs [76, 77]. Some
of the major fields of interest are discussed below.

Ophthalmology
Drug delivery through the ophthalmic route is highly at-
tractive yet challenging for the pharmaceutical scientists.
The eye is a tiny intricate organ with multi-compartments.
Its biochemistry, physiology, and anatomy have made it
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most impermeable to the xenobiotic. Common conditions
that demand ocular administration contain the eye
infections such as, conjunctivitis along with the corneal dis-
orders like glaucoma. The most common drug classes used
in the ocular delivery include mydriatics or cycloplegics mi-
otics, anti-infective, anti-inflammatory, diagnostics, and sur-
gical adjuvants. For the small ocular irregularity, gene
therapy is required too, and a large amount of work is be-
ing conducted within this area. Nanocarrier supported ap-
proaches have got attention of the scientists for their
suitability and specificity. It has been reported that par-
ticulate delivery system such as microspheres and nano-
particles and vesicular carriers like liposomes, niosomes,
pharmacosomes, and discomes improved the pharmacoki-
netic and pharmacodynamics properties of various types
of drug molecules [76]. Many novel controlled drug deliv-
ery systems have been emerged including hydrogels,
muco-adhesive polymers, microemulsions, dendrimers,
iontophoretic drug delivery, siRNA-based approaches,
stem cells technology, non-viral gene therapy, and laser
therapy with the sclera plugs [78]. Different systems for
drug delivery are costumed for the delivery of drug
through the ocular route. The chief goal of all the drug
delivery systems is to improve the residence period,
enhance the corneal permeability, and liberate the drug at
posterior chamber of eye, leading to increased bioavailabil-
ity and improved patient compliance [79].
Abrego et al. prepared PLGA (poly lactic co-glycolic

acid) nanoparticles of pranoprofen for ophthalmic deliv-
ery in the form of hydrogel. This hydrogel formulation
have suitable rheological and physicochemical properties
for the ocular delivery of pranoprofen with improved bio-
pharmaceutical outline of the drug. Moreover, it intensi-
fied the local anti-inflammatory and analgesic results of
the drug, resulting in improved patient’s compliance [80].
In another study, cefuroxim loaded nanoparticles of chi-
tosan were developed using a double crosslinking in
double emulsion technique. The inference point out
chitosan-gelatin particles as potently practical candidates
for DD at intraocular level [81]. Moreover, diclofenac
loaded N-trimethyl chitosan nanoparticles (DC-TMCNs)
were developed for ophthalmic use to improve ocular bio-
availability of the drug [82]. Furthermore, nanosized
supramolecular assemblies of chitosan-based dexametha-
sone phosphate have been developed for improved pre-
corneal drug residence time due to its muco-adhesive
characteristics. These nanoparticles interact strongly with
both ocular surface and drug and protect the drug from
metabolic degradation leading to extended pre-corneal
residence [83]. Glaucoma, an ophthalmic disease, was
treated with brimonidine-based loaded sustained release
solid lipid nanoparticles using glyceryl monostearate as
solid lipid [84, 85]. Similarly, daptomycin-loaded
chitosan-coated alginate (CS-ALG) nanoparticles were

developed with a suitable size for ocular applications and
high encapsulation efficiency (up to 92%). This study re-
vealed that daptomycin nanocarrier system could be used
in future to deliver this antibiotic directly into the eye, in
order to act as a prospective therapy against bacterial en-
dophthalmitis and as an efficient alternative to chitosan
nanoparticles [86].
One of the major causes of short- and long-term failure

of grafts in the corneal transplantation is the immunologic
graft rejection. For this purpose, PLGA-based biodegrad-
able nanoparticle system of dexamethasone sodium
phosphate (DSP) was prepared, resulting in the sustained
release of the corticosteroids in order to prevent the
rejection of corneal graft [87]. Moreover, MePEG-PCL
(polyethylene glycol-poly caprolactone) nanoparticles of
curcumin were reported, and they showed increased effi-
ciency, enhanced retention of curcumin in the cornea, and
significant improvement in prevention of the corneal neo-
vascularization over free curcumin [88]. Likewise, silver
nanoparticle-infused tissue adhesive (2-octyl cyanoacryl-
ate) were developed with enhanced mechanical strength
and antibacterial efficacy. These doped adhesive (silver
nanoparticles) supported the use of tissue adhesives as a
viable supplement or alternative to sutures [89].

