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Abstract 

The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–
robot interaction. This compliance reduces the risk of damage to the manipulated object and its surroundings. 
However, continuum robots possess theoretically infinite degrees of freedom, and this high flexibility usually leads 
to complex deformations when subjected to external forces and positional constraints. Describing these complex 
deformations is the main challenge in modeling continuum robots. In this study, we investigated a novel variable 
curvature modeling method for continuum robots, considering external forces and positional constraints. The robot 
configuration curve is described using the developed mechanical model, and then the robot is fitted to the curve. 
A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model. The 
feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex 
trajectories with a load. This work was able to serve as a new perspective for the design analysis and motion control 
of continuum robots.
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1  Introduction
Continuum robots have garnered significant interest in 
the field of robotics, owing to their high intrinsic com-
pliance, environmental adaptability, and operational 
safety [1, 2]. A large number of researchers have con-
ducted related research [3, 4], resulting in the develop-
ment of various new continuum robots. Renda et al. [5, 6] 
designed cable-driven continuum robots. Marchese et al. 
[7–9] developed pneumatic continuum robots. Gu et al. 
[10, 11] developed dielectric elastomer-driven continuum 

robots. Kim and Lin conducted research on magnetic 
actuation-based soft robotics [12, 13]. These continuum 
robots show great potential across a wide array of appli-
cations, including medical equipment, unstructured 
environment exploration and soft manipulation [14–16]. 
However, continuum robots possess a theoretically infi-
nite number of degrees of freedom (DOF), and this high 
flexibility allows complex deformations of the robot in 
response to external forces and positional constraints. 
Therefore, accurately and efficiently modeling continuum 
robots with external forces remains a challenging task 
[17, 18].

Unlike traditional rigid rod robots, continuum robots 
achieve movement by deforming themselves. Therefore, 
the kinematics of continuum robots can be replaced 
by mechanical analysis. When solving the model, con-
tinuum robots are usually discretized into a series of 
points. Mathematically, a spatial curve can be deter-
mined by these positions of points. The objective is to fit 
the continuum robots as closely as possible to these spa-
tial curves [19, 20]. The calculation methods for spatial 
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curves mainly include the constant curvature approach 
and variable curvature approach.

The constant curvature approach is a simplified 
approach for modeling continuum robots, assuming 
that the curvature of the curve between discrete points 
is the same. The advantages of closed kinematics and 
ease of solution make this method widely used in con-
tinuum robot modeling. In order to improve the accuracy 
and dexterity, Jones et  al. [21] developed a geometrical 
approach for modeling a constant curvature continuum 
robot, leading to a closed-form model. Freixedes et  al. 
[22] established an optimization framework for contin-
uum robots based on the constant curvature assumption 
and derived optimized structural parameters. They pro-
posed a kinematic model to describe the deflection char-
acteristics of the contact–assisted continuum robot and 
conducted the experimental verification. Webster et  al. 
[23] unified the kinematics and differential kinematics 
results of single-segment and multi-segment continuous 
robots with constant curvature within a common coordi-
nate system and symbol setting. Della et al. [24] analyzed 
the limitations of constant models and proposed an alter-
native state representation to solve these issues. Simula-
tion cases were used to support the theoretical analysis. 
In order to simulate interactions with the environment, 
Schiller et  al. [25] extended the constant curvature 
method based on energy minimization techniques, and 
the proposed model exhibited effective robot kinematics.

Due to constant curvature approaches do not com-
pletely match all the characteristics of continuum robots, 
various variable curvature approaches have been devel-
oped. Based on the Lagrangian polynomial series solu-
tion method, Ritz and Ritz-Galerkin methods, Hadi 
et  al. [26] minimized the configuration of the contin-
uum robot to the geometric positions of a few physical 
points. Singh et  al. [27], using Pythagorean hodograph 
(PH) curves, proposed a quantitative modeling method 
to obtain three-dimensional reconstructions of the con-
figurations of a continuum robot with variable curvature. 
Gonthina et al. [28] proposed a cross-sectional modeling 
method for variable curvature continuum robots based 
on Eulerian spiral curves. They compared the simulation 
results with the constant curvature method, proving that 
the proposed method significantly better matched vari-
ous hardware configurations of the robot. The modeling 
approach described above provides a good description of 
the forward and inverse kinematics of a soft continuous 
robot with variable curvature, with a primary focus on 
the geometric description of the robot, without consid-
ering the effect of external forces. Therefore, additional 
visual or displacement sensors are necessary to measure 
the real-time robot configuration. Some scholars have 
considered the influence of external forces and proposed 

