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Introduction
Canonical Wnt/β-catenin signaling is one of the well-known conserved cell-commu-
nication mechanisms that involve the growth, metastasis, stemness maintenance, and 
therapeutic resistance in different kinds of cancer [1, 2]. Especially, β-catenin is one 
core molecule of this signaling. With the absence of extracellular Wnt signals (Wnt off 
state), β-catenin is restricted by a “destruction protein complex”, which consists of casein 
kinase 1 (CK1), glycogen synthase kinase 3β (GSK3β), Axin, and adenomatous polypo-
sis coli (APC) molecules, and sequentially degraded by the E3 ubiquitin ligase subu-
nit beta-transducin repeat-containing protein (β-TRCP) through ubiquitination in the 
cytoplasm. However, after the secreted Wnt molecules bind to Frizzled proteins (FZD) 
and lipoprotein receptor-related protein (LRP) 5/6 receptor complex (Wnt on state), the 
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activated signals recruit Dishevelled (DVL) and Axin to the FZD-LRP5/6 co-receptors to 
disrupt the “destruction protein complex”. Subsequently, β-catenin is released from the 
complex and translocates into the cell nucleus, where β-catenin forms a complex with 
T cell factor (TCF)/lymphoid enhancer factor (LEF) to activate the expression of Wnt-
dependent genes, including MYC as well as cyclin D1 (CCND1) genes. Also, this sign-
aling can be inhibited by endogenous inhibitory molecules, including Wnt inhibitory 
factor 1 (WIF-1), Dickkopf-related protein (DKK), and secreted frizzled-related proteins 
(SFRPs). Particularly, WIF-1 and SFRPs directly interact with Wnts, and DKK blocks the 
FZD-LRP5/6 receptor complex to inhibit Wnt/β-catenin signaling [3, 4]. Furthermore, 
numerous cellular factors, including protein kinases [5], non-coding RNA [6], and differ-
ent posttranslational modifications (PTM) [7], including phosphorylation, sumoylation, 
and ubiquitination, are identified to play a vital role in modulating this signaling.

As an evolutionarily conserved protein modification, lysine acetylation can transfer the 
acetyl group from acetyl-coenzyme A to target substrates to alter their biological func-
tions [8]. Until now, the acetylation of histone, as well as non-histone proteins, has been 
discovered [9]. Also, the acetylation levels in most identified histone and non-histone 
proteins rely on lysine acetyltransferases (KATs, also named histone acetyltransferases, 
HATs), and lysine deacetylases (KDACs, also called histone deacetylases, HDACs). KATs 
are further divided into cytoplasmic and nuclear KATs. Recently, tubulin N-acetyltrans-
ferase 1 (TAT1) and KAT1 have been discovered to act as cytoplasmic KATs. Nuclear 
KATs are classified into 5 families: CREB-binding protein (CBP)/p300, basal transcrip-
tion factors, MYST, general control non-repressed 5 (GCN5)/CBP-associated factor 
(PCAF), and nuclear receptor coactivator family. In addition, KDACs are divided into 
class I (HDAC1, 2, 3, 8) [8, 9], class II (HDAC4, 5, 6, 9, 10) [10, 12], class III (sirtuin 
(SIRT)1, 2, 3, 4, 5, 6, 7) [11], and class IV (HDAC11) [12]. Especially, it is proved that 
histone acetylation facilitates the transcription of target genes [8]. Non-histone protein 
acetylation is responsible for the modulation of various molecular functions, including 
protein stability and enzymatic activity [12].

Increasing evidence indicates that the protein lysine acetylation, including the acety-
lation of histones as well as non-histone proteins, is vital for Wnt/β-catenin signaling 
activation. Conversely, this signaling can regulate the protein lysine acetylation. Here, 
we discuss the latest advances related to protein lysine acetylation to regulate Wnt/β-
catenin signaling, the effect of this signaling on controlling protein lysine acetylation, as 
well as the potential of targeting lysine acetylation to inhibit this signaling to facilitate 
cancer treatment.