Pulmonology
Lung diseases probably asthma, chronic obstructive pul-
monary disease (COPD), and lung cancer have a high oc-
currence and are often life threatening. For instance, it is
described that COPD is the fourth major cause of death,
and lung carcinoma is the most prevailing cause of cancer
deaths worldwide. Nanoparticles are scrutinized as a
choice to improve therapy of these severe diseases [90].
Various drug-laden nanoparticles have been utilized for
their local and systemic effects in the treatment of lung
diseases. Delivery of curative agents to the place of action
for lung diseases may permit for effective treatment of
chronic lung infections, lung cancers, tuberculosis, and
other respiratory pathologies [91]. The nanocarriers used
for this purpose include liposomes, lipid- or polymer-
based micelles, dendrimers, and polymeric NPs [92]. Poly-
meric NPs are of prenominal interest, as the polymers can
be co-polymerized, surface modified, or bio-conjugated
for ameliorate targeting capacity and distribution of the
encapsulated agents. The generally used nanocarriers in
pulmonary drug delivery contain natural polymers such as
gelatin, chitosan, and alginate and synthetic polymers like
poloxamer, PLGA, and PEG [93].
It was observed that PLGA NPs exhibit the most

convenient set of characteristics as carriers for pulmonary
protein/DNA delivery while gelatin NPs are an agreeable
reciprocal choice [94]. Similarly, anisotropic or Janus parti-
cles of doxorubicin and curcumin were formulated to cargo
the anticancer drugs for the treatment of lung cancer
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through inhalation. The particles were formulated by using
the biocompatible and biodegradable materials binary
mixtures. These particles did not exhibit geno- and cyto-
toxic consequence. The cancer cells internalize these Janus
particles and massed them in the nucleus and cytoplasm
leading to prolonged retention. Moreover, polyamidoamine
(PAMAM) dendrimers were evaluated as nanocarriers for
pulmonary delivery of the model weakly soluble anti-
asthma pharmaceutical beclometasone dipropionate (BDP)
using G3, G4 and G4 [12] dendrimers. This study showed
that BDP-dendrimers have potential for pulmonary inhal-
ation using air-jet and vibrating-mesh nebulizers. Further-
more, it was observed that the aerosol characteristics were
influenced by nebulizer design rather than dendrimers gen-
eration [95]. Additionally, engineered nanoparticles (ENP),
composed of inorganic metals, metal oxides, metalloids, or-
ganic biodegradable, and inorganic biocompatible polymers
were used efficiently as carriers for the vaccine and drug
delivery and for the management of a variety of lung dis-
eases. Properties and efficacious effects of ENPs on lungs
are represented in Fig. 1. Inorganic ENP (silver, gold, and
carbon ENP), metal oxides ENP (iron oxide, zinc oxides,
and titanium dioxide), and organic ENP (Lipid-based,
polysaccharide-based, polymer matrix-based) were devel-
oped and evaluated for pulmonary immune hemostasis. As
well as being relatively secure carriers, modern studies indi-
cated ENP cable of supervening beneficial outcomes with
anti-inflammatory properties (e.g., silver and polystyrene)

and imprinting of the lung which present the maintenance
of immune homeostasis (e.g., polystyrene). Further knowing
of the mechanisms may help in better understanding the
useful effects of ENP on pulmonary immune homeostasis
and/or management of inflammatory lung disease [96].
It is important to state that functionalized cationic lipo-

polyamine (Star: Star-mPEG-550) have been recently de-
veloped for the siRNA (short interference RNA) in vivo
delivery to the pulmonary vascular cells. This balanced
lipid formulation intensify the siRNA retention in the
lungs of mouse and accomplished significant disassemble
of the target gene. The results were found useful and with
reduced toxicity of miRNA-145 inhibitor delivery to the
lung by using the functionalized cationic lipopolyamine
nanoparticles to recruit the pulmonary arteriopathy and
rectify function of heart within rats with intense pulmon-
ary arterial hypertension (PAH) [97].

Cardiovascular System
Cardiovascular disease is the ailment that affects the cardio-
vascular system, vascular diseases of the brain and kidney,
and peripheral arterial disorder. Despite of all advances in
pharmacological and clinical management, heart failure is a
foremost reason of morbidity worldwide. Many novel thera-
peutic strategies, embody cell transplantation, gene delivery
or therapy, and cytokines or other small molecules, have
been studied to treat heart failure [98]. An inadequate num-
ber of people are affected in developing countries; over 80%

