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Abstract 

When a robot is required to machine a complex curved workpiece with high precision and speed, the tool path is 
typically dispersed into a series of points and transmitted to the robot. The conventional trajectory planning method 
requires frequent starts and stops at each dispersed point to complete the task. This method not only reduces preci-
sion but also causes damage to the motors and robot. A real-time look-ahead algorithm is proposed in this paper to 
improve precision and minimize damage. The proposed algorithm includes a path-smoothing algorithm, a trajectory 
planning method, and a bidirectional scanning module. The path-smoothing method inserts a quintic Bezier curve 
between small adjacent line segments to achieve G2 continuity at the junctions. The trajectory planning method 
utilizes a quartic polynomial and a double-quartic polynomial that can achieve a constant velocity at the velocity limi-
tation. The bidirectional scanning module calculates the velocity at each trajectory planning segment point, simplify-
ing calculation complexity and can be run in real time. The feasibility of the proposed algorithm is verified through 
simulations and experiments, which can be run in real time. In addition, high machining precision can be achieved by 
adjusting the relevant parameters.
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1  Introduction
With the increasing demand for the high-precision and 
high-speed machining of complex curved workpieces, 
the processing ability of computer numerical control 
(CNC) and industrial robots that machine small line 
segments has become critical [1, 2]. The keys are the 
path-smoothing algorithm, trajectory planning method, 
calculation of the velocity at each point, and the condi-
tions must be satisfied to reach the specified position at 
the specified speed, acceleration, and time. Path-smooth-
ing and look-ahead were introduced as effective methods 

for enhancing the precision and efficiency in machining 
[3–5].

Curve fitting and curve transition methods are two 
major approaches that have been proposed in previous 
studies to achieve smoothness of small line segments. 
Curve fitting methods connect all points in a sequence to 
form a curve, including curve fitting algorithms [6], curve 
interpolation, curve derivation, and curve-arc length 
algorithms [7, 8], which have been applied in robot con-
trollers and advanced CNC systems [9]. However, this 
method has several disadvantages. First, the calculation 
for fitting a curve through all the assigned points is cum-
bersome to be performed in real time. Second, the range 
of the curve parametric u is 0 to 1, which incurs increased 
calculation costs and interpolation difficulty. Curve 
transition methods, circular arcs, and spline curves 
are generally employed for insertion between adjacent 
line segments. The advantage of this method is that the 
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following trajectory can be calculated when machining 
the previous trajectory.

There are two continuous types, which are the G2 conti-
nuity and C2 continuity. The definition of C2 continuity is 
that the 0th, first, and second derivatives are continuous. 
In the G2 continuity, the curves share a common center of 
curvature at the joining point. Because the acceleration at 
the connection points of lines and curves should be con-
tinuous, the G2 continuity should be ensured. The curve 
transition technique has been proposed for construct-
ing the G2 continuous path. The theory of this technique 
is that sharp corners between adjacent line segments 
are replaced with a spline curve, and the adjacent lines 
and curves have G2 continuity, which has already been 
adopted in the robot domain [10, 11]. Jouaneh et al. [12] 
inserted a circular arc between the adjacent line segments 
for rapid cornering. However, the circular arc exhibits 
continuous motion transition only to the velocity, except 
for acceleration transition. This technique can achieve 
real-time performance in the NC system because of the 
minimal computation of circular arc. Because accelera-
tions at junctions between the line segments and circular 
arcs are noncontinuous, the order of the blending curve 
must be increased while controlling the fitting tolerance 
and corner geometry. Pateloup et al. [13] proposed a two-
dimensional curve transition algorithm that utilizes cubic 
B-splines constructed by eight control points to round 
the pocket contour. Similarly, Zhang et al. [14] employed 
double cubic B-splines. Walton and Meek [15] proposed 
utilizing Bezier or PH quintic curves as the transition 
curves. Bi et al. [16] proposed a cubic Bezier curve with 
two identical control points in the middle and achieved 
continuous-curvature path-smoothing.