meaningful modeling methods. Godage et al. [29] simu-
lated the transient and steady state dynamics of a con-
tinuum robot prototype based on the lumped parameter 
model. Renda et al. [30] established a mechanical model 
for a short thick continuum robot under the influence 
of external forces using the Cosserat theory. The experi-
ment verified the most typical movements of the octo-
pus: bending, stretching and grasping. Based on the finite 
element method (FEM), Bieze et al. [31] obtained the kin-
ematics of two different continuum robots with complex 
structural geometries. Lumped parameter models are 
known for reducing model complexity, albeit at the cost 
of accuracy. Cosserat theory and finite element method 
are typically computationally intensive. In summary, this 
study was motivated by the ongoing challenge of per-
forming rapid simulations for continuum robot setups.

This paper proposed a novel modeling method for con-
tinuum robots based on the principles of virtual work 
and vector mechanics, enabling quick and accurate calcu-
lation of continuum robot configurations. First, the equi-
librium equations for continuum robots were developed, 
and discretized using the finite difference method (FDM). 
Subsequently, the least squares method was applied to 
transform the equation solution into an optimization 
problem. A 10-section continuum robot driven by pneu-
matic artificial muscles (PAMs) was developed, and the 
accuracy of the model was experimentally verified.

The rest of this paper is organized as follows. Sec-
tion 2 presents a variable curvature model for continuum 
robots, considering external forces and positional con-
straints. Section  3 details two sets of experiments: one 
involving movement to target points with a load, and 
the other focusing on complex trajectory tracking with 
a load, serving to validate the model. Finally, the conclu-
sion is presented in Section 4.

2 � Modeling
2.1 � Main Model
The model is applicable to many types of continuum 
robots driven by different mechanisms. Because we used 
a pneumatic continuum robot for our experiments, we 
modeled the pneumatic continuum robot as an exam-
ple. In general, the structure of pneumatic continuum 
robots had a central backbone and multiple sections [32], 
as shown in Figure  1(a). Each section was composed of 
three PAMs and a constraint disk, enabling a 2-DOF 
bending motion. The motion of the robot can be achieved 
by deformation of the backbone, leading to a bend in 
three-dimensional space by adjusting the lengths of the 
driving PAMs. Therefore, the configurations of the back-
bone serve as the configurations of the robot, and the 
robot model mainly focuses on analyzing the backbone.
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The backbone is discrete into n elements, and Ni repre-
sents the ith nodes. There are m constraint disks, and the 
segment between diski−1 and diski is called Segi , which 
length is �s . A static analysis was performed on the 
micro element Segi of the robot in the inertial coordinate 
system O − ξηζ , as shown in Figure  1(b). The spindle 
coordinate system of Ni is pi − xiyizi . The vector of node 
Ni with respect to O are ri . The internal force at Ni are F i . 
The gravity distribution force is f g . The relative rotation 
angle between the sections of adjacent nodes is �φ . Evi-
dently, there are a ( a = n/m ) nodes in Segi . The length of 
PAMj in Segi is li,j . The external load force at the endpoint 
of the robot is F load.
Suppose the projection vector of the z-axis unit vec-
tor in O − ξηζ is T  . The back-bone configuration can be 
obtained from Eq. (1):

 where δ denotes the integral variable.
Suppose the rate of section angular displacement φ 

with respect to arc coordinate s is ω:

Using the infinitesimal rotation theory of a rigid body, 
the relationship between ω and quaternions (q1, q2, q3, q4) 
can be derived:

(1)r(s) =

∫ s

0
T (δ)dδ,

(2)ω = lim
�s→0

�φ

�s
.

Writing Eq. (3) in matrix form,

 where q′ = dq
ds  , and Γ  is denoted as

The total energy Et of the backbone includes elastic 
strain energy Ee and external force potential energy Ep . 
When the robot is in balance,

The elastic strain energy Ee of the backbone is

(3)































ωx = 2(−q2
dq1

ds
+ q1

dq2

ds
+ q4

dq3

ds
− q3

dq4

ds
),

ωy = 2(−q3
dq1

ds
− q4

dq2

ds
+ q1

dq3

ds
+ q2

dq4

ds
),

ωz = 2(−q4
dq1

ds
+ q3

dq2

ds
− q2

dq3

ds
+ q1

dq4

ds
).

