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Abstract 

Background:  Septic cardiomyopathy (SCM), a common cardiovascular comorbid-
ity of sepsis, has emerged among the leading causes of death in patients with sepsis. 
SCM’s pathogenesis is strongly affected by mitochondrial metabolic dysregulation 
and immune infiltration disorder. However, the specific mechanisms and their intri-
cate interactions in SCM remain unclear. This study employed bioinformatics analysis 
and drug discovery approaches to identify the regulatory molecules, distinct functions, 
and underlying interactions of mitochondrial metabolism and immune microenviron-
ment, along with potential interventional strategies in SCM.

Methods:  GSE79962, GSE171546, and GSE167363 datasets were obtained 
from the Gene Expression Omnibus (GEO) database. Differentially expressed genes 
(DEGs) and module genes were identified using Limma and Weighted Correlation Net-
work Analysis (WGCNA), followed by functional enrichment analysis. Machine learning 
algorithms, including support vector machine–recursive feature elimination (SVM–RFE), 
least absolute shrinkage and selection operator (LASSO) regression, and random forest, 
were used to screen mitochondria-related hub genes for early diagnosis of SCM. Sub-
sequently, a nomogram was developed based on six hub genes. The immunological 
landscape was evaluated by single-sample gene set enrichment analysis (ssGSEA). We 
also explored the expression pattern of hub genes and distribution of mitochondria/
inflammation-related pathways in UMAP plots of single-cell dataset. Potential drugs 
were explored using the Drug Signatures Database (DSigDB). In vivo and in vitro experi-
ments were performed to validate the pathogenetic mechanism of SCM and the thera-
peutic efficacy of candidate drugs.

Results:  Six hub mitochondria-related DEGs [MitoDEGs; translocase of inner mito-
chondrial membrane domain-containing 1 (TIMMDC1), mitochondrial ribosomal 
protein S31 (MRPS31), F-box only protein 7 (FBXO7), phosphatidylglycerophosphate 
synthase 1 (PGS1), LYR motif containing 7 (LYRM7), and mitochondrial chaperone BCS1 
(BCS1L)] were identified. The diagnostic nomogram model based on the six hub genes 
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demonstrated high reliability and validity in both the training and validation sets. The 
immunological microenvironment differed between SCM and control groups. The 
Spearman correlation analysis revealed that hub MitoDEGs were significantly associ-
ated with the infiltration of immune cells. Upregulated hub genes showed remark-
ably high expression in the naive/memory B cell, CD14+ monocyte, and plasma cell 
subgroup, evidenced by the feature plot. The distribution of mitochondria/inflamma-
tion-related pathways varied across subgroups among control and SCM individuals. 
Metformin was predicted to be the most promising drug with the highest combined 
score. Its efficacy in restoring mitochondrial function and suppressing inflammatory 
responses has also been validated.

Conclusions:  This study presents a comprehensive mitochondrial metabolism 
and immune infiltration landscape in SCM, providing a potential novel direction 
for the pathogenesis and medical intervention of SCM.

Keywords:  Septic cardiomyopathy, Molecular mechanism, Drug discovery, 
Mitochondrial metabolism, Immune infiltration

Introduction
Due to its high morbidity, sepsis remains one of the leading causes of death worldwide, 
making it a pressing public health issue [1]. The third international consensus defini-
tion for sepsis (sepsis-3) given in 2016 suggests that sepsis is a life-threatening organ 
dysfunction caused by a dysregulated host response to infection [2]. Given that the heart 
is among the most vulnerable organs to sepsis, the incidence rate of complication with 
myocardial injury in patients with sepsis ranges from 13.8% to 40%, with an astonish-
ingly high mortality rate of 70–90%, severely threatening human health [3]. Septic cardi-
omyopathy (SCM) was first reported more than 40 years ago [4]. It is a kind of acute but 
reversible cardiac disease caused by sepsis, with a window of opportunity for recovery in 
the early stages [5]. Multiple genes and complex phenotypes contribute to the pathogen-
esis of SCM [6, 7]. Following diagnosis, the current recommended strategy for SCM is 
symptomatic treatment [3, 8]. Thus, for discovering novel therapeutic targets and strat-
egies for prediction in the early stages, a better understanding of the pathogenesis of 
SCM is necessitated. Identifying hub genes associated with SCM is essential for the early 
detection, prevention, and management of SCM.

SCM is primarily characterized by myocardial damage mediated by immune infiltra-
tion. However, preclinical and clinical studies have demonstrated limited efficacy of anti-
inflammatory strategies in reducing SCM-related mortality [9, 10], suggesting that the 
pathogenesis of SCM involves the interaction between inflammation and some other 
mechanisms. The key characteristic of SCM is left ventricular systolic and diastolic dys-
function. Contraction and relaxation of the myocardium are extremely energy-intensive 
processes, relying heavily on the supply of adenosine triphosphate (ATP) from mito-
chondria. Previous studies from our group have highlighted mitochondrial metabolic 
disorders in SCM, including abnormal mitochondrial dynamic balance, dysfunctional 
mitophagy, and defective mitochondrial bioenergetics [11–16]. These results are indica-
tive of a causal relationship between mitochondrial dysfunction and SCM, and targeting 
mitochondria may facilitate early detection and appropriate treatment of SCM.

Accumulating evidence suggests a potential link between immune disorder and 
mitochondrial dysfunction. Upon disruption of mitochondrial homeostasis, several 
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mitochondrial components and metabolic by-products leak out of organelles. Conse-
quently, they can function as damage-associated molecular patterns (DAMPs) that trig-
ger inflammation upon release into the cytosol or extracellular environment [17–19]. 
Inflammatory cytokines including TNFα or IL-1β can activate inflammatory and oxida-
tive stress pathways in the mitochondrial membrane system, causing oxidative damage 
to mitochondrial DNA and membrane phospholipids, thereby disrupting the physi-
ological mitochondrial energy metabolism. These cytokines can induce mitochondrial 
permeability transition pore (mPTP) opening and mitochondrial outer membrane per-
meabilization, both of which can eventually result in cell death [20–23].

Taken together, mitochondrial dysfunction and immune disorder are essential patho-
genic factors for the development of SCM. However, reports on these issues are sporadic 
and require further in-depth investigation. The field of biomedical research has advanced 
substantially owing to the development of high-throughput genomics. By identifying dif-
ferentially expressed genes (DEGs) between healthy individuals and patients with SCM, 
high-throughput sequencing provides a comprehensive overview of the alterations in 
mitochondrial metabolism and inflammatory pathways during the pathogenesis of SCM 
and elucidates the interaction between these biological pathways along with the underly-
ing molecular mechanisms. Machine learning has also been employed to identify hub 
biomarkers of interest for the diagnosis of SCM. Herein, we integrated bioinformatics 
analysis and machine learning approaches to elucidate the involvement of mitochondria 
and immune infiltration in the processes of SCM based on microarray and single-cell 
RNA-sequencing data sourced from the GEO database. The association between hub 
mitochondria-related genes and immune infiltration in SCM was investigated to provide 
insight into the underlying immunometabolic interplay during disease progression.

Methods
Retrieving expression profiles

For a comprehensive retrieval of SCM datasets, the NCBI Gene Expression Omnibus 
database (http://​www.​ncbi.​nlm.​nih.​gov/​geo), a primary source for high-throughput 
genomic data, was queried. Our search strategy involved terms including “septic cardio-
myopathy,” “sepsis,” and “septic heart,” ensuring a broad, yet specific, dataset retrieval. 
Postretrieval, datasets were meticulously screened based on the study type (array/high 
throughput sequencing) and species (Homo sapiens/Mus musculus), following the estab-
lished protocols. Finally, GSE79962, GSE171546, and GSE167363 datasets were included.