This becomes a G2 continuity path, which is con-
structed using multiple small line segments and blended 
with spline curves. The next problem is trajectory plan-
ning along a path. Because of the existence of spline 
curves, the velocity at the point on the curves must be 
lowered such that the limitations of acceleration and jerk 
are not exceeded in the curved sections. The kinematic 
limitations of machine tools have been fully considered 
to obtain a time-optimal feed rate curve [17]. Various of 
acceleration and deceleration trajectory planning algo-
rithms, such as polynomial, trapezoidal, and S-shaped 
jerk-limited methods [18–20] and the jerk-continuous 
methods [21–23], are available, and the S-shaped accel-
eration and deceleration algorithm is widely used [24–
26]. After the path-smoothing and trajectory planning 
methods are selected, the look-ahead function that cal-
culates the velocity at each point should be determined. 
Bidirectional scanning algorithms can be adopted in the 
look-ahead function to constrain the maximum velocity, 
acceleration, and jerk during the motion process [27–29].

In this study, a method for constructing the G2 continu-
ity transition curve between adjacent line segments and 
a jerk-limited look-ahead trajectory planning method 
were developed. The remainder of this paper is organized 
as follows. The G2 continuity transition curve that Bezier 
curves is presented in Section 2. A jerk-limited real-time 
bidirectional look-ahead algorithm and the proposed 
double-quartic polynomial trajectory planning are pre-
sented in Section 3. Section 4 describes the designed sim-
ulations and experiments. In Section  5, the conclusions 
are presented.

2 � Transition Scheme
A quintic Bezier curve is inserted between adjacent line 
segments to improve the machining efficiency and preci-
sion (Figure 1), which can be defined as [30]

where P0 , P1 , …, P5 are the control points of the quintic 
Bezier curve, and u is the parameter of the Bezier curve.

2.1 � Construction of Quintic Bezier Curve
The quintic Bezier curve is inserted between the two 
adjacent line segments, as shown in Figure 1. For exam-
ple, Pstart is the start point of the kth line segment, Ptrans 
is the endpoint of the kth line segment and the start 
point of the (k + 1)th line segment, Pend is the endpoint 
of the (k + 1)th line segment, and θ is the angle between 
the two line segments. Because the order of the inserted 
Bezier curve is quintic, the continuity of G2 is ensured, 
and two adjacent line segments have the same normal 
and tangent directions with the inserted Bezier curve 
at the connection points. Differentiating Eq. (1) at the 

(1)

B(u) =
5∑

i=0

C
i

5u
i(1− u)5−i

Pi

= (1− u)5P0 + 5u(1− u)4P1 + 10u2(1− u)3P2

+ 10u3(1− u)2P3 + 5u4(1− u)P4 + u
5
P5,u ∈ [0, 1],

Figure 1  Quintic Bezier curve between two adjacent line segments
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parameter u yields the first and second derivatives of 
the Bezier curve:

The following relationship can be derived by analyz-
ing Eqs. (1)–(3) at the start, u = 0 , and the end, u = 1 , 
of the Bezier curve:

As is well known, control points P0 and P5 should be 
the points from the line segment to transition curve, 
and the transition curve to the next line segment, 
respectively, if the G0 continuity should be ensured. If 
G1 continuity is ensured, the unit vector corresponding 
to Bu|u=0 should be equal to the unit direction vector 
of the first line, as should that of the second line cor-
responding to Bu|u=1 . From this point and Eq. (4), P1 
and P4 should be on the line segments PstartPtrans and 
PtransPend , respectively. Because the second derivative 
of a line segment is a zero vector, Buu|u=0 and Buu|u=1 
are zero vectors, another relationship between the con-
trol points can be derived:

The Bezier curve is determined when the parameters 
c , d , and LT have been calculated.

2.2 � Curvature Optimization and Cornering Errors
The normal acceleration and jerk are calculated by the 
curvature, k , and the corresponding velocity, v , at this 
point. Thus, vlimit used for look-ahead planning can be 
calculated using the maximum normal acceleration 
namax , maximum jerk jmax , and curvature k , which can 
be expressed as:

(2)

Bu =
dB(u)

du

= 5(1− u)4(P1 − P0)+ 20u(1− u)3(P2 − P1)

+ 30u2(1− u)2(P3 − P2)+ 20u3(1− u)(P4 − P3)

+ 5u4(P5 − P4),

(3)
Buu =

d
2
B(u)

du2
= 20(1− u)3(P2 − 2P1 + P0)

+ 60u(1− u)2(P3 − 2P4 + P5).

