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A general formalism for the determination of
the effective mass of the nanoscale structural
inhomogeneities of the domain wall in uniaxial
ferromagnets
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Abstract

On the basis of the method of gyrotropic Thiele forces, we build a formalism that allows the determination of the
effective mass of the nanoscales structural elements of the domain wall (DW): vertical Bloch line and Bloch point in
uniaxial ferromagnets. As shown, the effective mass of these magnetic inhomogeneities depends on the value of
the gyrotropic domain wall bend that is created by their movement.
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Background
The study of structural localized inhomogeneities of the
domain walls (DWs) of domain-containing magnetic
materials is one of the topical problems in the solid state
physics. Of special interest are the distributions of the

magnetization vector M
→

in the DWs of uniaxial ferro-
magnets: the vertical Bloch lines (BLs) and Bloch points
(BPs) (see [1] and review [2]). The vertical BL and BP
are stable nanoscale formations (approximately 102 nm),
which significantly affect the dynamics of the DW in ex-
ternal magnetic fields. Furthermore, BLs and BPs are
considered as promising carriers of information in high
performance memory devices with a superdense mag-
netic memory [3].
Many aspects related to the generation, stability, and

dynamics of the vertical BL and BP have been studied.
At the same time, some provisions that characterize the
given inhomogeneities require more detailed consider-
ation. One of these problems is to determine mL,BP - the
effective masses of the vertical BL and BP. The effective
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mass is an important dynamical characteristic caused by
the quasiparticle approach to the investigation of vertical
BL and BP movement. Accordingly, mL,BP are deter-
mined from the ‘kinetic potentials’ constructed on the
basis of systems of integrodifferential equation solutions
of the BL and BP dynamics. This approach presents sig-
nificant difficulties [4-7], and it would be laudable to
build a simpler theoretical formalism for finding mL,BP in
the DW of different domain configurations. Another diffi-
culty with the previous formalism is related to the depend-
ence of the BL and BP parameters of the quantum effects,
which take place for these magnetic structures in the sub-
helium temperature range, on their effective mass ex-
pressions [8,9]. This aspect is especially important for
spintronics materials such as cylindrical nanowires and
nanostripes in which is the presence of structures similar
to BLs and BPs [10-13]. The construction of a general
method, which allows the determination of the effective
mass of nanoscale structural inhomogeneities of the DW
in ferromagnets with strong uniaxial anisotropy, using the
concept of a gyrotropic (gyroscopic) Thiele force acting
on a moving magnetization distribution [14] is the aim of
our work.
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Methods
Problem solving and discussion
Let us consider an isolated domain wall containing verti-
cal BL that separate DWs into regions with opposite ori-
entations of magnetization. In the Cartesian coordinate
system with an axis OZ directed along the anisotropy
axis, and an axis OY - in the normal plane of the DW,

the position of the vector M
→

will be characterized by the
polar and azimuthal angles θ and φ, respectively. The
functional dependences of these angles corresponding to
the static states of the DW and BL are well known and
have the form [1]

θ yð Þ ¼ �2arctg exp y=Δð Þ;
ϕ xð Þ ¼ �2arctg exp x=Λð Þ; ð1Þ

where Δ is the DW width, Λ ¼ Δ
ffiffiffiffi
Q

p
is the BL charac-

teristic size, and Q is the material quality factor (the ratio
of the magnetic anisotropy energy to the magnetostatic
one), Q > > 1.
Assuming that the system considered here is station-

ary, the expression for the density of gyroscopic force f
→

g

that acts on the system can be written as follows [14]

f
→

g ¼ MS

γ
g
→ � v

→
h i

ð2Þ

where MS is the saturation magnetization, γ is the gyro-
magnetic ratio, g

→¼ − sinθ → θ� → ϕ½ � is the gyrotropic
vector, and v

→¼ vx e
→

x; vy e
→
y

� �
is the velocity of the

magnetic inhomogeneity.

It should be noted that the vector g
→

is a local measure
of the heterogeneity of the moving magnetization distri-
bution in two coordinates x and y (in given case) and
characterizes the link between its parts - BL and DW.