The GSE79962 dataset, generated on the GPL6244 platform, was integral to our 
analysis. This dataset comprised 51 left ventricular tissue samples from diverse patient 
groups. Specifically, our study focused on 20 patients with sepsis and 11 healthy donors 
as controls, resulting in a total of 31 samples for in-depth analysis of DEGs between the 
SCM and control groups. The patient group comprised 20 individuals who succumbed 
to systemic sepsis in surgical/medical intensive care units at the Barnes-Jewish Hospital 
between 2009 and 2012. The mean age of these patients was 70 ± 3 years, with a bal-
anced sex distribution of 10 males and 10 females. The primary sites of infection in these 
patients included the gastrointestinal system (18 cases), pulmonary system (8 cases), uri-
nary tract (2 cases), and necrotizing fasciitis (2 cases). The average length of hospital stay 
was 9 days, with a median length of ICU stay of 9 days and a median sepsis duration of 

http://www.ncbi.nlm.nih.gov/geo
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3 days. Pertinent comorbidities in these patients included hypertension (14 cases), type 
II diabetes mellitus (5 cases), coronary artery disease (4 cases), and others. The microbial 
etiology of patients with sepsis in this dataset was diverse, comprising those with Gram-
positive (two cases), Gram-negative (seven cases), and fungal (one case) infections. 
This variety in sepsis types can provide a comprehensive perspective for analyzing the 
pathophysiology of SCM and its differential expression in the context of varying micro-
bial assaults. Moreover, GSE171546, generated from the GPL24247 platform, included 
20 myocardial samples from SCM and control mice. The single-cell RNA-sequencing 
(RNA-seq) dataset, GSE167363, based on the GPL24676 platform, comprised human 
peripheral blood mononuclear cells (PBMCs) from sepsis survivors and nonsepsis 
donors, thereby providing a unique perspective on SCM at the single-cell level.

Acquisition of microarray data and identification of DEGs

Microarray data from the GEO database were systematically retrieved and processed 
using the “GEOquery” package (version 2.66.0), a robust tool for handling GEO data-
sets [24]. DEG analysis was conducted using the “limma” package (version 3.54.0), a 
widely accepted method for analyzing data on gene expression [25]. The “ggplot2” (ver-
sion 3.4.0) and “ComplexHeatmap” (version 2.14.0) packages were used for the visualiza-
tion and generation of volcano plots and heatmaps, respectively, to facilitate an intuitive 
understanding of the data.

Functional enrichment analysis

Gene Set Enrichment Analysis (GSEA), a powerful tool for interpreting gene expression 
data, was performed using the “clusterProfiler” package (version 4.2.2), renowned for its 
comprehensive analysis of functional profiles [26]. We utilized the “c2.cp.v7.2.symbols.
gmt” gene set from the Molecular Signatures Database (MSigDB) (https://​www.​gsea-​
msigdb.​org/​gsea/​msigdb/​index.​jsp) with a stringent permutation count of 10,000 to 
ensure robust statistical power. The significance threshold was set at p < 0.10. Results of 
GSEA were visualized using the “ggplot2” package for an intuitive understanding of the 
data.

We performed comprehensive functional enrichment analyses to elucidate the 
potential functions of the identified targets. Gene Ontology (GO) analysis, including 
molecular functions (MF), biological pathways (BP), and cellular components (CC), 
was performed for functional annotation of genes. A Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis was performed to integrate gene functions 
with high-level genomic functional data to enhance the understanding of the roles of 
SCM-related target genes. These analyses were performed using the “clusterProfiler” 
and “GOplot” packages (version 1.0.2), which are widely recognized for their efficacy in 
functional analysis.

Weighted gene coexpression network analysis (WGCNA)

In this study, WGCNA was employed to construct a network of gene modules for iden-
tifying clusters of highly correlated genes. This approach, as detailed by Langfelder and 
Horvath, allows the elucidation of correlational patterns among genes across different 
samples, thereby providing insights into the underlying biological mechanisms [27].

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Initially, we conducted sample clustering to detect and exclude outliers, thus ensuring 
the robustness of our network analysis. The network construction was then performed 
using a soft-thresholding power to emphasize strong correlations and penalize weaker 
ones, a key feature of WGCNA that enhances network specificity and sensitivity. This 
step was followed by the identification of gene modules through hierarchical clustering, 
using the dynamic tree-cutting method. Each module was represented by a specific color 
for easy visualization and interpretation. We calculated both module membership (MM) 
and gene significance (GS) to determine the association of these modules to clinical 
traits of SCM. MM quantifies the correlation of each gene with a given module, while GS 
estimates the correlation of genes with external clinical traits. Modules with the high-
est correlation and significant GS (MM > 0.8 and GS > 0.2) were considered biologically 
significant.

Finally, hub genes within these significant modules were identified based on their 
intramodular connectivity, indicative of their central role in the network. These hub 
genes were prioritized for further analysis because they likely play key roles in the patho-
genesis of SCM.

Identification of hub genes using the machine learning approach

Identification of hub genes pivotal in SCM was achieved using advanced machine learn-
ing techniques. Initially, we employed the support vector machine (SVM) algorithm, a 
robust supervised learning method, to train a model based on a subset of feature genes. 
This approach is effective in handling high-dimensional data because it focuses on maxi-
mizing the margin between different classes [28]. Subsequently, SVM-recursive feature 
elimination (SVM–RFE) was performed to iteratively refine the feature set by eliminat-
ing the least significant features, thereby enhancing the model’s predictive accuracy. 
This step was crucial in narrowing down the most informative genes for the diagnosis of 
SCM.

The feature set was refined further by Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression using the “glmnet” package (version 4.1.8). LASSO regression is 
known for its ability to perform variable selection and regularization, which helps in pre-
venting model overfitting [29]. The selection of variables in the LASSO model was based 
on the 1-SE criterion to ensure a balance between model complexity and performance. 
Lastly, the random forest algorithm was employed to rank the genes based on their 
importance. This ensemble learning method is effective in handling unbalanced data and 
provides an estimate of feature importance, which is crucial for identifying key genes. 
Genes with a relative importance score above 0.25 were considered significant. The final 
set of hub genes was determined by an intersection analysis of the results obtained from 
LASSO logistic regression, SVM-RFE, and random forest methods, ensuring a robust 
and comprehensive selection.

Nomogram construction and receiver operating characteristic (ROC) curve evaluation

The nomogram, a vital tool for clinical prediction, was constructed with hub genes to 
enhance the diagnostic accuracy of SCM using the “rms” package (version 6.5–0). In this 
nomogram, each gene was assigned a specific score (“points”), with the “total points” 
representing the cumulative score of all included genes. This scoring system translates 
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complex genetic data into a user-friendly graphical representation, thereby aiding clini-
cians in decision making.

To assess the diagnostic efficacy of the nomogram, we constructed a receiver operat-
ing characteristic (ROC) curve. The area under the curve (AUC) and the correspond-
ing 95% confidence interval (CI) were calculated to quantify the diagnostic performance, 
thus providing a measure of the model’s ability to distinguish between the SCM and con-
trol groups. The AUCs were calculated using the “pROC” package (version 1.18.5) in R, 
which is a tool that implements a nonparametric approach for estimating the AUC. This 
method is particularly advantageous, as it does not assume a specific distribution for the 
data, making it suitable for a wide range of datasets. The “pROC” package employs the 
DeLong method for calculating the AUC, which is a widely accepted technique for ROC 
analysis in biomedical research. This method compares the observed ROC curve against 
a null hypothesis of no discrimination (AUC of 0.5) for accurate and unbiased estimates 
of the model’s diagnostic ability. The AUC is a measure of the model’s ability to discrimi-
nate between positive and negative cases, with values closer to 1 suggesting higher diag-
nostic accuracy [30]. The predictive utility of the nomogram was externally validated 
using an independent dataset (GSE171546). This validation involved the construction of 
ROC curves for the validation set, ensuring the model s robustness and applicability in 
different sample cohorts.

Single‑sample gene set enrichment analysis (ssGSEA)

In our study, ssGSEA, a method for quantifying gene set enrichment in individual sam-
ples, was employed using the “Gene Set Variation Analysis” (GSVA) package in R. This 
approach allows for the assessment of variations in pathways and biological processes 
across a sample population, thus providing insights into the heterogeneity of immune 
responses in patients with SCM [31]. Specifically, ssGSEA was performed to evaluate the 
infiltration levels of 28 distinct immune cell types and discern alterations in the above 
gene sets between the SCM and control groups.