(4)






B|u=0 = P0,
Bu|u=0 = 5(P1 − P0),
Buu|u=0 = 20(P2 − 2P1 + P0),
B|u=1 = P5,
Bu|u=1 = 5(P5 − P4),
Buu|u=0 = 20(P5 − 2P4 + P3).

(5)
{
P2 − P1 = P1 − P0,
P5 − P4 = P4 − P3.

where avlimit and jvlimit are the velocity limitations corre-
sponding to the maximum normal acceleration and max-
imum jerk, respectively. vlimit is assigned to the minimum 
of avlimit , jvlimit , and vmax . The higher the value of namax 
and jmax , and the smaller the value of curvature k , the 
better to run at high speeds for robots.

The curvature k(ui) of the Bezier curve B(u) at param-
eter ui is expressed as:

As shown in Figure  1, the corner distance, LT , is the 
only scale factor in the construction of the transition 
curve:

Typically, the range of LT is the minimum length of two 
adjacent line segments multiplied by a factor range in 
(0, 0.5) . We set n as:

After the parameter n is determined, the Bezier curve 
and its maximum curvature are confirmed. A simple 
power regression is applied [31] to reduce the maximum 
curvature and obtain the optimal curvature value k for 
cornering angles θ:

δ is the cornering error between the midpoint of the 
transition curve and the point of intersection of the 
adjacent line segments. The smaller the cornering error, 
the closer to the original trajectory, and the better the 
machining effect. The values of c and d can be obtained 
using the technique adopted in Ref. [32] to constrain the 
cornering error δ within a specific range for a curvature 
optimum curve:

(6)avlimit =
√

namax

k
,

(7)jvlimit =
3

√
jmax

k2
,

(8)k(ui) =
�Bu(ui)× Buu(ui)�

�Bu(ui)�3
.

(9)LT = 2c + d.

(10)n = c/d.

(11)n(θ) =
1

2.0769
θ0.9927.

(12)






c =
32δ

(7n+ 16)
√
2+ 2 cos (θ)

n,

d =
32δ

(7n+ 16)
√
2+ 2 cos (θ)

.
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2.3 � Adaptive Interpolation Design
After path-smoothing based on the approach presented 
in Sections  2.1 and 2.2, the original path, consisting 
of many line segments, becomes a G2 continuity path 
comprising curves and lines. The displacement at each 
millisecond can be calculated using the motion-plan-
ning module, and the interpolation module calculates 
the point on the line or curve using the displacement. 
The interpolation module is simple for line segments:

where Pcurrent is the current interpolation point, si is the 
length of the current line, scurrent is the displacement on 
this line, and Pi and Pi+1 are the start and end points of 
the line.

The interpolation module is more complicated for 
curved segments. The second-order Taylor’s expansion 
is a good method for precisely obtaining the interpo-
lated points on the curve segments:

where u(ti) is the curve parameter u at last time ti , dudt  , and 
d2u
dt2

 are the first and second derivatives for u with respect 
to t . dudt  can be expressed as:

The calculation of d
2u
dt2

 depends on acceleration a:

Therefore, d
2u
dt2

 can be expressed by

(13)Pcurrent =
si − scurrent

si
Pi +

scurrent

si
Pi+1,

(14)

u(ti+1) = u(ti)+
du

dt

∣∣∣∣
t=ti

�t +
1

2

d2u

dt2

∣∣∣∣∣
t=ti

�t
2 + o(h),

(15)
du

dt
=

du

ds

ds

dt
=

v

ds
/
du

.

(16)

a =
d2s

dt2
=

d

dt

(
ds

du

du

dt

)
=

d

dt

(
ds

du

)
du

dt
+

d2u

dt2
ds

du

=
d2s

du2

(
du

dt

)2

+
d2u

dt2
ds

du
.

(17)
d2u

dt2
=

(
a−

d2s

du2
v
2

(
ds
/
du

)2

)/
(
ds
/
du

)
,

where dsdu and d
2s

du2
 are the first and second derivatives of 

arc length s with respect to parameter u , which are the 
norms of Eqs. (2) and (3), respectively.

Therefore, u(ti+1) is obtained; however, a paramet-
ric truncation error o(h) exists, which is completely 
ignored, resulting in interpolated points that are not 
real points. This causes sharp variations in velocity, 
acceleration, and jerk [31].