This allows us to consider the f
→

g;x;y components as

interaction forces. So, the f
→

g;x component manifests as a
force that acts from the moving domain wall on the ver-

tical BL. In turn, the component of f
→

g;y acting on the
DW is caused by the dynamics of the BL. The result is a
deformation of the DW, namely a gyrotropic bend that
can be characterized in terms of the Slonczewski ap-
proach [1] by the coordinate of the normal displacement
of its center - q(ξ), where ξ = x − vLt, and vL is the BL

velocity. In this case, external to the DW force f
→

g;y pro-
duces the work with the average value �W that is related
to the kinetic energy of the BL as follows

�W ¼ 1
2

Z
fg;ydxdyqξ→0 ¼

mLv2L
2

ð3Þ

Here qξ → 0 is DW displacement in the BL center. It is
this equation and will be the basis for finding the
effective mass of the DW structural elements. We will
consider its application on specific examples.
For DW stabilized by the external bias field gradient Hg,

the system of equations of DW dynamics has form [4]

_ψΔω−1
M ¼ Λ2∂2q=∂x2 − f q

_qΔ−1ω−1
M ¼ −Λ2∂2ψ=∂x2 þ sinψ cosψ

ð4Þ

where ψ(ξ) is angle of the vector M
→

in the DW center
with axis OX, ωM = 4πγMS, and MS is the saturation
magnetization, f =HgΔ/4πMS.
In the case f < <1 and vL < <ΛωM and we obtain from (4)

qξ→0 ¼ π
Δω−1

M vL
2Λ

ffiffiffi
f

p ð5Þ

In the first approximation we assume that ψ(ξ) = φ(ξ)
and using formulae (1) to (3), (5), we find the effective
mass of the vertical BL

mL ¼ π 4
ffiffiffi
f

p
γ2Q1=2

� �−1
ð6Þ

Note that expression (6) is the same as the formula for
mL from article [4] lending credence to formalism pre-
sented here. In our case, we did not need the solution of
the system Equation (4). We have found the asymptotic
expression for the gyrotropic bend of the domain wall
qξ → 0, which simplifies the study of the problem.

Results and discussion
The dependence of the effective mass on the DW gyro-
tropic bend value caused by the motion of the BL indi-
cates an inertial character of mL. In this case, a decrease
in the field of stabilization of the domain wall Hg should
result in an increase of qξ → 0 and, accordingly, mL. This

agrees with formula (6): mL∼1=
ffiffiffi
f

p
. In turn, from the

system of equations (4), it is easy to show that mL ~ f −1

for values f> > 1. The dependence of the effective mass
of the vertical BL on the gradient of the bias field stabil-
izing DW indicates the unstable natural motion of ‘hard’
DW (DW with complex interior structure), which is also
reflected in the quadratic character of the DW spectrum
oscillations [15]. Obviously, an external magnetic field is
necessary for stabilizing the DW in the case of vertical
BL motion.
It should be mentioned that taking together expression

(2) and differentiating with respect to time of the second
equation of system (4) yields, as expected, the Newton’s
Second law for the DW

mDW €q ¼
Z

fg;y dy

where mDW = (2πΔγ2)− 1 is the DW effective mass [1].
Note that the viscosity of the system is taken into ac-
count by introducing into the balance of forces a
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dissipative linear vector function [16], which, to simplify
the consideration of the problem, we do not consider in
our article. Its effect on the stationary motion of the BL
and BP results in finite values of the mobility of the DW
structural inhomogeneities, causing negligibly small
additions to their effective masses [1,6,7]. However, in
yttrium-iron garnets, where the viscosity is due to an
exchange relaxation of the magnetization vector [17],
the viscosity can considerably affect the BP dynamics
[18]. Therefore, in these materials it is necessary to
consider some given factor in the determining of the BP
effective mass.
Let us now consider the vertical BL in the DW of the

magnetic film. In this case, from article [6], it follows
that the DW gyrotropic bend in the BL center has the
form

qξ→0 ¼ _x0b
−1ω−1

M

ffiffiffi
π

p
Q−1=2; ð7Þ

where ẋ0 is the BL velocity, h is film thickness,

b ¼ f −f cð Þ1=2 1þ Δ

πhk2c
−
Δ

πh
h
Λ

� �2

K0
kch
Λ

� �
−
Δ

πh
h
Λ

� �2 K1 kch=Λð Þ
kch=Λ

 !1=2

;

fc and kc are the respective critical values of the bias
field gradient and wave vector characterizing DW
bending instability [19], and K0,1(x) are the McDonald
functions.
It is noteworthy that instead of the laborious process

of finding the ‘kinetic potential’ of the vertical BL, it is
possible to use Equations (3) and (7) to easily obtain the
expression for mL,f - the effective mass of the vertical BL
in DW of magnetic film. The result (provide a reference
to the final equation) coincides with the corresponding
formula given in article [6]

mL;f ¼ 3π 8bγ2Q1=2
� �−1

:

Similarly, for the vertical BL in the domain wall of
the magnetic bubble domain, in accordance with [7],
defining the Fourier harmonics of the DW bend in the
BL center, we can write

q 1ð Þ
1;0 ¼ −

_βLa
2h

4ωM S0 að Þ−lh−1� � ;

q 1ð Þ
1;n ¼ −

_βLa
2h

2ωM n2−1ð Þ lh−1−Sn að Þn�ch πΛn=2rð Þ;� n≥2 ; q 1ð Þ
2;n ¼ 0;

where βL is the angle coordinate of the BL center, a = 2r/h,
r is the domain radius, l is the characteristic length, and Sn
(a) is the Thiele functions [20]. Then using Equation (3),
we find that mL,BD - the effective mass of the vertical BL
in the DW of magnetic bubble - can be written as
mL;BD ¼ a
γ2

1

4 S0 að Þ−lh−1� �þX∞
n¼2

ch−2 πΛn=2rð Þ
2 n2−1ð Þ lh−1−Sn að Þ� �"

The identity of the given formula to similar expression
from article [7] again demonstrates the universality of
our formalism in a variety of domain systems.
Let us consider the DW, where elements of the in-

ternal structure are the vertical BL and Bloch point, and
separate the BL into two parts with an antiparallel orien-

tation of vector M
→
. The characteristic area of BP is the

domain wall region Δ < R <Λ, where R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
. It is

the area that mainly contributes to the effective mass of
the Bloch point - mBP. In this region, there is a ‘vortex-
like’ deformation of the BL magnetic structure, which is
described by the system of equations [5]

_φΔω−1
M ¼ Λ2∂2q=∂x2 þ Λ2∂2q=∂z2 − f q

− _qΔ−1ω−1
M ¼ Λ2∂2φ=∂x2 þ Λ2∂2φ=∂z2

ð8Þ

where φ = arctgMy/Mx.
In the static state, the solution for the angle φ(z,x) can

be defined from the second equation of system (8) and
has the form

tgφ ¼ z=x ð9Þ
It should be noted that the direct application of

formula (3) is limited by the vanishing of the magnetic
moment vector in the BP center, making it necessary to
use the microscopic Landau - Lifshitz Equation. How-
ever, since it is this area Δ < R <Λ that corresponds to
core structural deformation of the Bloch line by BP, it is
clear that Equation (3) can be used to estimate mBP. For
this purpose, assuming z = z − vzt (vz is BP velocity) from
formulae (1) and (2), and taking into account expression
(9), we find that the force causing the DW gyrotropic
bend can be expressed asZ

dy
Z

Δ<R≤Λ

fg;y dxdz ¼ 2MSvz
γ

Z
Δ<R≤Λ

∂φ
∂z

dxdz≈
4MSvzΛ

γ

ð10Þ
Further, from the first equation of system (9) for the

coordinate of the DW normal displacement, we ob-
tain qeπΔω−1

MΛ−1vZ . Assuming that the bias field gradient
is small f < <1, and using formulae (3) and (10), we find an
estimation of the BP effective mass, which coincides with
the corresponding result in the article [5]:

mBP eΔ=γ2
An analysis of this expression shows that mBP does not

depend on the bias field gradient, in contrast to the de-
pendence of the effective mass on the vertical BL (see
expression (6)). This results from the local character of
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the DW area distortion by the Bloch point (~Λ2), the
nature of which is determined by the surface tension of
the domain wall (the terms ~Λ2∂/∂x2 and ~Λ2∂/∂z2 in
the first equation of the system (8)). In turn, the deform-
ation of the domain wall caused by the moving BL oc-
curs along the entire line of the inhomogeneity, resulting
in the displacement of the domain wall. Therefore, the
vertical BL effective mass is determined by the bias field
gradient stabilizing DW.
In the case of strong magnetic fields f> > 1, the singu-

larity at the BP center can be eliminated by integrating
over the BP volume. Indeed, from formula (2) and the
first equation of the system (8), we define a gyroscopic

force fg;y ¼ −MS
γ sinθ ∂θ

∂y
∂φ
∂z vz and coordinate of the DW

normal displacement q ¼ Δω−1
M f −1 ∂φ

∂z vz . Assuming the
lower limit of the integral to be equal to Δ, we find and

expression for work �W ¼ 1
2

Z
fg;y qdxdydz and, using

Equation (3), we arrive at an expression for the BP ef-
fective mass

mBP ¼ πMS

Hgγ2
lnQ

The resulting expression differs only in terms of co-
efficients with the corresponding expression for mBP in
article [5]. The effective mass of the BP in this case is
determined by the external field Hg and tends to zero
with the DW gyrotropic bend at f→∞.
These examples show that the formalism presented

here, which incorporates our simple method for finding
the effective masses of the vertical BL and BP, agrees
well with all previously known results on this subject.
Moreover, because of its generality, it can be extended
to other ‘hard’ DW systems, such as dumbbell- and
strip-shaped domains.
It should also be noted that expressions (2) and (3) are

applicable to any moving magnetization distribution.
Therefore, our formalism does not depend on the type
of the ferromagnet or inhomogeneity. In this article, we
have considered how local nanoscale inhomogeneities
affect the interior structure of DWs in uniaxial ferro-
magnets classified as the vertical BL and BP.