The Wilcoxon rank-sum test, a nonparametric test that does not assume a normal dis-
tribution of the data, was used to compare results between these groups. To explore the 
correlation between different types of immune cells, the Spearman correlation analysis 
was conducted. This nonparametric measure of rank correlation assesses how well the 
relationship between two variables can be described using a monotonic function to pro-
vide a comprehensive view of immune cell interactions in SCM.

Analysis of single‑cell RNA‑seq data

We used the single-cell transcriptome dataset (GSE167363) from the GEO database, 
comprising data from PBMCs of healthy controls and patients with Gram-negative sep-
sis. Raw data were preprocessed using the Seurat R package (version 4.3.0), a widely rec-
ognized tool for the analysis of single-cell genomics data, thus ensuring the accuracy and 
reliability of our findings [32].

Key metrics including the number of molecules per cell (nCount RNA) and the num-
ber of genes detected per cell (nFeature RNA) were determined. These metrics were 
juxtaposed against the sequencing read counts to ensure data integrity. We assessed 
mitochondrial genomic contamination, a commonly encountered issue in low-quality or 
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dead cells, by calculating the percentage of reads mapping to the mitochondrial genome 
using the percentage feature set function in Seurat.

For cell clustering, we employed the dimensionality reduction technique of unified 
manifold approximation and projection (UMAP), following the filtration of principal 
components. This approach allowed for a clear visual classification of cell clusters. Sta-
tistically significant cell marker genes (adjusted p-values < 0.05) were identified and used 
to determine the class group of clustered cells. This was achieved by cross-referencing 
cell marker genes from the DISCO database (https://​www.​immun​esing​lecell.​org/) with 
genes specific to each class group, providing insights into the distribution and abun-
dance of hub genes across different cell subpopulations.

The ‘irGSEA’ package (https://​github.​com/​chuiq​in/​irGSEA) was used for refined gene 
set enrichment analysis in single-cell transcriptomics, focusing on batch effect mini-
mization. Individual cells were scored using methods that are less affected by batch 
variations, including AUCell, UCell, and modified ssGSEA. This approach generated 
multiple enrichment score matrices, enabling the identification of DEG sets in each cell 
subpopulation. The Wilcoxon test was used to determine the significance of the results. 
Heatmaps, density scatterplots, and ridge plots were used for visualization, highlight-
ing specific enrichment pathways, particularly in exploring mitochondria/inflammation-
related pathways in patients with SCM.

Drug prediction and molecular docking

Predicting protein-drug interactions is crucial in comprehending the structural charac-
teristics recommended for receptor sensitivity. MitoDEGs have been submitted to the 
Drug Signatures Database (DSigDB, http://​dsigdb.​tanlab.​org/​DSigD​Bv1.0/), containing 
22,527 gene clusters relevant for drug prediction. The Enrichr platform provides access 
to the DSigDB database. Candidate drugs were ranked in the ascending order of their 
adjusted p-values. An adjusted p-value < 0.01 was deemed statistically significant.

Small molecules and the aforementioned hub targets were docked using AutoDock 
Vina (Scripps Research, San Diego, CA). The results of docking were evaluated and 
analyzed using the PLIP system (https://​plip-​tool.​biotec.​tu-​dresd​en.​de/​plip-​web/​plip/​
index). Finally, the molecular docking (MD) outcomes of the two-dimensional structures 
were visualized using the LIGPLOT software version 4.5.3 (European Bioinformatics 
Institute, Cambridge, UK), and MD maps were generated using PyMOL. Protein struc-
tures were obtained from PDB (https://​www.​pdb.​org/) or AlphaFold (https://​alpha​fold.​
com/), and data on metformin were retrieved from PubChem (https://​pubch​em.​ncbi.​
nlm.​nih.​gov/).

Animals and echocardiography

Adult male C57BL/6 mice (aged 8–10 weeks and weighing 20–25 g) were obtained from 
the Beijing Sibeifu Experimental Animal Center in Beijing, China. Experimental proce-
dures of animal studies were conducted in accordance with the ARRIVE guidelines and 
the Basel Declaration. All animal experiments were approved by the Ethics Committee 
of Guang’anmen Hospital (approval number: IACUC-GAMH-2023–054-SQ).

To induce septic cardiomyopathy, a single dose of lipopolysaccharide dissolved in 
phosphate buffer saline (PBS, 20 mg/kg, Sigma) was intraperitoneally injected in mice 

https://www.immunesinglecell.org/
https://github.com/chuiqin/irGSEA
http://dsigdb.tanlab.org/DSigDBv1.0/
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://www.pdb.org/
https://alphafold.com/
https://alphafold.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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for 48  h as described in previous studies [14, 33]. Mice that received an equivalent 
amount of PBS served as the controls. For metformin intervention, mice were adminis-
tered a single dose of metformin (250 mg/kg, i.p, Sigma) dissolved in saline solution 12 h 
before the LPS injection. The heart tissue samples were promptly harvested and stored 
at −80 °C for further analysis. Before conducting echocardiography, the mice were suf-
ficiently anesthetized. Echocardiography was performed with the assistance of the trans-
ducer from a high-resolution imaging system. The left ventricular (LV) parameters such 
as left ventricular ejection fraction (LVEF), fraction shortening (FS), and left ventricu-
lar internal diameters measured during left ventricular internal diameter end systole 
(LVDs) and diastole (LVDd) were determined from the long-/short-axis images of the 
left ventricle.

Cell culture

Immortalized mouse cardiac HL-1 cells were obtained from the American Type Cul-
ture Collection (ATCC, Manassas, VA). The cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with glutamine and incubated at 37 °C with 5% 
CO2. The culture media were additionally supplemented with 10% fetal bovine serum 
(FBS) and 100 mg/mL of penicillin and streptomycin combination solution. To simulate 
SCM in vitro, HL-1 cells were treated with 10 mg/mL of LPS (Sigma) with or without 
4 mM of metformin (Sigma) for 24 h, according to previously published studies [14, 34]. 
To establish the BCS1L knockdown model, HL-1 cells were transfected with siRNA tar-
geting BCS1L (siBCS1L, obtained from Obio Technology Corp, China).

RNA extraction and quantitative real‑time PCR (qRT‑PCR)

Total RNA was extracted using TRIzol reagent (T9424, Sigma), which was then puri-
fied using the phenol–chloroform method. The cDNA synthesis was performed by 
reverse transcription of RNA, using Transcriptor First-Strand cDNA Synthesis Kit 
(04896866001, Roche, Basel, Switzerland). Subsequently, qRT-PCR was conducted using 
SYBR Green (04887352001, Roche). The PCR amplification protocol comprised an ini-
tialization step at 94  °C for 2 min, 40 cycles of denaturation at 94  °C for 30 s, anneal-
ing at 45 °C for 30 s, and elongation at 72 °C for 105 s, and a final elongation at 72 °C 
for 10 min. β-actin was selected as the internal reference gene. The primer sequences 
were as follows: FBXO7 (forward, 5′-CCC​ACG​TTG​GGG​TTC​AGT​TC-3′ and reverse, 
5′-TCC​TGG​AGT​GAG​GAA​TGC​TCT-3′), PGS1 (forward, 5′-CCC​ACC​TTG​CTG​
CCT​ATG​TC-3′ and reverse, 5′-GCC​ATC​ACA​ACT​CGC​CTC​T-3′), BCS1L (forward, 
5′-TGT​TCT​GGC​CCT​TAA​AGA​CAATC-3′ and reverse, 5′-GGA​ATG​CCA​CTA​GAC​
CCA​ACT-3′), LYRM7 (forward, 5′-GTC​AGC​CCG​CCA​AGG​TTT​TA-3′ and reverse, 
5′-CAG​TAC​GGC​ACA​TTT​TCT​GTGA-3′), TIMMDC1 (forward, 5′-CGT​TCA​GGT​
GTC​TCA​GAC​CC-3′ and reverse, 5′-TAA​ATC​TCC​GCT​TGG​CTC​TGT-3′), MRPS31 
(forward, 5′-CTC​CAC​AGA​ATC​CCG​GCA​TTT-3′ and reverse, 5′-ACT​GGT​CAA​CTT​
TCT​TGC​TACAG-3′).