Referring to Eq. (14) and assuming that u′(ti+1) is 
u(ti+1) but ignores the parametric truncation error:

Eq. (14) can be rewritten as:

where ε is the parametric truncation error o(h) . The inter-
polation accuracy is high when ε is compensated for. The 
next step is to determine ε.

where X(u(ti+1)) and Y (u(ti+1)) are the x- and y- coor-
dinates of the point on the curve, respectively, which can 
be expressed as:

Assuming that

By substituting X(u(ti+1)) and Y (u(ti+1)) described by 
Eqs. (21) and (22), respectively, into Eq. (20) and multiply-
ing �t on both sides of Eq. (20) simultaneously, and Eq. 
(20) can be rewritten as:

(18)u′(ti+1) = u(ti)+
du

dt

∣∣∣∣
t=ti

�t +
1

2

d2u

dt2

∣∣∣∣∣
t=ti

�t2.

(19)u(ti+1) = u
′(ti+1)+ ε,

(20)

v(u(ti+1)) =√
[X(u(ti+1))− X(u(ti))]

2 + [Y (u(ti+1))− Y (u(ti))]
2

�t
,

(21)
X(u(ti+1)) = X

(
u′(ti+1)+ ε

)

= X
(
u′(ti+1)

)
+

dX
(
u′(ti+1)

)

du
ε,

(22)
Y (u(ti+1)) = Y

(
u′(ti+1)+ ε

)

= Y
(
u′(ti+1)

)
+

dY
(
u′(ti+1)

)

du
ε.

(23)
{
�X ′(u(ti+1)) = X

(
u′(ti+1)

)
− X(u(ti)),

�Y ′(u(ti+1)) = Y
(
u′(ti+1)

)
− Y (u(ti)).

(24)

v(u(ti+1))�t =

√[
�X ′(u(ti+1))+

dX(u′(ti+1))

du
ε

]2
+

[
�Y ′(u(ti+1))+

dY (u′(ti+1))

du
ε

]2
.
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Therefore, the quadratic equation for ε can be expressed 
as:

Assuming that:

Eq. (25) can be simplified as:

The parametric truncation error, ε , can be obtained by 
solving this equation. Eq. (26) has complex roots or only 
a real root if B2 − 4AC ≤ 0 . If B2 − 4AC > 0 is satisfied, 
then the equation has two real roots:

Because the value of ε1 is small (close to 0), ε2 is nega-
tive and has a larger absolute value. A smaller value of 
root ε1 is desirable to achieve a relatively more accurate 
compensation during the interpolation process. A more 
accurate u(ti+1) can be obtained by substituting ε1 into 
Eq. (19).

3 � Look‑ahead Function
In the previous section, a path with a continuous curva-
ture and a mixture of small line segments and curves was 
obtained. This section presents a real-time bidirectional 
look-ahead algorithm. The look-ahead function consists 
of two main modules. The first module is a bidirectional 
scanning module that utilizes the proposed trajectory 
planning method to calculate the velocities at each trajec-
tory planning segment point. The second module is tra-
jectory planning based on the quartic polynomial, which 

(25)




�
dX

�
u
′(ti+1)

�

du

�2

+

�
dY

�
u
′(ti+1)

�

du

�2


ε2

+ 2

�
�X

′(u(ti+1))
dX

�
u
′(ti+1)

�

du
+�Y

′(u(ti+1))
dY

�
u
′(ti+1)

�

du

�
ε

+
�
�X

′(u(ti+1))
�2 +

�
�Y

′(u(ti+1))
�2 − v

2(u(ti+1))�t
2 = 0.

A =

(
dX

(
u
′(ti+1)

)

du

)2

+

(
dY

(
u
′(ti+1)

)

du

)2

,

B = 2

[
�X

′(u(ti+1))
dX

(
u
′(ti+1)

)

du
+�Y

′(u(ti+1))
dY

(
u
′(ti+1)

)

du

]
,

C =
(
�X

′(u(ti+1))
)2 +

(
�Y

′(u(ti+1))
)2 − v

2(u(ti+1))�t
2.

(26)Aε2 + Bε + c = 0.

(27)
ε1 =

−B+
√
B2 − 4AC

2A
, ε2 =

−B−
√
B2 − 4AC

2A
.

includes the proposed double-quartic polynomial trajec-
tory planning and quartic polynomial trajectory planning 
for line segments and curves, respectively.

