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Abstract

An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected.
The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure
of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the
enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level
of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.
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Background
Non-invasive sensing of biological molecules, especially
deoxyribonucleic acid (DNA) and its constituents, by
means of label-free optical spectroscopy can open new
prospects in biomedical analysis. Recently, we described a
possibility for fluorescent detection of low concentrated
DNA solution infiltrated into globular photonic crystal [1].
Since the fluorescence of DNA and its constituents is com-
paratively weak, Raman technique instead of fluorescence
was used for detecting low concentration of adenine in so-
lution. Adenine is one chemical component of the DNA.
Maximal theoretical enhancement of the Raman signal

caused by the surface of nanostructured noble metals
can reach tens of orders of magnitude [2]. Such signifi-
cant enhancement is usually associated with local con-
centration of electric field in the vicinity of metallic
nanostructures because of surface plasmons and referred
to an electromagnetic mechanism of surface-enhanced
Raman scattering (SERS) [3]. However, realizing such an
enhancement in practice is not very usual. Thus, in the
case of adenine, moderate Raman enhancements have
been reported by different scientific groups both for the
adenine adsorbed onto silver electrodes [4, 5] and for
the solid adenine films deposited onto nanostructured
aluminum surface [6]. In the latter work, 1-nm-thick

layers of adenine molecules were deposited on nano-
structured aluminum surface and the reference fused
silica substrate. The fact that the authors of [6] could de-
tect the presence of such thin adenine film on the fused
silica substrate testifies that the sensitivity of their setup
was on the high side. But, the enhancement of the Ra-
man signal caused by nanostructured aluminum was
only seven times. Recently, Mevold et al. [7] probed gra-
phene covered by gold nanoparticles as SERS substrate
for adenine and obtained a threefold increase in Raman
intensity. In that work, graphene was used only as a
substrate for assembling gold nanoparticles. Small bene-
fit in SERS was associated not with graphene but with
plasmonic effect caused by the gold nanoparticles.
Application of graphene as a substrate for SERS has

renovated the interest in the use of surface-enhanced
spectroscopy in optical sensing. It has been established
that the Raman signal from some organic molecules
deposited on graphene can be enhanced but usually less
than in the abovementioned plasmonic case. The effect
itself is quite novel for graphene and depends both on
the type, spatial orientation of the tested molecules,
strength of their interaction with graphene, molecular
energy levels, and graphene properties [8, 9]. Graphene-
enhanced Raman scattering is associated with a charge
transfer from graphene to the tested molecules, which is
also called the chemical mechanism of SERS. Current re-
search is directed towards determination of molecular
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selectivity and sensitivity limits at which Raman scat-
tering from the tested molecules can be enhanced by
graphene [10]. The main benefit of using graphene
instead of noble metal is its ability to spectrally separ-
ate manifestations of Raman chemical enhancement
in the visible light region from electromagnetic en-
hancement inherit to the far infrared range [11]. For
the noble metals, the effects of chemical and electro-
magnetic enhancements are spectrally overlapped.
In the present work, we report about up to 12

times enhancement of the Raman signal from an ad-
enine layer on graphene in comparison with adenine
deposited on quartz substrate and discuss the reasons
for such effect.

Methods
We used wide-area commercial graphene sheets pre-
pared by chemical vapor deposition and transferred
on a silicon substrate covered with a 200-nm-thick
silica layer. The adenine was dissolved in distilled
water at a low concentration (0.1 mg per ml). This
solution was deposited on graphene samples as
microliter droplets. Hydrophobicity of the graphene
surface and the low concentration of adenine pro-
vided homogeneous drying of the small droplets in
the form of thin films (Fig. 1, inset) avoiding ruptures
and rings associated with regular drying of solutions
[12]. Similar droplets were deposited also on the top
of specially hydrophobizated quartz substrates. Inten-
sities of the Raman signals from the droplets dried on
the graphene and quartz substrates were compared.
Raman spectra from the droplets were measured on a

Renishaw inVia micro-Raman setup equipped with a
multiline argon laser using either the 488- or 514-nm
laser line for excitation.

Results and Discussion
In order to distinguish Raman bands of adenine from
those inherent to substrate, we measured and plotted
the Raman spectra of bare silica (Fig. 1, spectrum 1),
silicon (Fig. 1, spectrum 2), and graphene on silicon sub-
strate (Fig. 1, spectrum 3).
The Raman spectrum of silica substrate (Fig. 1,

spectrum 1) is determined by known SiO2 vibrations,
which are described, for example, in references [13–16].
The Raman bands of silicon at 520 and 950–