(4)ω = Γ q′,

(5)Γ = 2





−q2 q1 q4 −q3
−q3 −q4 q1 q2
−q4 q3 −q2 q1



.

(6)δEt = δEe + δEp = 0.

(7)
Ee =

∫ L
0

[

kx
(

ωx − ω0
x

)2
+ ky

(

ωy − ω0
y

)2

+ kz
(

ωz − ω0
z

)2

]

ds

2
,

Figure 1  (a) Generalized structure of pneumatic continuum robots, (b) Geometric schematic view used to describe a continuum robot
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where L denotes the length of the robot, and (kx, ky, kz) 
represents the bending stiffness around the coordinate 
axis, and (ω0

ξ ,ω
0
η,ω

0
ζ ) represents the initial state of ω

The variation of Eq. (7) is

Writing Eq. (9) in matrix form,

where ω0 =
(

ω0
x ω0

y ω0
z

)T , K = diag
(

kx ky kz
)

.
The variation of Eq. (4) is

Substituting Eq. (11) into Eq. (10), we obtain

The external force potential energy Ep can be expressed 
by the internal force F as

In the O − ξηζ , the force balance of Segi is

Dividing the sides of Eq. (14) by �s , and considering the 
condition �s → 0 , we obtain

In the spindle coordinate system p− xyz , Eq. (15) needs 
to be rewritten as

(8)



































kx = E
πd4

64
,

ky = E
πd4

64
,

kz = G
πd4

32
.

(9)
δEe =

∫ L

0

[

kx(ωx − ω0
x)δωx + ky(ωy − ω0

y )δωy+

kz(ωz − ω0
z )δωz

]

ds .

(10)δEe =

∫ L

0

{

[

K (ω − ω0)

]T
δω

}

ds,

(11)δω = Γ δq′ − Γ ′δq.

(12)δEe =

∫ L

0

{

[

K (ω − ω0)

]T
(

Γ δq′ − Γ ′δq
)

}

ds.

(13)δEp = −δ

∫ L

0
F · T ds.

(14)F i − F i−1 + f g�s = 0.

(15)
dF

ds
+ f g = 0.

2.2 � Discretization of the Equations
The quaternions at node Ni is denoted as qi , where 
qi =

[

q1,i q2,i q3,i q4,i
]T . By performing linear interpo-

lation in Segi , the quaternions and their derivatives in 
Segi are as follows:

The quaternions at nodes Ni−1 and Ni are combined 
into an 8-order array, denoted as

Then, Eq. (17) can be expressed as

where Ψ 4 and Φ4 are 4 × 8 matrices composed of a 
4-order unit matrix E4

The average and derivative of Γ  in Segi are denoted as 
Γ i and Γ ′

i , respectively.

where

The average and derivative of ω in Segi are denoted as 
ωi and ω′

i , respectively:

Substituting Eq. (19) into Eq. (23), we obtain

Eq. (12) can be discretized as

(16)
dF

ds
+ ω × F + f g = 0.

(17)











qk ,i =
qk ,i−1 + qk ,i

2
,

q′k ,i =
qk ,i − qk ,i−1

�s
,

(k = 1, 2, 3, 4; i = 1, 2, ..., n).

(18)qi−1,i =
(

qTi−1 qTi
)T

.

(19)qi = Ψ 4qi−1,i q
′

i = Φ4qi−1,i,

(20)Ψ 4 =
1

2

(

E4 E4

)

, Φ4 =
1

�s

(

−E4 E4

)

.

(21)











Γ i(qi) =
1

2

�

Γ i−1(qi−1)+ Γ i(qi)
�

,

Γ ′(q′i) =
1

�s

�

Γ i−1(qi−1)− Γ i(qi)
�

,

(22)Γ i(qi) = 2





−q2,i q1,i q4,i −q3,i
−q3,i −q4,i q1,i q2,i
−q4,i q3,i −q2,i q1,i



.

(23)ωi = Γ i(qi)q
′
i δωi = Γ i(qi)δq

′
i − Γ ′(q′i)δqi.

(24)

{

ωi = Γ iΦ4qi−1,i,

δωi = (Γ iΦ4 − Γ ′
iΨ 4)δqi−1,i.
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Eq. (25) can be simplified as

where

where Ai is arranged diagonally, and each matrix is 
moved 4 rows and 4 columns to the upper left, with over-
lapping elements added to form matrix A. Similarly, Bi 
is arranged horizontally, and each matrix is moved four 
columns to the left, with overlapping elements added to 
form matrix B. Eq. (25) can be expressed as

 where q =
[

qT0 qT1 ... qTn
]T.