3.1 � Bidirectional Scanning Look‑ahead Module
In the first module, the array of vlimit should be calcu-
lated before running the bidirectional scanning mod-
ule, as expressed by Eq. (28), and the initial parameters 
should be transmitted to the bidirectional scanning 
module. vlimit consists of the velocities at the start-
ing and ending points, at the junctions between the 
line segments and transition curves, and in the mid-
dle of the transition curves. The point in the middle of 
the transition curve was adopted because of the maxi-
mum curvature of these curves at the middle points in 

general. This method can ensure the acceleration and 
jerk within the limitations in the middle of curves and 
improve the machining efficiency.

where avlimit and jvlimit are calculated using Eqs. (6) and 
(7), respectively.

For the global look-ahead module, as shown in Fig-
ure 2, the forward scanning look-ahead module is per-
formed first. Velocity vstart at the start point P1

(
Pv,1

)
 

is set to 0 to ensure start running with a zero velocity 
for robots. vlimit(i) and vlimit(i + 1) , as the initial veloci-
ties, are transmitted to the trajectory planning mod-
ule. If the maximum acceleration or jerk exceeds the 

(28)vlimit(i) = min
(
a
vlimit(i),

j
vlimit(i), vmax

)
,

Figure 2  Schematic diagram of look-ahead module
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limitations of the acceleration or jerk, an appropriate 
new vlimit(i + 1) that can ensure the acceleration and 
jerk within the limitations will be calculated by the tra-
jectory planning module to substitute the old value. 
When the forward scanning is completed, the array of 
vlimit has preliminary update completed with the start 
velocity equal to 0, but the end velocity is not usually 
equal to 0. Hence, in the next step, the backward scan-
ning is performed to ensure that the end velocity is 
equal to 0.

In the backward scanning look-ahead module, the 
velocity vend at end point Pn

(
Pv,3n−4

)
 was set to 0 to 

ensure that the robot stopped running at a zero veloc-
ity. vlimit(i+1) and vlimit(i) in vlimit are transmitted to the 
trajectory planning module as the initial velocities. If 
the maximum acceleration or jerk exceeds the limita-
tions of the acceleration and jerk, an appropriate new 
vlimit(i) that can ensure that the acceleration and jerk 
are within the limitations is calculated by the trajectory 
planning module to substitute the old value.

3.2 � Quartic Polynomial Trajectory Planning
For smooth start-stop motion, quartic polynomial and 
double-quartic polynomial trajectory planning are 
employed in the curve segments and line segments, 
respectively. Quartic polynomial trajectory planning 
can achieve acceleration or deceleration, except con-
stant velocity. Double-quartic polynomial trajectory 
planning has the advantage of a quartic polynomial, 
and can achieve a constant velocity. The displacement, 
s , of the quartic polynomial is expressed as:

Because the displacement at the starting point is 0, 
the velocity at the starting point is v0 , and the accelera-
tion at the starting point is 0, the partial parameters of 
the quartic polynomial can be obtained as:

Based on the quartic polynomials, two critical equa-
tions can be derived:

where T  is the total running time, and s is the path length. 
The maximum acceleration and jerk occur at T2  and 0, 
respectively.

(29)s = c0 + c1t + c2t
2 + c3t

3 + c4t
4.

(30)






c0 = 0,
c1 = v0,
c2 = 0.

(31)c4 =
−c3

2T
,

(32)T =
2s

v0 + v1
,

If am > amax or jm > jmax , the end velocity of this seg-
ment should be changed. Assuming that the maximum 
jerk just reaches the jerk limitation, c3 can be obtained:

Substituting Eq. (35) into Eq. (31) yields

Substituting Eqs. (30), (35), and (36) into Eq. (29) 
gives:

Eq. (37) is a cubic equation, the T  can be obtained by 
solving this equation. The velocity corresponding to the 
end point can then be obtained:

3.3 � Double‑quartic Polynomial Trajectory Planning
The proposed double-quartic polynomial trajectory plan-
ning is similar to quartic polynomial trajectory planning. 
The differences are that this method may have a constant 
velocity period and consists of two quartic polynomial 
trajectory planning, which improves the efficiency for 
machining long line segments. Double-quartic polyno-
mial trajectory planning has seven forms, as shown in 
Figure  3. It includes all the advantages of quartic poly-
nomial trajectory planning, except that it is more com-
putationally intensive than quartic polynomial trajectory 
planning.