The function of Wnt/β‑catenin signaling in non‑histone protein acetylation

As mentioned above, the effect of Wnt/β-catenin signaling in different biological pro-
cesses is mainly dependent on Wnt target genes [1]. However, current evidence indi-
cates that this signaling also controls multiple molecular functions by modulating the 
acetylation levels of target proteins. For example, p53 plays a fundamental role in vari-
ous biological processes, but the mechanisms associated with the regulation of p53 are 
still not fully understood. The study by Riascos-Bernal et al. showed that β-catenin can 
suppress the function of p53 via inhibiting its acetylation mediated by CBP [13]. NF-κB 
signaling is a vital regulator of inflammation. Especially, the acetylation of RelA, a core 
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molecule in NF-κB signaling, could be acetylated by CBP. However, β-catenin can inhibit 
RelA acetylation to restrict NF-κB target gene expression in lung fibroblast and carci-
noma cells to further inhibit inflammation [14].

In Wnt/β-catenin signaling, as a restriction factor, GSK3β also could regulate the acet-
ylation levels of different molecules. Eom et al. reported that GSK3β can bind to p53, and 
the interaction is capable of initiating K373 and K382 acetylation in p53 [15]. However, 
it is still unknown which among the KATs contributes to the increase of p53 acetylation 
induced by GSK3β. In addition to p53, GSK3 also could interact with and phosphorylate 
60 kDa Tat-interactive protein (TIP60), and then strengthen Unc51-like kinase-1 (ULK1) 
acetylation mediated by TIP60 to facilitate autophagy [16]. However, whether other mol-
ecules in this signaling participate in the modulation of non-histone acetylation is largely 
unknown.

Fig. 1  Regulation of non-histone acetylation on canonical Wnt/β-catenin signaling. Without the binding of 
Wnt molecules to the FZD-LRP5/6 co-receptor complex, the signaling is inactive (Wnt off state). During the 
Wnt off state, the destruction complex composed of GSK3β, APC, Axin1, and CK1, can interact with β-catenin, 
leading to its degradation with ubiquitin–proteasome in the cytoplasm. When Wnt molecules interact with 
the FZD-LRP5/6 co-receptor (Wnt on state), the complex recruits Axin and DVL to induce the release of 
β-catenin from the destruction complex and enhance its accumulation as well as nuclear translocation. In 
the cell nucleus, β-catenin interacts with LEF/TCF and further activates Wnt-dependent gene transcription. 
During the Wnt off state, acetylation of β-catenin can be inhibited by SIRT1, SIRT2, HDAC1, HDAC2, HDAC4, 
HDAC6, and HDAC67 to block its activity. During the Wnt on state, LRP6 is acetylated by p300 to facilitate 
signaling activation. Then, β-catenin is capable of being acetylated by CBP, p300, and PCAF to increase 
protein activity. Also, acetylation of GSK3β is suppressed by SIRT1, SIRT2, and SIRT3. TCF is acetylated by CBP
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The contribution of non‑histone protein acetylation to Wnt/β‑catenin signaling

So far, in Wnt/β-catenin signaling, the acetylation of four molecules, including LRP6, 
TCF4, GSK3β, and β-catenin has been unveiled (Fig. 1). For example, Wu et al. reported 
that p300 is capable of facilitating LRP6 acetylation and then triggering its phosphoryla-
tion to sensitize this signaling and further accelerate the self-renewal of colorectal can-
cer cells to facilitate liver metastasis [17]. As for TCF4, it has been shown that, based on 
CBP, the protein can be acetylated at K150. Furthermore, the conformational change of 
the TCF4-DNA complex can be induced by acetylated TCF4 [18]. As one component of 
the “destruction protein complex” in this signaling, GSK3β is also reported to be acety-
lated, and the results show that SIRT1, SIRT2, and SIRT3 could inhibit GSK3β to block 
its activity [19–21]. However, whether other molecules in the “destruction protein com-
plex”, including CK1, Axin, and APC, are capable of being modulated by acetylation is 
still unclear.

To date, β-catenin acetylation has been widely explored by different groups. It has 
been found that β-catenin acetylation is relevant to CBP, p300, and PCAF. Especially, 
the acetylation of K345 in β-catenin is associated with p300 [22]. The K49 in β-catenin 
can be acetylated by CBP [23]. The K19 and K49 in β-catenin are the critical residues for 
PCAF-mediated acetylation [24]. Furthermore, β-catenin acetylation not only improves 
its stability by inhibiting the ubiquitin-mediated degradation [25] but also induces its 
nuclear translocation, to enhance its binding to TCF and further enhance the transcrip-
tion of Wnt-dependent genes [22].