Analysis of mitochondrial membrane potential

Isolated primary cardiomyocytes were incubated with the mitochondrial potential sen-
sor JC-1 (10  nM; T3168, Invitrogen) in the dark for 15  min. Fluorescent images were 



Page 9 of 31Li et al. Cellular & Molecular Biology Letters           (2024) 29:21 	

acquired using a confocal microscope (Leica SP8; Leica Microsystems, Wetzlar, Ger-
many). All values were normalized against those of the control group. Measurements 
were assessed by an investigator blinded to the experimental conditions.

Enzyme‑linked immunosorbent assay (ELISA) and Seahorse assay

ELISA was performed to determine the activities of interleukin (IL)-1β, IL-6, and tumor 
necrosis factor (TNF)-α following the manufacturer’s instructions (Jiancheng, China). 
The Agilent Seahorse XF Cell Mito Stress Test was performed using an XF 96 Extracel-
lular Flux Analyzer once HL-1 cells attained a confluence of 95% (5 × 103 cells/well) on 
XF96 cell culture microplates (Agilent, Santa Clara, CA). The medium was replaced with 
an unbuffered XF medium (Agilent), and cells were equilibrated for 1 h at 37 °C with-
out CO2 before the test. The XF96 Sensor Cartridges were prehydrated overnight in a 
calibration buffer before being loaded with compounds from the Seahorse XF Cell Mito 
Stress kit. Subsequently, integrated sensor cartridges and cell culture microplates were 
inserted into the XF96 Analyzer and subjected to the XF Cell Mito Stress Test protocol. 
Data were analyzed using the Seahorse Cell Mito Stress Test Report Generator, and sta-
tistical analysis was performed using GraphPad Prism 9 (La Jolla, CA).

Western blot analysis

Heart tissues were processed for western blotting as described previously. Samples were 
disrupted using a ice-cold radioimmunoprecipitation assay buffer containing 10  mM 
Tris–Cl at pH 8.0, 1  mM ethylenediamine tetraacetic acid, 1% Triton X-100, sodium 
deoxycholate at 0.1%, and sodium dodecyl sulfate, also at 0.1%, enriched with 150 mM 
NaCl, 1 mM phenylmethylsulfonyl fluoride, and a mixture of protease inhibitors: apro-
tinin, leupeptin, and pepstatin at 0.02 mg/mL each. Following sonication, these lysates 
underwent clarification by centrifugation. Protein quantification was conducted utiliz-
ing the Bradford assay, and aliquots containing 50 to 100 mg of protein per lane were 
subjected to separation via sodium dodecyl sulfate–polyacrylamide gel electrophore-
sis. Postseparation, these proteins were electroblotted onto a polyvinylidene difluoride 
membrane and probed with specific antibodies, namely BCS1L (1:500, no. ab102808, 
Abcam) and FBXO7 (1:1000, no. ABN1038, Merck).

Statistical analysis

All analyses were run in R (R version R 4.2.2 and R Studio version 1.0.143). Data are 
presented as mean ± standard deviation. The parametric Student’s t-test or the nonpara-
metric Mann–Whitney test was used to compare between two groups. Parametric one-
way analysis of variance (ANOVA) was performed for comparisons involving more than 
two groups, followed by the Bonferroni test for significance. A p-value < 0.05 was consid-
ered statistically significant.

Results
Identification of DEGs between healthy control individuals and patients with SCM

The flowchart of the study is presented in Fig.  1. By normalizing arrays from the 
GSE79962 dataset (Fig.  2A), we screened 2521 DEGs in myocardial samples from 
patients with SCM compared with nonfailing donors. The screening was based on the 
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criteria of P-adjustment < 0.05 and log2 fold-change (FC) > 0.1. Specifically, 1126 and 
1395 genes showed increased and decreased levels of expression, respectively (Addi-
tional file 2: Table S1). A volcano plot of these DEGs is shown, along with a heat map 
highlighting the top 30 upregulated and downregulated genes in Fig. 2B, C. The evalu-
ation of pathway enrichment was performed by comparing the pathways between the 
SCM and control groups using GSEA. In the SCM group, the TNF signaling pathway, 
viral protein interaction with cytokine and cytokine receptors, thyroid cancer, and 
African trypanosomiasis were significantly enriched (Fig.  2D). Conversely, oxidative 
phosphorylation; citrate cycle (TCA cycle); butanoate metabolism; ubiquinone; other 
terpenoid-quinone biosynthesis pathways; and valine, leucine, and isoleucine degrada-
tion were significantly downregulated (Fig. 2E). These results suggest that mitochondrial 
dysfunction and immune dysregulation play a key role in SCM pathogenesis.

Weighted gene coexpression network construction

The GSE79962 dataset was obtained from the GEO data repository. A total of 11 normal 
samples and 20 SCM samples were selected for clustering after removing low-quality 
samples based on a predetermined threshold, as shown in Fig. 3A. Subsequently, a soft 
threshold of seven was used when R2 > 0.9 and the average connectivity was high, as 
shown in Fig. 3B, C. By merging the strongly associated modules with a clustering height 
threshold of 0.25 (Fig. 3D), 19 modules were identified for further analysis. The primed 
and merged modules are presented as clustering trees in Fig. 3E. The subsequent analysis 

Fig. 1  Flowchart of multistep analysis and validation strategy for bioinformatics data
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involved examining the correlation between modules, which confirmed a lack of signifi-
cant connection between them (Fig. 3F). To demonstrate the reliability of module delin-
eation, transcriptional correlation within modules was assessed. No substantial linkage 
between modules was found (Fig. 3G). Furthermore, the relationship between modules 
and clinical symptoms was investigated by utilizing frontal correlations between ME val-
ues and clinical features. The blue module exhibited the highest correlation with both 
normal and SCM groups (P = 3e−08) (Fig. 3H). Significant modules with clinical rele-
vance were identified. The strongest association was found between the blue module and 
clinical features in the module membership (MM) versus gene significance (GS) scatter 
plot (Fig. 3I). All genes within the blue modules were selected for further analysis (Addi-
tional file 3: Table S2).

Fig. 2  Data preprocessing for differentially expressed genes (DEGs). A Box plots of raw data normalized 
across samples. B Heatmap of DEG expression. C Volcano plot of DEG expression. D, E Gene set enrichment 
analysis (GSEA) identified the top five up- and downregulated pathways based on KEGG database
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Identification and functional analysis of MitoDEGs in the context of SCM

After conducting an analysis using the WGCNA method to identify critical module 
genes and the limma method to identify DEGs, a Venn diagram was drawn and 875 over-
lapping genes were obtained (Additional file  1: Fig. S1A). Mitochondria-related genes 
were retrieved from the MitoCarta3.0 database. The mitochondria-related genes inter-
sected with the above 875 overlapping genes were identified as MitoDEGs. In total, we 
identified 262 MitoDEGs (Additional file 1: Fig. S1B). Subsequently, functional analysis 
was conducted to gain further insight into the biological functions of these MitoDEGs. 