The flowchart of the double-quartic polynomial trajec-
tory planning is shown in Figure 4. If vstart = vend = vmax , 
then there exists only a constant velocity period. Other-
wise, calculate the length of the current path ( s ), svm the 
length of displacement from vstart to vmax plus the length 
of displacement from vmax to vend , and sse the length of 
displacement from vstart to vend . If s ≥ svm , three cases are 
possible, each of which includes two of the three of accel-
eration, deceleration, and constant velocity. Otherwise, 
there are three cases, including two that can be achieved 
by quartic polynomial trajectory planning, and the last 

(33)am =
6c3T

2
+ 12c4

(
T

2

)2

,

(34)jm = 6c3.

(35)c3 =
1

6
jmax.

(36)c4 = −
jmax

12T
.

(37)
jmax

6
T 3 + 2v0T − 2s = 0.

(38)
vlimit(i) = min

(
vlimit(i), c1 + 2c2T + 3c3T

2 + 4c4T
3
)
.



Page 7 of 13Zhang et al. Chinese Journal of Mechanical Engineering           (2023) 36:59 	

case that requires double-quartic polynomial trajectory 
planning.

When the double-quartic polynomial trajectory plan-
ning is determined and the velocity cannot reach vmax , 
the maximum velocity v′max reached during running can 
be calculated using the algorithm (Table 1).

Based on the relationships between vstart , vend , vmax , and 
s , the double-quartic polynomial trajectory planning was 
constructed, and double-quartic polynomial trajectory 
planning was achieved using the proposed algorithm.

4 � Simulation and Experimental Results
The proposed path-smoothing technique and bidirec-
tional look-ahead algorithm were tested through simu-
lations and experiments. First, the proposed method 
was compared with the B spline and the Blend methods 
on a regular path in the simulation. Subsequently, an 
experiment on the drawing horse was conducted using a 
SCARA robot.

4.1 � Simulation Results
For a regular path such as a semicircular outline, the 
velocity of the look-ahead method gradually increases 
until it reaches the maximum velocity at the midpoint 
of the path, and then decreases to 0. The velocity in the 
Blend method frequently accelerates and decelerates [32]. 
The velocity of the B spline method [33] may be similar 
to the velocity of the look-ahead method, but may be less 
smooth. A simulation was designed to investigate our 
approach and the proposed algorithms. A regular path 
with a semicircular outline was selected and divided into 

150 line segments. The average length of these small line 
segments was approximately 1 mm, as shown in Figure 5.

For these three methods, the limitations of veloc-
ity, acceleration, and jerk were set to 2× 103mm/s , 
4 × 104mm/s2 , and 1.8× 107mm/s3 , respectively. The 
number of look-ahead segments was set to 150, and the 
blend ratio of the Blend method was set to 50%. The tra-
jectory points, velocity, acceleration, and jerk in the sim-
ulation were recorded; the comparison curves are shown 
in Figures 6–8, respectively.

As shown in Figure  6, the maximum velocity of the 
look-ahead method is significantly larger than that of the 
Blend method for a regular path but smaller than that of 
the B spline method. B spline trajectory planning is the 
fastest because its trajectory is an entire curve, which is 
easier to accelerate. However, it is only suitable for offline 
machining because it uses optimization algorithms, 
which are computationally intensive and may have no 
solution. The velocity of look-ahead accelerates to the 
maximum gradually and then decelerates to 0 gradu-
ally. However, the velocity of the Blend method oscillates 
around a certain value, the maximum value of the Blend 
method is significantly lower than that of the proposed 
method. The velocity of the B spline method accelerates 
to the maximum speed, then is equivalent to a constant 
speed, and finally decelerates to 0.

As shown in Figures 7 and 8, the acceleration and jerk 
of the Blend method oscillate around the X-axis, and its 
maximum acceleration and jerk are significantly larger 
than those of the proposed method. In addition, the 
acceleration and jerk of the B spline method sometimes 

Figure 3  Velocity classification of double-quartic trajectory planning
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change sharply and their maximum values are larger 
than those of the look-ahead method. This simulation 
proves that the operation of the algorithm satisfies our 
requirements, verifying the effectiveness of the proposed 
algorithm.