Fig. 1 Properties and efficacious effects of ENPs on lungs
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of deaths due to cardiovascular disorder take place in under-
developed countries and occur almost evenly in male and
females [99]. Mathers et al. in 2008 estimated that there are
9.4 million deaths each year [100]. This concludes 45% of
deaths caused by coronary heart disease and 51% of deaths
due to heart strokes [101]. There are many distinct types of
drug delivery vehicles, like polymeric micelles, liposomes,
dendrimers, lipoprotein-supported pharmaceutical carriers,
and nanoparticle drug carriers.
Chitosan-based liposomes of sirolimus having ≥83%

entrapment efficiency were developed for the treatment of
restenosis and have been proved a novel platform for effi-
cient targeted delivery [102]. Similarly, bile salt-enriched
niosomes of carvedilol with 85% entrapment efficiency have
resulted in enhanced bioavailability of drug, and thus, better
therapeutic effect [103] was obtained. Inhibition of resten-
osis in balloon-injured carotid artery is achieved in rats by
developing PLGA-based nanoparticles encapsulating AGL
2043 and AG1295, selective blockers of platelet-derived
growth factors (PDGF) receptors [104]. Angiogenic therapy
of myocardial ischemia with vascular endothelial growth
factor (VEGF) is a favorable approach to overcome hypoxia
and its sequel effects. Polymeric particles loaded with VEGF
have been proved a promising system for delivery of cyto-
kines to rat myocardial ischemic model. This approach
could be further explored for clinical studies [105].
Coenzyme Q10 (CoQ10) owing to its role in mitochondrial
electron transport chain appears to be a reliable candidate
to treat myocardial ischemia (MI) but its poor biopharma-
ceutical characteristics needed to be addressed by develop-
ing promising delivery approaches. Polymeric nanoparticles
were developed to encapsulate CoQ10 to overcome its poor
pharmaceutical properties and administered to MI-induced
rats. Cardiac function was analyzed by determining ejection
fraction before and after 3 months of therapy. Results
showed significant betterment in the ejection fraction after
3 months [106].

Oncology
Cancer is a prime cause of mortality around the globe.
The World Health Organization determines that 84
million people die of cancer between 2005 and 2015. The
eventual target of cancer therapeutics is to increase the life
span and the quality of life of the patient by minimizing
the systemic toxicity of chemotherapy [107]. Chemothera-
peutic agents have widely been studied in oncology for the
past 25 years, but their tumor specificity is unsatisfactory
and therefore exhibit dose-dependent toxicity. To over-
come this limitation, recent interest has been centered on
developing nanoscale delivery carriers that can be targeted
directly to the cancer cell, deliver the drug at a controlled
rate, and optimize the therapeutic efficacy [108, 109]. Pas-
sive and active targeting is used to deliver the drug at its
tumor site. The passive phenomenon called the “enhanced

permeability and retention (EPR) effect,” discovered by
Matsumura and Maeda, is the dominated pathway used
for chemotherapeutics [110, 111]. Active targeting is
achieved by grafting ligand at the surface of nanocarriers
that bind to receptors or stimuli-based carriers, e.g., dual
reverse thermosensitive [112], photo-responsive [113],
magnetic nanoparticles [114], and enzymatically activated
pro-drugs [115]. Nanoparticles (NPs) can be conjugated
with various smart therapeutic carriers like polymeric
nanoparticles [116], micelles [117], liposomes [118], solid
lipid nanoparticles (SLNs) [119], protein nanoparticles
[120], viral nanoparticles [121], metallic nanoparticles
[122], aptamers [123], dendrimers [124], and monoclonal
antibody [125] to improve their efficacy and decrease the
systemic toxicity. Table 3 summarizes the different
approaches for drug deliveries which are widely studied to
target the tumor with maximize therapeutic response and
minimum toxicity.
Biodegradable poly (o-caprolactone) nanocarriers

loaded with tamoxifen were developed for the manage-
ment of estrogen receptor-specific breast cancer [126].
This study suggested that the nanoparticle preparations of
selective estrogen receptor modulators deliver the drug in
the specific estrogen receptor zone resulting in enhanced
therapeutic efficacy. Similarly, a nanoconjugation of doxo-
rubicin and cisplatin was developed by Chohen et al.
[127], which have exhibited enhanced efficiency and re-
duced side effects of the loaded drugs in the treatment of
localized progressive breast cancer. Likewise, chemothera-
peutic drug oxaliplatin-loaded nanoparticulate micelles
were prepared by Cabral et al. [128], with sustained release
of loaded drug in the tumor microenvironment, resulted
in enhanced antitumor effect [128]. Furthermore, SLN
loaded-5-FU resulted in enhanced bioavailability and sus-
tained release of the encapsulated anticancer drug, leading
to enhanced antitumor effect [129].