Fig. 3  Enrichment levels in genomic weighted gene coexpression network analysis (WGCNA). A Sample 
clustering dendrogram with tree leaves representing each sample. B, C Soft thresholdβ = 7 and scale-free 
topological fit index (R2). D Similar modules were detected and combined by cutting clustered dendrograms 
at a height of 0.25. E Initial and merged modules within the clustering tree. F Collinear heat map of module 
feature genes. Red color represents a high correlation and blue color represents the opposite trend. G 
Clustering dendrogram of module feature genes. H Heat map of module-trait correlations. I scatter plot for 
the blue module
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As evident from the results of DO analysis, these MitoDEGs were found to be associ-
ated with cardiomyopathy, muscle tissue disease, Parkinson’s disease, and mitochondrial 
metabolism disease (Additional file 1: Fig. S1C). GO enrichment analysis revealed that 
the MitoDEGs were involved in the regulation of cellular respiration, oxidative phospho-
rylation, the electron transport chain, NADH dehydrogenase (ubiquinone) activity, and 
electron-transfer activity (Additional file 1: Fig. S1D). KEGG analysis showed their asso-
ciation with diabetic cardiomyopathy, ROS, carbon metabolism, and TCA cycle (Addi-
tional file 1: Fig. S1E, F).

Selection of candidate hub genes using machine learning algorithms

Three machine-learning algorithms were used to screen feature genes among the set of 
262 MitoDEGs. Specifically, SVM-RFE identified 47 genes with the highest accuracy of 
0.967 and the lowest error of 0.033 (Additional file  4: Table  S3) (Figs.  4A, B); LASSO 
regression analysis predicted 13 genes among the statistically significant univariate vari-
ables (Fig. 4C, D) (Additional file 5: Table S4); random forest and feature selection were 
employed to determine the relationship between error rate, classification tree numbers, 
and 61 genes with relative importance (Fig. 4E–G) (Additional file 6: Table S5). To obtain 
a robust gene signature for SCM, genes that overlapped among the three aforementioned 
methods were obtained using a Venn diagram. Six hub genes, namely BCS1L, FBXO7, 
LYRM7, MRPS31, PGS1, and TIMMDC1, were obtained as shown in Additional file 1: 
Fig. S2A. Results of correlational analysis among the six hub genes are shown in Addi-
tional file 1: Fig. S2A. BCS1L, LYRM7, MRPS31, and TIMMDC1 decreased significantly 
in the SCM group, whereas FBXO7 and PGS1 increased markedly in SCM samples com-
pared with controls, as shown in Additional file 1: Fig. S2B–G.

Modeling and testing a diagnostic nomogram model for SCM

A nomogram based on the six candidate hub genes was constructed (Fig. 5A). The diag-
nostic specificity and sensitivity of each gene, and the nomogram itself, were evaluated 
using the ROC curve. The AUC and its corresponding 95% CI were calculated for each 
gene. The results were as follows: BCS1L (AUC 0.90, CI 0.77–1.00), FBXO7 (AUC 0.92, 
CI 0.83–1.00), LYRM7 (AUC 0.86, CI 0.72–1.00), MRPS31 (AUC 0.85, CI 0.66–1.00), 
PGS1 (AUC 0.80, CI 0.62–0.98), and TIMMDC1 (AUC 0.91, CI 0.78–1.00) (Fig. 5B–G). 
The AUC of the nomogram model was 0.96 (95% CI: 0.91–1.00) in the training set and 
0.94 (95% CI, 0.76–1.00) in the GSE171546 validation set. These findings, therefore, sug-
gest that all candidate genes demonstrated have a substantial diagnostic value for SCM, 
while the constructed nomogram demonstrated the highest diagnostic efficacy.

Gene set enrichment of the hub genes

The potential biological function of the six hub genes was investigated in greater detail. 
GSEA was performed to query the Hallmark Pathways in mSigDB. GSEA was per-
formed between high- and low-expression groups of BCS1L, FBXO7, LYRM7, MRPS31, 
PGS1, and TIMMDC1 in patients with SCM. As shown in Additional file 1: Fig. S3A–D, 
genes with low expression of BCS1L, LYRM7, MRPS31, and TIMMDC1 were signifi-
cantly enriched in inflammatory response, interferon-gamma response, interferon alpha 
response, TNFα signaling via NFκB, hypoxia, and IL6-JAK-STAT3 signaling pathways. 
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As shown in Additional file  1: Fig. S3E, F, the group with high expressions of FBXO7 
and PGS1 were also significantly enriched in allograft rejection, inflammatory response, 
interferon alpha response, TNFα signaling via NFκB, hypoxia, IL6-JAK-STAT3 signal-
ing, and unfolded protein response cascades. Biological differences between patients 
with SCM and the healthy control group were further investigated using ssGSEA. Cor-
respondingly, the correlation between signature gene expression and ssGSEA scores of 
hallmark gene sets was estimated using the “corrplot” package (Additional file  1: Fig. 
S3G). Signature genes showed significant and strong correlations with the following 

Fig. 4  Feature gene selection. A, B Signature gene expression was screened based on the support vector 
machine recursive feature elimination (SVM-RFE) algorithm. C, D Adjusting feature selection using the 
least absolute shrinkage and selection operator (LASSO) algorithm. E Random forest error rate versus the 
number of classified trees. F The top 20 key genes. G Venn diagram of the six hub genes obtained from the 
intersection of results from SVM-RFE, RF, and LASSO algorithms
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hallmark gene sets including oxidative phosphorylation, fatty acid metabolism, bile acid 
metabolism, inflammatory response, IL6-JAK-STAT3 signaling, IL2-STAT5 signaling, 
TGF-β signaling, and TNFα signaling via NFκB.

Immune cell infiltration in SCM

The ssGSEA algorithm was used to analyze the infiltration of 28 immune cell types, and 
the SCM and control groups in the GSE79962 dataset were compared with investigate 
variations in the immune landscape. Significant disparities in the myocardial infiltra-
tion of activated CD4 T cell, activated dendritic cell, CD56dim natural killer cell, imma-
ture dendritic cell, MDSC, monocyte, natural killer T cell, neutrophil, and plasmacytoid 
dendritic cell between the DCM and CON groups (P < 0.05). All the aforementioned 
immune cell types were significantly enriched in the microenvironment of patients with 
SCM (Additional file 1: Fig. S3A, B). As shown in Additional file 1: Fig. S4C, additional 
analysis of the infiltrating immune cells in SCM revealed several significant correla-
tions between these cells. The strength of these correlations was further quantified using 
scores. Notably, the strongest synergistic effect was observed between memory B cells 
and macrophages (0.85), followed by macrophages and eosinophils (0.82), monocytes 
and memory B cells (0.82), immature dendritic cells and gamma delta T cells (0.81), and 
monocytes and macrophages (0.80).

Relationship between hub MitoDEGs and immune cells

We assessed the potential relationship between the six hub MitoDEGs and immune 
cells. Correlational analyses revealed a generally positive relationship between the 
upregulated hub genes of SCM (FBXO7 and PGS1) and the upregulated infiltration 

Fig. 5  Nomogram construction and evaluating the diagnostic value. A Visualization of the nomogram for 
SCM diagnosis. B–I ROC curve for each candidate gene (BCS1L, FBXO7, LYRM7, MRPS31, PGS1, and TIMMDC1) 
and the nomogram in both the training and validation sets show its significant diagnostic value for SCM
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of immune cells but a generally negative relationship between the downregulated hub 
genes (BCS1L, LYRM7, MRPS31, and TIMMDC1) and the infiltration of immune cells 
(Fig. 6A). The most significantly positive correlation was found between FBXO7 expres-
sions and immature dendritic cell infiltrations (r = 0.67, P < 4.78e−5). The negative corre-
lation between TIMMDC1 expressions and plasmacytoid dendritic cell infiltration was 
most significant (r = − 0.70, P < 1.39e−5).

Meanwhile, to further explore the MitoDEGs-inflammation association during SCM, 
we plotted the correlation between ssGSEA scores of hallmark-inflammatory response 
and hub gene expression in pantissue clinical samples through the Genotype-Tissue 
Expression (GTEx) database (https://​gtexp​ortal.​org/​home/). Six hub genes were corre-
lated significantly with the inflammatory response in most tissues (Fig. 6B–G).