The projection of T in O − ξηζ can be expressed by qua-
ternions as

where T i can be discretized as

Then, T i can be expressed by Si as

where

(25)
δEe =

n
∑

i=1

[(

qTi−1,iKΦT
4 Γ

T

i − ω0T
i

)

(

Γ iΦ4 − Γ ′
iΨ 4

)

]

δqi−1,i.

(26)δEe =

n
∑

i=1

(qTi−1,iAi − Bi)δqi−1,i,

(27)

{

Ai = KΦT
4 Γ

T

i (Γ iΦ4 − Γ ′
iΨ 4),

Bi = ω0T
i (Γ iΦ4 − Γ ′

iΨ 4),

(28)δEe =, (qTA− B)δq,

(29)
T =

[

2(q2q4 + q1q3) 2(q3q4 − q1q2) 2(q21 + q24)− 1
]T
,

(30)

T i =
1

3







(2q2,i−1 + q2,i)q4,i−1 + (2q2,i + q2,i−1)q4,i+
(2q3,i−1 + q3,i)q4,i−1 + (2q3,i + q3,i−1)q4,i−

�

k∈{1,4}

(q2k ,i−1 + qk ,i−1qk ,i + q2k ,i)−

(2q1,i−1 + q1,i)q3,i−1 + (2q1,i + q1,i−1)q3,i
(2q1,i−1 + q1,i)q2,i−1 − (2q1,i + q1,i−1)q2,i

�

k∈{2,3}

(q2k ,i−1 + qk ,i−1qk ,i + q2k ,i)






.

(31)T i =
1

3
Siqi−1,i,

(32)
S
(1)
i =





2q3,i−1 2q4,i−1 q1,i q2,i
−2q2,i−1 −q1,i 2q4,i−1 q3,i

q1,i−1 + q1,i −(q2,i−1 + q2,i) −(q3,i−1 + q3,i) q4,i−1 + q4,i



,

The average and derivative of F in Segi are denoted as F i 
and F ′

i , respectively.

 where F i =
[

Fx,i Fy,i Fz,i
]T.

The internal force F i−1 and F i at nodes Ni−1 and Ni 
are combined into a 6-order array, which is denoted as

Then, Eq. (35) can be expressed as

where Ψ 3 and Φ3 are 3× 6 matrices composed of a 
3-order unit matrix E3:

Eq. (13) can be discretized as

Let

(33)S
(2)
i =





2q3,i 2q4,i q1,i−1 q2,i−1

−2q2,i −q1,i−1 2q4,i q3,i−1

q1,i q2,i q3,i q4,i



,

(34)Si =
[

S
(1)
i S

(2)
i

]

.

(35)F i =
F i−1 + F i

2
F
′
i =

F
′
i − F i−1

�s
,

(36)F i−1,i =
(

FT
i−1 FT

i

)T
.

(37)

{

F i = Ψ 3F i−1,i,

F ′
i = Φ3F i−1,i,

(38)











Ψ 3 =
1

2

�

E3 E3

�

,

Φ3 =
1

�s

�

−E3 E3

�

.

(39)δEp = −
1

3

n
∑

i=1

FT
i−1,iΨ

T
3 Siδqi−1,i.

(40)U i = Ψ T
3 Si.
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Matrices U i are arranged horizontally, where each 
matrix is moved by four columns to the left to form 
matrix U  . Then, Eq. (39) can be abbreviated as

where F =
[

FT
0 FT

1 ... FT
n

]T.
Substituting Eqs. (28) and (41) into Eq. (6), the varia-

tion of Et is as

Eq. (43) can be obtained from Eq. (6):

Eq. (16) can be discretized as

Eqs. (43) and (44) are the discrete balance equations.

2.3 � Boundary Conditions
According to Eq. (1), the coordinate of any point on the 
backbone is

where σ denotes the integral variable.
Eq. (45) can be discretized by Eq. (30) as

It is typically necessary to control the endpoint’s move-
ment to a specified position when a continuum robot is 
in operation, so the position of the endpoint needs to be 
limited. Assuming the inclusion point of the robot is at 
the origin O, we obtain:

(41)δEp = −FTUδq,

(42)δEt = (qTA− B − FTU)δq.

(43)qTA− B − FTU = 0.