Moreover, dependent on HATs as mentioned above, multiple molecules are involved in 
modulating β-catenin acetylation. For instance, Li et al. found that blocking proliferation 
1 (BOP1) can initiate β-catenin acetylation that is dependent on CBP to strengthen the 
drug resistance of breast cancer [26]. Forkhead box protein P1 (FOXP1) has been proven 
to activate this signaling by increasing β-catenin acetylation in different biological pro-
cesses [27, 28]. Especially, in B cell lymphoma, FOXP1 can enhance β-catenin acetylation 
through CBP. Next, the increased acetylation of β-catenin benefits the gene transcription 
mediated by FOXP1 [28]. In addition to BOP1 and FOXP1, Zhang et al. found that cell-
cycle related and expression-elevated protein in tumor (CREPT) facilitates colorectal 
cancer growth by enhancing p300-mediated β-catenin acetylation [29]. In addition, high 
glucose-dependent β-catenin nuclear retention also requires p300-dependent β-catenin 
acetylation at K354 to trigger the increase of MYC as well as CCND1 genes in multiple 
cancers [30]. Also, ATP citrate lyase (ACLY) is found to affect β-catenin acetylation at 
K49 in hepatoma carcinoma (HCC) cells [31]. Additionally, Wnt1 and Wnt7b [32] also 
can accelerate β-catenin acetylation at K49. However, it is still unknown which of the 
HATs contribute to β-catenin acetylation mediated by Wnt molecules.

Although several molecules mentioned above contribute to β-catenin acetylation, cur-
rent reports show that other cellular factors can inhibit the acetylation of β-catenin by 
suppressing KATs. For example, the transcription factor Kruppel-like factor 4 (KLF4) 
is critical for intestinal differentiation. Moreover, the differentiation mediated by KLF4 
is observed to rely on its interaction with β-catenin to inhibit acetylation of the protein 
mediated by p300/CBP [33]. The nuclear factor of activated T-cells 5 (NFAT5) is also 
verified to take participate in repressing Wnt/β-catenin signaling. Especially, NFAT5 
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directly binds to β-catenin and inhibits the interaction of β-catenin with CBP to block its 
acetylation [34].

Apart from KATs, many molecules are capable of restricting β-catenin acetylation by 
KDACs, including SIRT1, SIRT2, HDAC1, HDAC4, HDAC6, and HDAC7. For exam-
ple, in bladder cancer cells, Capsaicin can attenuate cell migration via SIRT1-dependent 
inhibition of β-catenin acetylation [35]. Additionally, it is observed that the expression 
of β-catenin is increased in liver cancer stem cells (LCSCs) and its expression is par-
ticularly associated with SIRT1. Moreover, the decrease of β-catenin acetylation medi-
ated by SIRT1 can regulate the self-renewal of LCSCs [36]. Also, SIRT1 can deacetylate 
β-catenin to block the transcription of Wnt-dependent genes and regulate cell differen-
tiation [37–39]. In addition to SIRT1, SIRT2 also could inhibit β-catenin acetylation to 
suppress the levels of MYC and CCND1 [40].

Recently, Chen et al. reported that B-cell lymphoma 3 (Bcl-3) can maintain K49 acety-
lation in β-catenin. Mechanistically, Bcl-3-dependent suppression of interaction between 
HDAC1 and β-catenin is associated with increased β-catenin acetylation in colorectal 
cancer [41]. Also, HDAC4 can inhibit β-catenin acetylation to increase its ubiquitination 
[42]. Interestingly, in breast cancer cells, it has been found that HDAC6 not only can 
inhibit K49 acetylation in β-catenin but also facilitate K345 acetylation suppression in 
β-catenin [43, 44]. Additionally, the interaction of HDAC7 with β-catenin also causes a 
decrease of K49 acetylation in β-catenin in glioma cells [45].

The influence of Wnt/β‑catenin signaling on histone acetylation

As mentioned, after Wnt/β-catenin signaling sensitization, β-catenin can interact with 
and activate TCF/LEF, which is also controlled by various transcriptional coregula-
tors, including the coactivators and corepressors, at the target gene promoter in the 
cell nucleus [46, 47]. Without Wnt signals, TCF/LEF binds to HDAC1 and HDAC2, 
and causes histone H3 hypo-acetylation at the promoters of Wnt-dependent genes, 
and induces suppression of gene transcription [48–51]. Moreover, HDACs are capable 
of inhibiting β-catenin by enhancing its degradation, and inhibiting its nuclear translo-
cation to regulate downstream gene transcription (Fig. 2) [52]. Also, SIRT6, one com-
ponent of HDACs, can bind to β-catenin, resulting in histone H3K56 deacetylation to 
prevent gene transcription [51]. In addition to HDAC1, HDAC2, and SIRT6, whether 
other constituents of HDACs take part in the transcriptional inhibition through regulat-
ing the function of β-catenin or TCF/LEF is not fully clarified.