Fig. 6  Correlation and pantissue analysis between six hub genes and inflammation disorder. A Correlation 
between hub genes and immune cells. B–G Pantissue analysis of the correlation between the expression of 
six hub genes and hallmark-inflammatory responses in 31 types of tissues based on the GTEx database

https://gtexportal.org/home/
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Single‑cell RNA‑seq analysis

Single-cell RNA-seq data of PBMCs from two healthy participants and three patients 
with sepsis were obtained from GSE167363. Cells with gene detection counts per cell 
exceeding 2500 or falling below 200, as well as cells with mitochondrial percentages 
exceeding 5%, were excluded to ensure data quality. The gene expression matrices were 
then subjected to batch effect removal via Harmony (Fig. 7A, B). To determine the opti-
mal resolution for unsupervised clustering, performances of 11 different resolution val-
ues were compared using the clustree package (Fig. 7C). A resolution of 0.3 was chosen 
to accurately differentiate cell types based on their preassigned annotations. UMAP 
revealed the presence of 13 distinct cell clusters, each labeled with a distinct color 
(Fig.  7D). Considering the expression patterns of marker genes, the clustering results 

Fig. 7  Comparison of single-cell analysis before and after normalization. A UMAP plots representing 
batch effects from replicates before Harmony, B UMAP plots showing the correction of batch effects after 
Harmony. C Clustree plot for determining resolution with principal components (PCs). D Unified manifold 
approximation and projection clustering into 13 clusters. E Cells from human peripheral blood samples were 
annotated using CellMarker and singleR. F FeaturePlots showing the expression pattern of FBXO7, PGS1, 
BCS1L, LYRM7, MRPS31, and TIMMDC1 in peripheral blood mononuclear cells (PBMCs) from SCM and control 
groups. G Dot plot shows the expression levels of hub genes in each cell cluster. H The violin plot displays the 
gene expression of FBXO7 in each cell cluster. *p < 0.05, **p < 0.01, ***p < 0.001
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obtained through UMAP were further refined and annotated using singleR and Cell-
Marker (Fig.  7E). The expression pattern of six hub genes was depicted in the PBMS 
UMAP plots of healthy participants and patients with SCM. FBXO7 was significantly 
upregulated in the SCM group (Fig. 7F). Dotplot analysis indicated that FBXO7 expres-
sion in the control and SCM groups was variable among different cell clusters (Fig. 7G). 
Quantitative analysis of FBXO7 expression, as shown in the violin plot, revealed an 
increase in FBXO7 expression in the naive B cell, CD14+ monocyte, memory B cell, and 
plasma cell (Fig. 7H).

Overview of the mitochondria/inflammation‑related pathway of interest at single‑cell 

resolution

Our previous study demonstrated that disorders of the immune system and mitochon-
drial metabolism system play significant roles in the pathogenesis and pathophysiology 
of SCM. Consequently, we utilized the “irGSEA” package to investigate distributions 
of the aforementioned pathways using scRNA-seq gene set enrichment analysis. Most 
mitochondrial metabolism-related pathways were downregulated in the SCM group. In 
contrast, inflammation-related pathways were upregulated in the SCM group (Fig. 8A). 
The heatmap of GSEA scores for cell subsets in the control and SCM groups showed 
varied distribution of the mitochondria/inflammation-related pathways across sub-
groups (Fig. 8B). The density scatterplot showed the distribution of the OXPHOS, ROS, 
mitochondrial biogenesis, mitophagy, mitochondrial fission, and inflammatory response 
pathways in the SCM group (Fig. 8C–J). The ridge plot demonstrated that the inflam-
matory response pathway was predominantly enriched in neutrophil, DC, and mono-
cyte subgroups of patients with SCM. This observation carries significant implications 
since these cell subtypes are well-known for their essential roles in the immune system. 
The finding suggests that activation of inflammation and mitochondrial dysfunction in 
these particular cell subtypes can cooperate and may even function synergistically in the 
pathogenesis of SCM.

Prediction of candidate drugs

Using the DSigDB database from the Enrichr website, we searched for potentially effec-
tive interventional drugs targeting the hub genes. Figure 9A shows the top 20 potential 
chemical compounds based on their combined score and adjusted p-value. Metformin, 
with the highest combined score, was the most promising drug molecule for the treat-
ment of SCM. We further investigated how metformin exerted its protective effects on 
mitochondria in SCM. The binding between metformin and six key targets (Fig. 9B–G) 
was investigated using molecular docking. The molecular docking validation confirmed 
that the relative binding energies of metformin and FBXO7/BCS1L/PGS1/LYRM7/TIM-
MDC1/MRPS31 fall within the range suitable for their interaction (Table 1). FBXO7 was 
found to possess the highest binding energies with metformin.

Experimental validation

Using quantitative reverse-transcription polymerase chain reaction (qRT-PCR; n = 8 
in each group), the expression of six hub MitoDEGs (FBXO7, PGS1, BCS1L, LYRM7, 
MRPS31, and TIMMDC1) in HL-1 cells treated with LPS was confirmed. FBXO7 and 
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PGS1 were significantly increased in the SCM group compared with the control group 
(P < 0.05), whereas BCS1L, MRPS31, and TIMMDC1 were significantly decreased in 
the SCM group (P < 0.05) (Fig. 10A). Given the central role of mitochondrial metabo-
lism in the SCM, we investigate whether LPS treatment increased the susceptibility 
of the myocardium to sepsis by altering mitochondrial respiration function using the 
Seahorse XF Cell Mito Stress Test (n = 8 in each group). Upon LPS treatment, basal, 

Fig. 8  Overview of the mitochondria/inflammation-related pathways of interest at single-cell resolution. 
A, B Heatmap of gene set enrichment analysis (GSEA) scores for mitochondria/inflammation-related 
pathways among different patient groups and cell subsets. C UMAP of SCM scRNA-seq datasets with 
cluster annotations. D–J Density scatterplot and ridge plot reflecting the distribution of mitochondria/
inflammation-related pathways of interest in the SCM group. *p < 0.05; **p < 0.01; ***; p < 0.001
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reserve, maximal respiratory capacity, and ATP levels were all relatively impaired in 
the SCM group, and metformin treatment effectively mitigated the impairment in 
mitochondrial metabolism (Fig.  10B–H). We validated our results by investigating 
these associations in animal models. Compared with the control group, echocardi-
ography revealed significantly decreased EF% and FS% in the SCM group (P < 0.05), 
while LVDd and LVDs were significantly increased (P < 0.05; n = 6 in each group) 
(Fig.  11A–D). Metformin intervention in the SCM model significantly reversed the 
aforementioned changes. To examine the hypothesis that the cardioprotective effects 
of metformin on SCM are mediated by mitochondria, primary cardiomyocytes were 
stained with JC-1 dye and imaged by confocal microscopy. JC-1 fluorescence analysis 

Fig. 9  Prediction of the top 20 candidate drugs for SCM based on mitoDEGs. A The top 20 most significant 
candidate compounds were predicted for MitoDEGs using the DSigDB database. B–G Molecular docking 
between MitoDEGs and metformin

Table 1  Binding energy of Metformin to six hub targets

Target FBXO7 BCS1L PGS1 LYRM7 TIMMDC1 MRPS31

Binding energy (kcal/mol) −5.6 −5.4 −5.0 −4.7 −4.4 −4.1
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revealed decreased mitochondrial membrane potential in the SCM group, which was 
restored following metformin treatment (n = 8 in each group, Fig.  11E, F). ELISA 
was performed to assess whether metformin affected inflammation by observing 
the changes in the levels of inflammatory factors (n = 6 in each group). Metformin 
intervention significantly reversed the SCM-induced increase in TNF-α/IL-1β levels 
(Fig. 11G–I).