4.2 � Experimental Results
In the actual experiment, a SCARA robot manufactured 
by RobotPhoenix Automation Technology Co., Ltd. was 

Figure 4  Flowchart of double-quartic polynomial trajectory planning

Table 1  Pseudocode of double-quartic polynomial trajectory 
planning

Pseudocode

s1 = 0

v
′
max = vend

i = 0

While i < n

s1 = svstart→v′max
+ svend→v′max

v
′
max = v

s= s−s1
2

end
Figure 5  Comparison of semicircular trajectories for the three 
methods
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adopted. A self-developed Gorilla controller was utilized 
to test the machining ability of the proposed algorithm 
for a path that consisting of many small continuous line 
segments. The central processing unit of the Gorilla con-
troller was I5-8500T, and it controlled the motion of the 
robot using CODESYS Control RTE, which is a real-time 
software PLC for PC-based industrial controllers in Win-
dows programmable with the IEC 61131-3 development 
system, CODESYS.

For a horse outline consisting of 760 linear segments 
with an average length of approximately 1 mm, the 
robot drew a horse using the algorithm proposed in this 
study, as shown in Figure 9. As shown in Figure 10, the 
robot with a pen at the end, the proposed method, and 
the Blend algorithm were used to draw a picture of the 
horse. Figure 10(a) and (b) shows that the horse drawn 
by the look-ahead algorithm is smoother than that 
drawn by the Blend algorithm. Blend method dither-
ing occurs because the soft tip cannot keep up with the 
movement of the robot in the case of frequent accelera-
tion and deceleration, demonstrating the effectiveness 
of the proposed algorithm. The strands in Figure 10(a) 
do not maintain consistent strand widths because the 
platform where the paper is located is not parallel to 
the XY plane of the robot base frame.

Figure 6  Comparison of velocity values for the three methods

Figure 7  Comparison of acceleration values for the three methods

Figure 8  Comparison of jerk values for the three methods
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The running time of the Blend method and B spline 
method are equal to that of the proposed method. Dur-
ing the period when the robot drew the picture of a 
horse, the trajectory points, velocity, and acceleration 
of the proposed method, B spline method and Blend 
method were recorded. The trajectory points are shown 
in Figure 11. Comparisons of the velocity, acceleration, 

Figure 9  Robot drawing a horse

Figure 10  Comparison of paths of proposed and Blend method

Figure 11  Comparison of trajectory paths plotted using the three 
methods
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and jerk of the three methods are shown in Figures 12–
14, respectively.

Figure 12 shows the order of the velocity curve com-
pliance as the look-ahead, B spline, and Blend meth-
ods. The acceleration and jerk of the Blend method 
are significantly larger than those of the B spline and 
look-ahead methods(Figures  13 and 14), proving the 
efficiency of the proposed methods. The time required 
to calculate the look-ahead algorithm with respect to 
this path was 24.016 ms when looking ahead 20 linear 
segments at a time, and approximately 0.032 ms were 
required for each linear segment in the look-ahead 
module.

5 � Conclusions
A practical path-smoothing method and look-ahead 
algorithm are presented in this study. A Quintic Bezier 
curve was used to blend the line segments as continuous 
curvature transitions. A bidirectional scanning algorithm 
and quartic polynomial trajectory planning algorithm 
can decrease the total running time and minimize vibra-
tion. The simulation and experimental results verified the 
effectiveness of this method for robot machining of mul-
tiple small line segments.

Figure 12  Comparison of velocity values using the three methods

Figure 13  Comparison of acceleration values obtained using the 
three methods

Figure 14  Comparison of jerk values obtained using the three 
methods
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Compared with previous methods, the algorithms pro-
posed in this study have advantages:

(1) Realization of G2 continuity, which mixes line seg-
ments and curves.

(2) The bidirectional scanning algorithm efficiently 
reduces the time spent looking forward and backward, 
thus achieving the look-ahead function in real time.

(3) The quartic polynomial trajectory planning algo-
rithm can reduce the vibration of the robot at the start 
and stop.

(4) Compensation of the interpolation algorithm can 
eliminate truncation error and further enhance move-
ment smoothness.
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