(44)











Fx,i−Fx,i−1

�s + ωy,iFz,i − ωz,iFy,i = 0,
Fy,i−Fy,i−1

�s + ωz,iFx,i − ωx,iFz,i = 0,
Fz,i−Fz,i−1

�s + ωx,iFy,i − ωy,iFx,i + fg = 0,

∀ i = 1 ∼ n.

(45)

r(s) =





ξ(s)
η(s)
ζ(s)



 =





2
� s
0 (q2(σ )q4(σ )+ q1(σ )q3(σ )) dσ

2
� s
0 (q3(σ )q4(σ )− q1(σ )q2(σ )) dσ

� s
0 (q

2
1(σ )− q22(σ )− q23(σ )+ q24(σ )) dσ



,

(46)



























































ξi =
�s

3
((2q2,i−1 + q2,i)q4,i−1 + (2q2,i + q2,i−1)q4,i

+(2q1,i−1 + q1,i)q3,i−1 + (2q1,i + q1,i−1)q3,i)+ ξi−1,

ηi =
�s

3
((2q3,i−1 + q3,i)q4,i−1 + (2q3,i + q3,i−1)q4,i

−(2q1,i−1 + q1,i)q2,i−1 − (2q1,i + q1,i−1)q2,i)+ ηi−1,

ζi =
�s

3
(q21,i−1 + q1,i−1q1,i + q21,i − q22,i−1 − q2,i−1q2,i − q22,i

−q23,i−1 − q3,i−1q3,i − q23,i + q24,i−1 + q4,i−1q4,i + q24,i)+ ζi−1.

(47)







ξn − Pn,ξ = 0,

ηn − Pn,η = 0,

ζn − Pn,ζ = 0,

where (Pn,ξ ,Pn,η,Pn,ζ ) is the desired coordinate of the 
endpoint.

In addition, the poses of the robot at the initial and end 
points also need to be constrained:

where (Q1,0,Q2,0,Q3,0,Q4,0) and (Q1,n,Q2,n,Q3,n,Q4,n) 
represent the desired quaternions of the initial and end 
points, respectively.

When the robot has a load, it is also necessary to add 
an endpoint force boundary condition

Eqs. (47)–(49) constitute the boundary conditions of 
the continuous robot model.

2.4 � Constraint Model
The continuum robot model, composed of Eqs. (43), (44), 
(47), (48) and (49), can be expressed as

By using the least square method, Eq. (50) can be trans-
formed into an optimization problem:

where u is the dimension of h,

The Particle Swarm Optimization (PSO) algorithm and 
the Levenberg-Marquardt (LM) algorithm are used to 
solve Eq. (51). The PSO algorithm exhibits strong global 
optimization capabilities but weaker local optimization 
abilities, while the LM algorithm exhibits the opposite 
characteristics. Therefore, our approach initially involves 
using the PSO algorithm to determine an appropri-
ate iteration initial value, and the value is subsequently 
fed into the LM algorithm to optimize the solution. The 
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.
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process of finding the initial iteration value involves two 
steps: the first step utilizes the PSO algorithm, and the 
second step employs the gradient descent method to 
modify the particle velocity term in PSO algorithm. This 
two-step process allows for the acquisition of a more 
suitable initial iteration value. The detailed procedure is 
shown in Algorithm 1.

Algorithm 1

3 � Results
3.1 � Experimental Preparation
A ten-section prototype of a continuum robot, driven 
by PAMs, was developed, as shown in Figure  2(a). The 

structure of the prototype is shown in Figure  2(b). The 
backbone is an elastic rod, and each section is driven by 
three PAMs. By changing the length of the PAMs, which 
can be achieved by inflating and deflating [33, 34], the 
robot can be controlled to bend in a three-dimensional 
space. The control system is composed of an upper 
computer (PC), a lower computer (STM 32), relays and 
solenoid valves. Communication between the upper 
computer and the lower computer occurred via Blue-
tooth. Commands are transmitted from the upper com-
puter to the lower computer, and the opening and closing 
times of the solenoid valve are controlled by the relay to 
control the durations of inflation and deflation, thereby 
adjusting the length of the PAMs.