Conclusions
Nanotechnology is subjected to inordinate progress in vari-
ous fronts especially to make innovations in healthcare.
Target-selective drug delivery and approaches for molecular
imaging are the areas of prime importance for research
where nanotechnology is playing a progressive role. This re-
view provides readers with a wide vision on novel ongoing
potentialities of various nanotechnology-based approaches
for imaging and delivery of therapeutics. In order to obtain
effective drug delivery, nanotechnology-based imaging has
enabled us to apprehend the interactions of nanomaterials
with biological environment, targeting receptors, molecular
mechanisms involved in pathophysiology of diseases, and
has made the real time monitoring of therapeutic response
possible. Development of analytical technologies to meas-
ure the size of particles in nanometer ranges, and advent of
latest manufacturing approaches for nanomaterials, has
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resulted in establishment of more effective methods for de-
livery of therapeutics for the treatment of ophthalmological,
pulmonary, cardiovascular diseases, and more importantly
cancer therapy. These new drug therapies have already
been shown to cause fewer side effects and be more effect-
ive than traditional therapies. Furthermore, the imaging
techniques have enhanced the determination of tumor

location in human bodies and their selective targeting.
Altogether, this comparatively new and thriving data sug-
gest that additional clinical and toxicity studies are required
further on the “proof-of-concept” phase. Nanomedicine
cost and manufacturing at larger scale is also a matter of
concern that needs to be addressed. Notwithstanding,
future of nanomedicines is propitious.

Table 3 Nanomaterials and drug delivery approaches for tumor treatment

Nanomaterials Delivery approaches Advantages References

Aptamer functionalized silica gold
nanorods
(60 nm)

Near-infrared light responsive
drug delivery system

Biocompatibility, cancer cell recognition
ability, and efficient intracellular drug
release

[178]

Doxorubicin-loaded PEG diacrylate
-Chitosan derivative-single-wall car-
bon nanotubes (CNT)
(240 nm)

Near-infrared (NIR) light
triggered drug delivery system

Enhanced cellular uptake and the faster
drug release

[179]

(DOX)-loaded hollow mesoporous
copper sulfide nanoparticles (HMCuS
NPs) with iron oxide nanoparticles
(IONPs)
(124.5 ± 3.8 nm)

Near-infrared (NIR) light
triggered drug delivery system

Minimized the adverse effects,
enhanced photo thermal therapy effect

[180]

DOX-(HMCuSNPs) with hyaluronic
acid (HA)
(113.8 ± 6.9 nm)

Near infrared (NIR) light
triggered drug delivery system

Facilitate intracellular tunable drug release,
enhanced targeting and accumulation
capacity in tumor site

[181]

α-Cyclodextrin and poly (ethylene
glycol)-platinum dendrimer
(1.9 ± 0.3 nm)

Near infrared (NIR) light-
responsive supramolecular
hydrogel

Enhanced release of drug, low toxicity [182]

End-capped mesoporous silica
nanoparticles (MSNs)
(130 nm)

Redox-responsive
nanoreservoirs

Excellent biocompatibility, cell-specific
intracellular drug delivery, and cellular
uptake properties

[183]

Transferrin (Tf)-(MSNs)-DOX
(280 nm)

Redox-responsive drug
delivery system

Biocompatible, enhanced intracellular
accumulation, targeting capability

[184]

Amino- β –cyclodextrin- MSNs
(203.3 nm)

Folate mediated and pH
targeting

High intercellular release [185]

DOX-thiolated poly(ethylene glycol)-
biotin-DNA conjugated gold
nanorod (GNR)
(length of 50 ± 5 nm
diameter of 14 ± 3 nm)

pH-and near infrared (NIR)
radiation dual-stimuli triggered
drug delivery

Increased potency (~67-fold), increased
cell uptake, low drug efflux

[186]

Cytochrome C conjugated
lactobionic acid (CytC–LA)-
Doxorubicin (DOX)- MSNs
(115.8 nm)

pH and redox dual-responsive
drug delivery

Good biocompatibility, high efficiency,
inhibits tumor growth with minimal
toxic side effect.

[187]

Poly (propylene sulfide)-polyethylene
glycol-serine-folic acid (PPS-mPEG-
Ser-FA)- zinc phthalocyanine-
doxurubicin micelle
(80 nm)

Reactive oxygen species (ROS)
sensitive drug delivery system

Minimal toxic side effects [188]

Rituximab-conjugated
doxorubicin- MSNs
(40.7 ± 19.1 nm)

pH-sensitive controlled drug
release system

Reduce systemic toxicity, improve the
therapeutic efficacy

[189]

PEGylated-MoS 2 nanosheets
(diameter 50 nm, thickness ∼2 nm)

Combined photothermal and
chemotherapy targeting

Highly efficient loading [190]

DOX-Gold nanorod-1-tetradecanol-
MSNs (thickness 35 nm)

Photothermalablation and
chemotherapy

Precise control over drug release, localized
delivery with enhanced targeting

[191]

Fe3O4–azobis [N-(2-carboxyethyl)-2-
methylpropionamidine](Azo)-
Doxorubicin

Combined photothermal
therapy and chemotherapy

Enhanced cell-killing effects, increased
stability, low toxicity

[192]
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