To identify the therapeutic targets of metformin intervention in cardiomyo-
cytes affected by SCM, we examined the expression of five potential biomarkers 
(FBXO7, PGS1, BCS1L, MRPS31, and TIMMDC1) by qPCR in the control, SCM, and 
SCM + metformin groups (n = 6 in each group, Fig.  12A). Metformin intervention 
could reduce the upregulated transcriptional levels of FBXO7 in the SCM group and 
restore the downregulated transcriptional levels of BCS1L. Western blot analysis con-
firmed that the interventional effect of metformin on BCS1L target was more robust 
(Fig. 12B–D). We further constructed a BCS1L-knockdown cell model using siRNA to 

Fig. 10  Confirmation of hub MitoDEG expression and the key role of mitochondrial dysfunction in the 
pathogenesis of SCM. A mRNA expression of the hub MitoDEGs between the control and SCM groups. B 
Analysis of HL-1 mitochondrial metabolism with Seahorse XFe96 Analyzer. OCR was monitored continuously 
at baseline and after the addition of oligomycin (2 mM), FCCP (1 mM), and R/A (0.5 mM). C–H Basal 
respiration, maximal respiration, nonmitochondrial oxygen consumption, spare respiratory capacity, proton 
leak, and ATP production levels. Mitochondrial metabolism is impaired in the SCM group. OCR, oxygen 
consumption rate; FCCP, carbonyl cyanide-4-phenylhydrazone; R/A, rotenone and antimycin A (N = 8 
independent cell samples per group). *p < 0.05, **p < 0.01, ***p < 0.001
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validate the interventional target. Seahorse XF Cell Mito Stress Test analysis demon-
strated that metformin intervention significantly ameliorated mitochondrial dysfunc-
tion in cardiomyocytes following SCM stimulation. However, the cardioprotective 
effects of metformin on mitochondria were attenuated in the BCS1L-knockdown 

Fig. 11  Metformin improves cardiac function by alleviating mitochondrial injury and inflammatory 
response in mice with SCM. A–D Results of echocardiography. LVEF, left ventricular ejection fraction; FS, 
left ventricular fraction shortening; LVDd, left ventricular diastolic dimension; LVDs, left ventricular systolic 
dimension. E, F Analysis of the mitochondrial membrane potential in isolated cardiomyocytes loaded with 
JC-1. G–I Comparison of expression of inflammation factors between different groups (N = 6 mice or eight 
independent cell samples per group). *p < 0.05, **p < 0.01, ***p < 0.001
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condition (n = 8 in each group, Fig. 12E–K). The levels of inflammatory factors under 
various conditions were observed using ELISA. Compared with the SCM + met-
formin group, a significant increase in the expression of inflammatory factors (IL-1β/

Fig. 12  Metformin can potentially regulate the immune-metabolic microenvironment in SCM by targeting 
BCS1L. A mRNA expression of potential targets in the control, SCM, and SCM–metformin groups. B–D 
Proteins were isolated from cardiomyocytes in the control, SCM, and SCM–metformin groups, and the levels 
of BCS1L and FBXO7 were determined by western blotting. E–K Analysis of HL-1 mitochondrial metabolism 
with Seahorse XFe96 Analyzer. OCR was monitored continuously at baseline and after adding oligomycin 
(2 mM), FCCP (1 mM), and R/A (0.5 mM) to compare basal respiration, maximal respiration, nonmitochondrial 
oxygen consumption, spare respiratory capacity, proton leak, and ATP production levels among the control, 
SCM, SCM–metformin, and SCM–metformin–siBCS1L groups. G–I Comparison of levels of inflammation 
factors among different groups (N = 6 mice or eight independent cell samples per group). *p < 0.05, 
**p < 0.01, ***p < 0.001
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TNFα) was found in the SCM + metformin + si-BCS1L group (n = 8 in each group, 
Fig. 12L, M). These findings suggest that BCS1L may be a key target of metformin in 
modulating the cardiac immune-metabolic microenvironment in SCM.

Discussion
Severe effects of sepsis impose a substantial burden on the health care system owing to 
the high morbidity and mortality rates. SCM is among the leading causes of mortality 
in patients with sepsis [6, 35]. Unfortunately, a lack of understanding of the mechanism 
and consensus on diagnostic criteria impedes early diagnosis and effective treatment of 
SCM. Therefore, there is an urgent need to enhance the understanding of SCM patho-
genesis and identify promising drugs and novel therapeutic targets for its treatment.

By integrating bioinformatics methods, we identified DEGs from SCM-related human 
microarray datasets from the GEO repository. It was observed that the DEGs were 
enriched in mitochondria/immune-associated pathways such as oxidative phosphoryla-
tion, the TCA cycle, and the TNF signaling pathway. Because the proper functioning of 
the cardiac contractile and relaxation mechanisms is fundamentally dependent on the 
sustained energy supply, mitochondrial dysfunction, and metabolic disorders are closely 
associated with various cardiovascular diseases [18, 36–38]. Sepsis is characterized by an 
aberrant host immune response to infection. Among the host determinants, the innate 
immune system is vital for prompt recognition and elimination of pathogens. Neverthe-
less, in sepsis, the innate immune response may be hyperactive or hypoactive, result-
ing in a cytokine storm or immunosuppression, respectively [39, 40]. In addition, the 
immune dysregulation can trigger a cascade of events including impairment in cellular 
metabolism [17, 41, 42]. Based on these findings, the purpose of the study was to further 
investigate the regulatory role of mitochondrial metabolism and immune dysregulation 
in the onset and progression of SCM, along with seeking potential therapeutic targets 
and agents for SCM.

To our knowledge, mitochondria-related DEGs involved in courses of SCM have not 
so far been screened in related bioinformatics studies. Our research utilized MitoCarta 
3.0, a comprehensive database of mitochondrial genes and associated biological pro-
cesses, to acquire SCM-related genes associated with mitochondria [43]. A total of 262 
MitoDEGs were chosen for further analysis. Previously, machine learning algorithms 
such as SVM and RF have been utilized successfully to identify latent patterns and con-
struct prediction models based on the most accurate determinants in training datasets 
[44, 45]. Herein, we used three machine algorithms (SVM–RFE, LASSO, and RF) and 
identified six hub mitoDEGs.

Mitochondrial dysfunction is a key etiological factor in the pathology of SCM. TIM-
MDC1, MRPS31, FBXO7, PGS1, LYRM7, and BCS1L are key regulatory genes for 
mitochondrial metabolism. TIMMDC (translocase of inner mitochondrial membrane 
domain-containing) is a member of the inner mitochondrial membrane translocase 
family. The TIMMDC1 gene encodes protein M5-14, which is essential for the assem-
bly of mitochondrial NADH and the formation of the complex I membrane arm. Pre-
vious studies indicate that the depletion of TIMMDC1 noticeably inhibits the growth 
and migration of 95D cells by reducing mitochondrial viability, membrane potential, 
and ATPase activity [46]. Kang et al. identified TIMMDC1 as the key regulator in the 
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pathogenesis of SCM, consistent with our findings [47]. The mitochondrial riboso-
mal protein S31 (MRPS31) is a small subunit protein necessary for the assembly of the 
mitochondrial ribosome. It also plays a critical role in the translation of mitochondrial 
DNA into functional proteins, thus constituting key modules of OXPHOS. Intriguingly, 
the downregulation of MRPS31 is associated with reduced cellular bioenergetics. In 
hepatoma cell lines such as JHH5 and HepG2, MRPS31 suppression has been shown to 
enhance the invasiveness of hepatoma cells and disrupt the entire assembly of mitoribo-
somes [48].

FBXO7 is a component of the SKP1–Cullin1–F-box (SCF) SCFFBXO7 E3 ligase com-
plex, responsible for identifying particular substrates [49]. FBXO7 plays a crucial role 
in the regulation of important mitochondrial events such as mitophagy and the protea-
some process of protein quality control [50, 51]. Inhibiting FBXO7 effectively suppresses 
inflammation by disrupting the interaction between mitochondrial kinase, PINK1, and 
the ubiquitin machinery, thus improving mitochondrial quality [52]. However, additional 
research is necessary to determine the precise prognostic significance of FBXO7 in 
patients with SCM. PGS1 is crucial in the biosynthesis of cardiolipin, which is important 
in mitochondrial biogenesis as it directly binds to mitochondrial proteins and stabilizes 
multiprotein mitochondrial complexes. Wai et al. demonstrated that downregulation of 
PGS1 decreases cardiolipin levels in mitochondria and rescues mitochondrial dynamics 
in OPA1-mutant fibroblasts by inhibiting mitochondrial fission [53].