Upon activation by Wnt molecules, β-catenin is capable of interacting with TCF/LEF 
and disrupting the interaction of TCF/LEF with HDACs to form an active transcrip-
tional complex in the cell nucleus (Fig. 2). Meanwhile, β-catenin can recruit p300/CBP 
to the transcriptional complex. In turn, p300/CBP acts as the transcriptional coactiva-
tor of β-catenin to induce histone H4 acetylation and stimulate gene transcription [53, 
54]. As a chromatin effector, Pygopus 2 (Pygo2) is capable of being acetylated by the 
protein complex composed of CBP and p300. In the nucleus, when Pygo2 binds to the 
β-catenin-TCF/LEF complex, the acetylation of Pygo2 facilitates histone H3/H4 acetyla-
tion by recruiting CBP/p300 and GCN5 to activate gene transcription [55]. In HCC cells, 
A-kinase interacting protein 1 (AKIP1) can bind to β-catenin and maintain its accumu-
lation in the cell nucleus by suppressing its binding to APC. Moreover, AKIP1 has the 
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capability of enhancing β-catenin activation and leading to the recruitment of CBP to 
activate gene transcription [56].

However, in the nucleus, BTB domain and CNC homolog 1 (Bach1) is found to directly 
bind to TCF4, and the interaction not only reduces the binding of β-catenin to TCF4 but 
also decreases the interaction of p300/CBP with β-catenin to inhibit β-catenin acetyla-
tion. Furthermore, Bach1 can occupy the TCF4-binding site and recruit HDAC1 to the 
target genes promoter [57]. BarH-like Homeobox 2 (Barx2) and paired box 7 (Pax7) are 
recently identified components of the TCF/LEF transcriptional complex. After Wnt3a 
stimulation, Barx2 can be recruited to TCF/LEF binding sites with glutamate receptor 
interacting protein 1 (GRIP-1) at the Axin2 promoter, and further recruit β-catenin to 
induce H3 acetylation in myoblasts. In contrast, dependent on the interaction with core-
pressor HDAC1, Pax7 is able to repress Axin2 promoter activity, through inhibiting H3 
acetylation at the promoter of Axin2 mediated by Barx2 at the transcriptional complex 
[58]. In myoblasts, Wnt3a not only induces expression of Barx2 at the gene level but also 
stabilizes Barx2 at the protein level to facilitate Axin2 expression. Conversely, Wnt3a can 
suppress Pax7 protein expression to induce transcription of the Wnt target gene Axin2.

Fig. 2  Molecular mechanisms associated with histone acetylation in β-catenin-TCF/LEF-dependent 
transcription of Wnt target genes. In the Wnt off state, TCF/LEF interacts with HADC1 and HADC2 to inhibit 
gene transcription by inhibiting acetylation of histone H3/H4. SIRT6 binds to β-catenin and participates 
in inhibition of β-catenin-TCF/LEF-dependent transcription. Bach1 binds to HDAC1 to suppress β-catenin. 
Pax7 inhibits the function of Barx2 in activating β-catenin, to block histone acetylation-associated gene 
transcription. In the Wnt on state, β-catenin interacts with TCF/LEF to release HDAC1 and HDAC2 to 
transcription factor binding sites. Additionally, β-catenin recruits p300, CBP, AKIP1, and Barx2 to facilitate 
histone acetylation at the target gene promoter. Pygo2 is also recruited by β-catenin to bind to p300 and 
GCN5 to promote histone acetylation to induce gene expression
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The impact of histone acetylation on Wnt/β‑catenin signaling