1000 cm−1 (Fig. 1, spectrum 2) are associated with
the first- and second-order Raman scattering from
the optical phonons of Si lattice [17, 18]. The pres-
ence of the G band at 1580 cm−1 and 2D band at
2700 cm−1 (Fig. 1, spectrum 3) indicates graphene
layer on the top of silicon. The ratio of the two bands
implies the presence of single-layer graphene. The na-
ture of the graphene band at 2450 cm−1 is debatable,
for example, Ferrari and Basko [19] assign this band
with a combination of a D phonon and a phonon
belonging to the LA branch.
The measured Raman spectra of adenine droplets

dried on the graphene-coated substrate (Fig. 2, spectra 2
and 3) contain both bands typical for solid adenine and
2D band related to the underlying graphene as well as
bands associated with silicon at 520 and 950–1000 cm−1

and group of silica bands (Fig. 2, spectrum 1). The slope
of spectra 1 and 2 in Fig. 2 is a manifestation of adenine
background fluorescence. Since graphene is known [8, 9]
as a quencher of fluorescence, the slope of spectra for
the adenine on graphene is less pronounced. It is
hard to distinguish the position of the G band of the
graphene coated by adenine because it is overlapped
with one of the adenine bands. The spectral positions

Fig. 1 The Raman spectra of silica (1), silicon (2), and graphene on
silicon (3). Spectra are not normalized but only shifted along the
vertical axis for clarity. Inset: microscopic image of a dried micro-
droplet of adenine solution deposited on the graphene surface

Fig. 2 Raman spectra of dried adenine droplets deposited on quartz
(1) and graphene (2, 3). Excitation wavelengths used are 514 nm
(for spectra 1 and 2) and 488 nm (for spectrum 3). Spectra are not
normalized but only shifted along the vertical axis for clarity
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of the adenine Raman bands are in good agreement
with literature data (see reference [20]).
One can see that the Raman scattering from the adenine

deposited on graphene is up to 12 times stronger than that
from the adenine deposited on quartz substrate.
The structure of the adenine molecule provides a

possibility that the benzene ring of adenine can be over-
lapped with the carbon ring of graphene (Fig. 3, inset).
Such structure named as π-stacking enables contact of
the π-electron shells of graphene and overlying adenine
molecule. We suspect that in exactly that relative pos-
ition, one can expect favorable conditions for resonant
electron transfer from the Fermi level of graphene to the
lowest unoccupied molecular orbital (LUMO) level of
the adenine molecule leading to an enhancement of the
adenine Raman signal.
This is a specific example of the so-called chemical

mechanism of Raman enhancement [8–10]. It works if
the photon energy of the exciting light is resonant with
the energy gap between the Fermi-LUMO levels. The
first judgment about this resonant mechanism can be
done if the intensities of Raman scattering will be com-
pared at different excitation wavelengths. Comparison of
spectra 2 and 3 measured with 514- and 488-nm excita-
tions (Fig. 2) shows that the corresponding Raman signal
excited at 514 nm is slightly stronger. This is illustrated
in Fig. 3, where the intensities of the most pronounced
adenine Raman bands in the range 1100–1500 cm−1 are
plotted after subtraction of the base line and
normalization on the laser intensity for both excitation
wavelengths.
It can be speculated that the light with photon energy

2.41 eV (514 nm) fits better to the energy gap than the
photons with energy of 2.54 eV (488 nm). The complica-
tion here is in the identification of the exact LUMO and

highest occupied molecular orbital (HOMO) energies of
the adenine molecule with respect to the vacuum level
taken as a reference point. Experimentally, it can be done,
for example, by derivation of the real and imaginary values
of the permittivity of solid adenine films in the deep ultra-
violet spectral range. It is done, for example, in article
[21] by means of using synchrotron irradiation. The
value of the HOMO-LUMO gap obtained from these
measurements is ~4.4 eV. It roughly corresponds to
the value of ~4 eV calculated by the use of the dens-
ity functional theory [22, 23]. Similar calculations
have been made in reference [24]. There, the HOMO-
LUMO gap is reportedly 3.8 eV, and the relative position
of the LUMO and HOMO levels of adenine is mentioned
as −2.2 and −6 eV, respectively.
If we suppose that the graphene Fermi level is situated

near −4.6 eV [25], we can finally construct an approxi-
mate energy level scheme of the graphene-adenine
system (Fig. 4). From the latter, the 2.41-eV photon en-
ergy is in a better resonance with the Fermi level-LUMO
transition compared to the 2.54-eV photons.
Voltage-dependent shift of the graphene’s Fermi

level could be another way to control the resonance
conditions for electron transfer to adenine on gra-
phene. Our first attempts in this direction were not
very successful because graphene suffers from hyster-
esis of electrical characteristics in atmospheric condi-
tions [25]. It complicates the electrical control of the
graphene’s Fermi level.

Conclusions
Enhanced Raman scattering from thin adenine layers de-
posited on graphene was detected. It was accompanied
by quenching of the background fluorescence of adenine
by the underlying graphene layer. The enhancement of
the Raman signal depends on the photon energy of the

Fig. 3 The intensities of the adenine Raman bands in the range
1100–1500 cm−1 at the cases of 514-nm (1) and 488-nm (2) excitations.
Intensities are background corrected and normalized to incident laser
power. Inset: schematic arrangement of adenine molecule on the
graphene surface. Nitrogen atoms are marked by a blue color Fig. 4 The energy level scheme of the graphene-adenine system
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exciting light in a manner which is in agreement with
the assumption that a resonant electron transfer from
the Fermi level of graphene to the LUMO level of
adenine molecule takes place.
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