The analysis of the robot was performed in four main 
spaces: the actuator space, the joint space, the configura-
tion space and the task space. For the pneumatic contin-
uum robot, the actuator space refers to the air pressure 
of the PAMs, the joint space refers to the length of the 
PAMs, the configuration space is determined by the dis-
crete point quaternions, and the task space refers to the 
coordinates of the robot endpoint. The mapping from 
joint space to task space is known as forward kinemat-
ics ( ffor ) and the reverse mapping is inverse kinematics 
( finv ), as shown in Figure 2(c). By adjusting the air pres-
sure of the PAMs, the robot can be controlled to bend in 
space with a load, as shown in Figure 2(d). The length of 
the PAMs is proportional to the internal air pressure, but 
precise control of the air pressure is challenging. When 
the inflation velocity is fixed, the length of the PAMs is 
proportional to the inflation/deflation time. Therefore, 
we control the length of the PAMs by controlling the 
inflation/deflation time, which can be achieved by con-
trolling the switching time of the solenoid valves. The 
relationship between these variables is shown in Figure 3.

Unlike traditional link robots, the model of a con-
tinuum robot typically yields numerical solutions rather 
than analytical solutions. When solving the continuum 
robot model, the difference format and optimization 
algorithm will inevitably introduce computational errors, 
and the number of discrete elements usually has a signifi-
cant impact on these errors. We compare the computa-
tional errors of different discrete elements and observe 
that when the number of elements increases from 5 to 20, 
the computational errors gradually decrease, and when 
they increase from 20 to 50, the computational errors sta-
bilize. At the same time, the computation time is directly 
proportional to the number of elements. When the num-
ber of elements is 20, the computation time is 5 ms, as 
shown in Figure 4. Therefore, we have determined that 20 
is the appropriate number of discrete elements.
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3.2 � Experimental Results
In practical application scenarios, continuum robots 
often need to move along certain trajectories, and these 
trajectories could be discretized into a series of target 
points. Therefore, the accuracy of the model can be ana-
lyzed by calculating the error ( e ) between the robot end-
point position and the target point. The ratio of e to the 

robot length is defined as the model error. Three sets of 
experiments were conducted to verify the model accu-
racy, each involving the robot endpoint with a different 
load.

The robot endpoint, when not carrying any load, fol-
lowed the pentagram trajectory, which was discre-
tized into 60 target points. The movement of the robot 

Figure 2  (a) Experimental platform, (b) Schematic diagram of the prototype, (c) The spaces and mappings between them, (d) The configuration 
of the continuum robot with a load

Figure 3  The relationship between the length of PAMs and the time 
of inflation/deflation

Figure 4  The relationship between the length of PAMs and the time 
of inflation/deflation
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endpoint was controlled based on the model. The tar-
get points and the actual endpoint positions are shown 
in Figure 5, and the position error of the robot endpoint 
is shown in Figure 6. When there is no load at the robot 
endpoint, the average position error is 1.97%.

The robot endpoint, with a 30 g load, followed a cir-
cular trajectory, which was also discretized into 60 tar-
get points. The comparison between the simulation and 
experimental results is shown in Figure 7, and the posi-
tion error of the endpoint is shown in Figure  8. When 
the robot endpoint with a 30 g load, the average position 
error is 2.01%.

The robot endpoint with a 60 g load followed the 
space spiral trajectory, which was also discrete into 60 
target points. The comparison between the simula-
tion and experimental results is shown in Figure  9, and 

the position error of the endpoint is shown in Figure 10. 
When the robot endpoint with a 60 g load, the average 
position error is 2.16%.

4 � Conclusions
The conclusion of this study is summarized as follows.

(1)	 Based on the principle of virtual work and vector 
mechanics, a continuum robot modeling method is 
proposed, considering external loads and position 
constraints. The model is then numerically solved 
using an optimization algorithm after the equations 
are discretized using the finite difference technique.

(2)	 Three sets of experiments are conducted to validate 
the model. The experimental results show that with 
the proposed model, the configuration can be accu-
rately predicted, and the robot can be effectively 
controlled to follow the desired trajectory. The aver-
age position errors of the robot endpoint when the 

Figure 5  Comparison of simulation and experimental results 
for robot endpoint positions on the pentagram trajectory (without 
load)

Figure 6  Errors of the robot endpoint position

Figure 7  Comparison of simulation and experimental results 
for robot endpoint positions on the circular trajectory (30 g load)

Figure 8  Errors of the robot endpoint position
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loads are 0 g, 30 g and 60 g are 1.97%, 2.01% and 
2.16%, indicating that the model error increases 
with the load. This work offers a new perspective on 
the design, kinematic analysis and motion planning 
of continuum robots.
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