To date, increasingly studies have indicated that the activation of histone acetyla-
tion at Wnt, β-catenin, and FZD promoters can control their transcription (Table 1). 
In detail, the results from Jing et  al. show that the levels of histone H3K9 acetyla-
tion at Wnt1, Wnt10a, Wnt6, and Wnt10b promoters are decreased in bone mar-
row-derived mesenchymal stem cells (BMSCs). Conversely, GCN5 is observed to be 
responsible for the differentiation of BMSCs by increasing H3K9 acetylation at the 
promoters of these Wnt genes to facilitate Wnt/β-catenin signaling activation [59]. 
As for β-catenin, Huang et al. found that, by interacting with the β-catenin promoter, 
HDAC1 can inhibit its expression in mouse embryonic fibroblasts (MEF, C3H10T1/2 
cells). However, it is still unclear which histones at the promoter of β-catenin could be 
regulated by HDAC1 to suppress its gene expression [60]. In an Alzheimer’s disease 
mouse model, the nuclear paraspeckle assembly transcript 1 (NEAT1) can enhance 
FZD3 transcription by increasing the acetylation of H3K27 at its promoter. Mech-
anistically, based on NEAT1, P300 could be recruited to the FZD3 promoter and 
enhance the transcription of the FZD3 gene through histone H3K27 acetylation [61]. 
Additionally, Liu et al. found that SIRT6 can interact with FZD4 and suppresses FZD4 
transcription by decreasing histone H3K9 acetylation in hepatoblastoma cells [62].

In contrast, histone acetylation at several endogenous inhibitory proteins, includ-
ing WIF-1, SFRP, and DKK1, can regulate the expression of these molecules to inhibit 
Wnt/β-catenin signaling. For example, WIF-1 expression can be silenced by sup-
pression of histone acetylation. Following treatment with trichostatin A (TSA), the 
expression of WIF1 is restored. Furthermore, HDAC3 may contribute to the restric-
tion of histone acetylation at the promoter of WIF-1 to block its expression [63]. In 
HCC with hepatitis C virus (HCV) infection, based on HDAC1, the viral core protein 
could silence SFRP1 expression by inhibiting histone H3 acetylation [64]. After treat-
ment of glioblastoma cells with TSA, the acetylated histone H3 is increased at the 
promoters of WIF-1, SFRP1, and DKK1 [65]. However, SIRT1 can suppress H3K9 and 
H4K16 acetylation to restrict SFRP1 and SFRP2 mRNA expression [38].

In breast cancer, it was found that prostate tumor overexpressed-1 (PTOV1) can 
suppress transcription of DKK1 by recruiting HDAC1 and HDAC2 and decreasing 
histone H3/H4 acetylation levels at the DKK1 promoter [66]. Li et al. observed that, 
through initiating acetylation of H3K9 and H3K14 at the DKK1 promoter, GCN5 
could promote DKK1 expression to modulate periodontal ligament stem cell differ-
entiation [67]. Furthermore, in breast cancer, chromobox protein homolog 7 (CBX7) 
is observed to enhance the expression of DKK1. Notably, CBX7 can recruit p300/
CBP to the DKK1 promoter to increase histone H3 acetylation [68]. In colon can-
cer SW480 cells, Genistein was found to affect histone H3 acetylation at the DKK1 
promoter [69]. Additionally, Niu et al. observed that epidermal growth factor (EGF) 
initiates DKK1 expression in HCC cells by increasing histone H3 acetylation through 
p300 [70] (Table  1). Together, these studies suggest that histone acetylation at the 
promoters of endogenous inhibitory molecules can promote expression of these gene 
to suppress Wnt/β-catenin signaling, which means that the deacetylation of histone at 
the promoters of these molecules is in favor of Wnt/β-catenin signaling.
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Targeting protein acetylation to suppress Wnt/β‑catenin signaling

Given that KATs and KDACs can modulate protein acetylation, compounds with the 
function of blocking the activity of KATs or KDACs have important therapeutic poten-
tial for diseases involving dysfunction of protein acetylation. To date, numerous KAT 
inhibitors and KDAC inhibitors have been discovered, and some of these inhibitors have 
been approved for tumor treatment or undergone clinical trials to explore their exact 
clinical effect on a variety of cancers [10, 71]. Our review presented here indicates that 
not only acetylation but also deacetylation of certain proteins can modulate Wnt/β-
catenin signaling. Especially, it has been demonstrated that acetylation or deacetyla-
tion of the target molecules is regulated by different KATs or KDACs. It is reasonable 
to speculate that the use of both KAT inhibitors and KDAC inhibitors can restrict this 
signaling to facilitate the treatment of various cancers.