LYRM7 is a newly identified gene involved in the final stages of assembling mitochon-
drial complex III. It encodes nuclear-encoded mitochondrial matrix protein which sta-
bilizes UQCRFS1 and conveys it as a chaperone to the CIII complex. Defects in LYRM7 
are implicated in mitochondrial complex III (cIII) deficiency. Ferrero et  al. discovered 
that a homozygous mutation in LYRM7/MZM1L is correlated with early onset encepha-
lopathy and lactic acidosis, which may be attributed to severe suppression of OXPHOS 
[54]. BCS1L encodes a homolog of the Saccharomyces cerevisiae bcs1 protein, which is 
important for the assembly of complex III. A recent study has demonstrated that cIII‐
deficient Bcs1l p.S78G mice are at a high risk of lethal mitochondrial cardiomyopathy, 
which is accompanied by ROS overproduction, a decrease in mitochondrial respiration, 
and damage to mitochondrial ultrastructure [55, 56].

To facilitate the application of the theoretical diagnostic genome in routine clinical set-
tings, a multivariable nomogram involving all six hub MitoDEGs was constructed. The 
expression of each gene was quantified and converted to a score, which was then cor-
related with a linear predictor. An abnormal increase in the linear predictor of patients 
with sepsis can aid in early monitoring and treatment, making the nomogram a valuable 
diagnostic tool for SCM.

To further demonstrate the action of hub MitoDEGs in SCM, GSEA was performed. 
Our findings indicated significant enrichment of inflammation-related pathways in the 
high-expression subgroup of FBXO7/PGS1 and the low-expression subgroup of BCS1L/
LYRM7/MRPS31/TIMMDC1, including inflammatory response, interferon alpha 
response, TNFα signaling via NFκB, and IL6-JAK-STAT3 signaling pathways. Consider-
ing that mitochondrial dysfunction and immune disorder frequently interact and affect 
each other, the ssGSEA algorithm was employed to quantify immune cell infiltration 
between healthy individuals and patients with SCM. The proportions of both innate and 
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acquired immune cell populations increased significantly in patients with SCM. In clini-
cal settings, patients with sepsis are distinguished by an overactive immune response 
during the initial stage. Although the innate immune response predominates in the early 
stages of sepsis, innate and adaptive immune responses work together in later stages 
to reduce the risk of immune suppression and ultimately restore immune homeostasis 
[57–59]. In our study, we also discovered the highly effective synergistic combination of 
innate and acquired cell subgroups, including memory B cell and macrophage, immature 
dendritic cell, and gamma delta T cell.

The mitochondrial function can significantly affect the fate and function of immune 
cells. The result of correlation analysis revealed that BCS1L, LYRM7, MRPS31, and 
TIMMDC1 were negatively correlated with activated CD4 T cells, immature dendritic 
cells, and plasmacytoid dendritic cells. Moreover, FBXO7 and PGS1 were positively 
associated with activated CD4 T cells, activated CD8 T cells, dendritic cells, monocyte, 
and neutrophil. These observations support our findings that both innate and acquired 
immunity are active in patients with SCM. Consequently, the findings of this study also 
contribute to a better understanding of the relationship between mitochondrial metabo-
lism and immune cells in SCM.

Serial endomyocardial sampling for monitoring SCM process is not feasible. In 
clinical research, however, it is convenient to measure biomarkers using peripheral 
blood samples. The single-cell transcriptomic dataset, GSE167363, containing PBMCs 
from patients with sepsis enabled investigation at the single-cell resolution. Hub gene 
expression was analyzed in different subsets of PBMCs by the UMAP method. Upreg-
ulated genes, such as FBXO7, appeared to be the promising peripheral biomarkers of 
SCM, which are differentially expressed across a series of cell subpopulations (B cell, 
CD14+ monocyte, and plasma cell) in the peripheral blood of patients with sepsis. We 
further performed single-cell rank-based GSEA with irGSEA package and visualized the 
distributions of mitochondria/inflammation-related pathways. These pathways of inter-
est are remarkably enriched in the monocyte and B cell subpopulations, consistent with 
our above results. This result indicates that alterations in hub gene expression in the 
monocyte and B cell subpopulation can be used to infer the risk of SCM among patients 
with sepsis.

Based on the screened mitoDEGs, metformin was identified as the most promising 
therapeutic agent effective against SCM. More importantly, FBXO7, which was remark-
ably upregulated in myocardial tissue and peripheral blood, showed the highest binding 
energy with metformin. These findings were validated in LPS-induced cellular/animal 
models. The expression of the six hub genes, including TIMMDC1, MRPS31, FBXO7, 
PGS1, LYRM7, and BCS1L, was determined by qRT-PCR analysis, which exhibited a 
consistent expression pattern in line with our bioinformatics analysis. Metformin is a 
classical antidiabetic medication that activates the AMPK pathway and restores mito-
chondrial metabolism balance [60]. Metformin has various cardioprotective properties. 
Current studies have demonstrated that a protective role of metformin exerts a protec-
tive effect against SCM by downregulating the levels of proinflammatory factors, inter-
acting with IRF4 as well as correcting the bioenergetics imbalance [61, 62]. Seahorse 
analysis showed that basal respiration, maximum respiration, spare respiratory capacity, 
and ATP production were all impaired in response to LPS stimulation, but these effects 
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were ameliorated in the metformin treatment group. Metformin’s efficacy was also 
observed in a mouse model of SCM. Metformin treatment was also found to improve 
heart function impaired in the SCM group. Metformin could reverse the decrease in 
mitochondrial membrane potential observed in the SCM group. The hyperactive inflam-
matory response in the SCM model was relieved following treatment with metformin. 
Further molecular biology experiments and gene perturbation studies suggest that 
BCS1L may be a potential target for metformin intervention in SCM. The expression of 
BCS1L in cardiomyocytes was suppressed in SCM but improved following metformin 
intervention. Moreover, in BCS1L knockdown models, a diminished ameliorative effect 
of metformin on SCM was observed, reflected in aspects of mitochondrial metabolism 
and inflammatory states in cardiomyocytes. These observations underscore the pivotal 
role of BCS1L in the modulation of mitochondrial function and inflammation in SCM 
and highlight its potential as a therapeutic target in metformin intervention.

In our study, the crosstalk between mitochondrial metabolism and the immune micro-
environment was explored for the first time through bioinformatics analysis of SCM-
related datasets. The identification and validation of TIMMDC1, MRPS31, FBXO7, 
PGS1, LYRM7, and BCS1L as potential molecular targets provide evidence for further 
investigation of immunometabolism during SCM. As demonstrated by drug prediction 
and biological experimentation, metformin has potential therapeutic value for the treat-
ment of SCM, as it can restore mitochondrial metabolism and immune homeostasis. 
However, some limitations of the study warrant further consideration. First, although 
we validated the hub gene expression in mice, further experiments using human sam-
ples are still required to confirm our findings due to the inherent limitations of bioin-
formatics techniques. Second, since our data were sourced from a database, common 
covariates such as age, sex, race, and comorbidities were not considered. Further clinical 
studies and higher levels of evidence are still needed.

Conclusions
We demonstrated variations in mitochondrial-related genes and immune cell infiltration 
between SCM and healthy controls through a comprehensive bioinformatics analysis, 
uncovering the interaction between mitochondrial metabolism and immune infiltration 
in SCM for the first time. We screened six mitochondria-related candidate hub genes 
(TIMMDC1, MRPS31, FBXO7, PGS1, LYRM7, and BCS1L) using machine learning 
algorithms and developed a nomogram for early diagnosis and monitoring of patients 
with SCM. We validated the therapeutic value of metformin in SCM by combining drug 
prediction analysis with basic experiments. Metformin significantly improved cardiac 
function by rebalancing mitochondrial metabolism and immune homeostasis in patients 
with SCM.
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