Conclusions
We have created a simplified formalism for finding of
the effective mass of structural inhomogeneities of the
DW - the vertical Bloch line and Bloch point in different
domain systems of uniaxial ferromagnetic materials. It
has been shown that the effective mass of the vertical BL
and BP depends on the DW bend value and arises from
their dynamics. At the same time, in the case of the BL,
the gyrotropic bend of DW is determined by the external
magnetic field stabilizing DW. In turn, the deformation of
the DW due to the motion of the Bloch point is local in
character and is caused both by the field stabilization of
the DW and its surface tension.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ABS and MYB read and approved the final manuscript. ABS conceived the
statement of the problem and discussion of the results. MYB formulated the
statement of the problem and the way to solve it and prepared the
manuscript. Both authors read and approved the final manuscript.

Author details
1G.V. Kurdymov Institute of Metal Physics, National Academy of Science of
Ukraine, 36 Vernadskogo Pr., 03680 Kyiv−142, Ukraine. 2Technical Centre,
National Academy of Science of Ukraine, 13 Pokrovskya Str., 04070 Kyiv,
Ukraine.

Received: 14 October 2014 Accepted: 14 March 2015

References
1. Malozemoff AP, Slonczewski JC. Magnetic domain walls in bubble materials.

New York: Academic; 1979.
2. Volkov VV, Bokov VA. Domain wall dynamics in ferromagnets. Phys Sol

State. 2008;50:199–228.
3. Konishi A. A new-ultra-density solid state memory: Bloch line memory.

IEEE Trans Magn. 1983;19:1838–40.
4. Zvezdin AK, Popkov AF. Dynamics of Bloch lines in ferromagnet. JETP.

1986;64:1059–64.
5. Kufaev YA, Sonin EB. Dynamics of a Bloch point (point soliton) in a

ferromagnet. JETP. 1989;68:879.
6. Dorman VL, Sobolev VL, Shevchenko AB. Dynamics of domain wall

containing a Bloch line. JMMM. 1991;94:293.
7. Dorman VL, Sobolev VL, Shevchenko AB. Bloch lines dynamics in domain

wall of magnetic bubble. JMMM. 1993;124:221.
8. Shevchenko AB. Quantum tunneling of a Bloch line in the domain wall of a

cylindrical magnetic domain. Techn Phys. 2007;52:1376.
9. Shevchenko AB, Yu M, Barabash. The Bloch point in uniaxial ferromagnets

as a quantum mechanical object. Nanoscale Research Lett. 2014;9:132.
10. Klaui M, Vaz CAF, Bland JAC. Head-to-head domain-wall phase diagram in

mesoscopic ring magnets. Appl Phys Lett. 2004;85:5637.
11. Laufenberg M, Backes D, Buhrer W. Observation of thermally activated

domain wall transformations. Appl Phys Lett. 2006;88:052507.
12. Takagi S, Tatara G. Macroscopic quantum coherence of chirality of a domain

wall in ferromagnets. Phys Rev B. 1996;54:9920.
13. Vukadinovic N, Boust F. Three-dimensional micromagnetic simulations of

multidomain bubble-state excitation spectrum in ferromagnetic cylindrical
nanodots. Phys Rev B. 2008;78:184411.

14. Thiele AA. Steady-state motion of magnetic domains. Phys Rev Lett.
1973;30:230.

15. Thiele AA. Excitation spectrum of a magnetic domain wall containing Bloch
lines. Phys Rev B. 1976;14:3130.

16. Thiele AA. Applications of the gyrocoupling vector and dissipation dyadic in
the dynamics of the magnetic domains. J Appl Phys. 1974;45:375.

17. Bar’yakhtar VG. Phenomenological description of relaxation processes in
magnetic materials. JETP. 1984;60:863.

18. Galkina EG, Ivanov BA, Stephanovich VA. Phenomenological theory of Bloch
point relaxation. JMMM. 1993;118:373.

19. Shlomann E. Wave propagation along domain walls in magnetic films.
IEEE Trans Magn. 1974;10:11.

20. Thiele AA. Theory of static stability of cylindrical domains in uniaxial
platelets. J Appl Phys. 1970;41:1139.


	Abstract
	Background
	Methods
	Problem solving and discussion

	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Author details
	References