Consistent with the above speculation, current data indicate that some KAT inhibitors 
can suppress this signaling (Table 2). Especially, curcumin [72], the active compound of 
turmeric or Curcuma longa L, with the function of targeting P300, could decrease the 
growth of HCC cells through regulating the Wnt/β-catenin pathway. Moreover, the clin-
ical applications of curcumin in suppressing multiple cancers, including breast cancer, 
colorectal cancer, and pancreatic cancer have undergone Phase I/II clinical trials [73]. 

Table 1  Histone acetylation and modulation of molecules in Wnt/β-catenin signaling

Ac: acetylation

Histone modifier Histone modification Target gene Effect on 
target 
genes

Target cells or models References

GCN5 H3K9Ac Wnt1 Activation BMSCs [59]

GCN5 H3K9Ac Wnt10a Activation BMSCs [59]

GCN5 H3K9Ac Wnt6 Activation BMSCs [59]

GCN5 H3K9Ac Wnt10b Activation BMSCs [59]

HDAC1 unknown β-catenin Inhibition MEFs [60]

P300 H3K27Ac FZD3 Activation Alzheimer’s disease 
mouse model

[61]

SIRT6 H3K9Ac FZD4 Inhibition Hepatoblastoma cells [62]

HDAC3 unknown WIF-1 Inhibition Fibroblasts [63]

HDAC1 H3Ac SFRP1 Inhibition HCC cells [64]

SIRT1 H3K9Ac SFRP1 Inhibition MEFs [38]

SIRT1 H4K16Ac SFRP1 Inhibition MEFs [38]

SIRT1 H3K9Ac SFRP2 Inhibition MEFs [38]

SIRT1 H4K16Ac SFRP2 Inhibition MEFs [38]

HDAC1 H3Ac DKK1 Inhibition Breast cancer cells [66]

HDAC2 H3Ac DKK1 Inhibition Breast cancer cells [66]

HDAC1 H4Ac DKK1 Inhibition Breast cancer cells [66]

HDAC2 H4Ac DKK1 Inhibition Breast cancer cells [66]

GCN5 H3K9Ac DKK1 Activation Periodontal ligament 
stem cells

[67]

GCN5 H3K14Ac DKK1 Activation Periodontal ligament 
stem cells

[67]

p300 H3Ac DKK1 Activation Breast cancer cells, HCC 
cells,

[68, 70]

CBP H3Ac DKK1 Activation Breast cancer cells [68]
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Garcinol, an extract of the traditional Chinese medicine Garcinia indicia [74, 75], also 
targets P300 and restricts the signaling in non-small cell lung carcinomas and breast 
cancer cells. However, the therapeutic potential of garcinol in inhibiting different can-
cers in clinical has not been reported. ICG-001, or the structural derivative PRI-724, 
can suppress CBP/β-catenin in several tumor cells as well (Table 2). In addition, applica-
tion of this compound in inhibiting cancer was investigated in a Phase I/II clinical trial 
[76–86].

Furthermore, several histone deacetylase inhibitors, including TSA [10, 87–89], an 
inhibitor of class I, II, and IV HDACs, can target Wnt/β-catenin signaling. However, the 
clinical potential of this compound for the inhibition of cancers is unknown. Sodium 
butyrate [10, 90, 91] and valproic acid [10, 92–94], both of which target class I, and II 
HDACs, have been approved by the Food and Drug Administration (FDA), and also can 
suppress cancer by targeting this signaling. MGCD0103, also known as mocetinostat 
[95], is an inhibitor of Class I and IV HDACs and underwent a Phase II trial for treat-
ing cancers; it has the role of suppressing Wnt/β-catenin signaling as well. Additionally, 
chidamide [10, 96], an inhibitor of class I and IV HDACs, is approved in China to treat 
cancer and can target Wnt/β-catenin signaling in cancer (Table 2). However, the molec-
ular mechanisms related to this signaling inhibition mediated by these inhibitors in most 
cancers are not well clarified.

Conclusions
The canonical Wnt/β-catenin pathway is a conserved signaling mechanism that mod-
ulates a variety of physiological and pathological processes. Especially, canonical 
Wnt/β-catenin signaling is often hyperactivated in cancers and has a significant role in 
the occurrence and progression of the disease [1, 2, 97, 98]. The clinical implications 
of potent drugs targeting this signaling to inhibit different tumors have been assessed 
[99–101], and the current pharmacological intervention mainly focuses on inhibiting 
Wnt molecules and their receptors, stabilizing the “destruction protein complex” of 
β-catenin, blocking the activity of β-catenin, as well as suppressing the interaction of 
β-catenin with its co-factors [100, 101]. However, the molecular mechanism related to 
the modulation of Wnt/β-catenin signaling in different types of tumor is complicated. To 
better target this signaling in clinical treatment, a more thoroughly understanding of the 
cellular factors that benefit the regulation of this signaling is needed.

As mentioned, protein lysine acetylation involves histone acetylation and non-histone 
acetylation. Histone acetylation is a vital epigenetic process that critically facilitates the 
control of gene expression. Additionally, as a very important type of PTM, non-histone 
acetylation can influence the expression and activity of target proteins. The reviewed 
studies presented here reveal that Wnt/β-catenin signaling has a significant role in the 
modulation of two types of protein lysine acetylation. Conversely, protein lysine acetyla-
tion not only modulates the expression of important molecules in this signaling by his-
tone acetylation but also directly regulates the function of these signaling-related core 
proteins to control its activation. To our knowledge, although the available data have 
demonstrated the cross-regulation between this signaling and protein lysine acety-
lation as mentioned above, our information on the detailed interaction between the 
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constituents of Wnt/β-catenin signaling with protein lysine acetylation, including his-
tone acetylation as well as non-histone protein acetylation, remains limited. Therefore, 
additional research focusing on the interplay of Wnt/β-catenin signaling with protein 
lysine acetylation is required to deeply understand their coordinated roles and related 
mechanisms.

Generally, protein lysine acetylation relies on the balance of catalytic activity in KATs 
and KDACs. So far, a variety of KAT inhibitors and KDAC inhibitors have been identi-
fied [10, 71], and some of these identified inhibitors have been approved for targeting 
different cancers in clinical. Moreover, our reviewed studies suggest that many of these 
inhibitors can inhibit the development of different cancers by blocking this signaling. 
However, the information on the suppression of this signaling mediated by these inhibi-
tors is mainly from in vitro cell models [71–96]. Data from animal experiments, as well 
as clinical trials, are needed to confirm whether the anticancer effect of these inhibitors 

Table 2  Information on KAT inhibitors and KDAC inhibitors to suppress Wnt/β-catenin signaling

Drug name KAT or HDAC 
specificity

Clinical stage in 
treating cancer

Target cancer 
cell models

Effect on 
Wnt/β-catenin 
signaling

References

Curcumin KAT inhibitor Phase I/II HCC, Breast 
cancer, Chronic 
myeloid leukemia, 
Colorectal cancer, 
Colon carcinoma, 
Intestinal ade-
noma, Pancreatic 
cancer, Ovar-
ian carcinoma, 
Head and neck 
squamous cell 
carcinoma

Inhibition [72, 73]

Garcinol KAT inhibitor Preclinical Non-small cell 
lung carcino-
mas, Breast cancer

Inhibition [74, 75]

ICG-001 KAT inhibitor Phase I/II Osteosarcoma, 
Pancreatic cancer, 
HCC, Nasopharyn-
geal carcinoma, 
Uveal melanoma, 
Colorectal cancer, 
Lung cancer, 
glioma, Myeloma, 
Gastric cancer, 
Acute lympho-
blastic leukemia

Inhibition [4,76–86]

TSA HDAC inhibitor Preclinical Pituitary ade-
noma, Colorectal 
carcinoma, HCC

Inhibition [10, 87–89]

Sodium butyrate HDAC inhibitor FDA approved Gastric cancers, 
Colon carcinoma

Inhibition [10, 90, 91]

Valproic acid HDAC inhibitor FDA approved Glioma, Bladder 
cancer, Acute T 
lymphoblastic 
leukemia

Inhibition [10, 92–94]

MGCD0103 HDAC inhibitor Phase II trial Colon cancer Inhibition [10, 95]

Chidamide HDAC inhibitor Approved in 
China

B cell acute lym-
phocytic leukemia

Inhibition [10, 96]



Page 11 of 14You et al. Cellular & Molecular Biology Letters            (2022) 27:7 	

is related to Wnt/β-catenin signaling. Furthermore, given the critical role of lysine acety-
lation on the modulation of Wnt/β-catenin signaling, a better understanding of the roles 
and associated mechanisms linked to protein lysine acetylation to facilitate this signaling 
activation may give us a unique opportunity to treat cancers.
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