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Abstract 

Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining 
accuracy of the multi-axis machine tool. And it cannot be eliminated due to the error propagation of components 
in the assembly process, which is generally non-uniformly distributed in the whole working space. A comprehensive 
expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to 
meet the demand for machining accuracy in practice. However, the expression ranges based on the standard quasi-
static expression model for assembly geometric errors are far less than those needed in the whole working space of 
the multi-axis machine tool. To address this issue, a modeling methodology based on the Jacobian-Torsor model is 
proposed to describe the spatially distributed geometric errors. Firstly, an improved kinematic Jacobian-Torsor model 
is developed to describe the relative movements such as translation and rotation motion between assembly bodies, 
respectively. Furthermore, based on the proposed kinematic Jacobian-Torsor model, a spatial expression of geometric 
errors for the multi-axis machine tool is given. And simulation and experimental verification are taken with the investi-
gation of the spatial distribution of geometric errors on five four-axis machine tools. The results validate the effective-
ness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric 
errors.
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1  Introduction
Nowadays, multi-axis machine tool plays a more and 
more important role in the manufacturing industry with 
the increased tightening requirements of machining 
products [1]. For multi-axis machine tools, accuracy, pro-
cessing rate and reliability are the common indicators of 
application performance. Especially, accuracy is the most 

important one which is directly related to the final preci-
sion of machined workpieces [2]. Considering the accu-
racy of machine tools, the main influence factors include 
geometric errors, thermal deformation errors, force-
induced errors and control system errors, where the 
combination proportion of geometric errors and ther-
mal deformation errors is more than 60% [3]. Therefore, 
accurate modeling and controling of geometric errors is 
an economical and effective way to improve the applica-
tion accuracy of machine tools considering the stability, 
repeatability and measurability of geometric errors.

Many geometric error modeling and compensation 
methods have been presented over the past decade. 
The Homogeneous transformation matrix (HTM) [4–6] 
based on rigid multi-body kinematics [7, 8] is the com-
mon method for geometric error modeling of machine 
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tools. Based on HTM, multi-body system theory [9] 
has also been successfully applied in practical uses. In 
recent years, the stream of variation [10], differential 
transformation [11, 12], differential motion matrix [2], 
and screw theory [13] have achieved significant devel-
opments in the geometric error modeling for multi-axis 
machine tools, which provide meaningful guidance to 
describe the geometric error sources and their propaga-
tions in the assembly process. However, these models 
strongly rely on the determined configuration and rela-
tive pose of machine tools under static or quasi-static 
states. For different moving positions, it is necessary to 
build an improved geometric error expression model. For 
multi-axis machine tools, the geometric error is eventu-
ally generated by the error propagation of components 
in the assembly process and it is highly related to the 
determined pose of the machine tool. Therefore, accurate 
modeling of the non-uniformly distributed geometric 
errors relies on a spatial expression in the whole working 
space of the multi-axis machine tool.

Consequently, it is necessary to establish a spatial 
expression model of assembly geometric errors in the 
whole working space of the multi-axis machine tool. To 
achieve this goal, a description method of manufacturing 
and assembling tolerances of each part in the assembly 
body and their propagation relations of multi-axis syn-
thetic errors should be established in previous. Thanks to 
the previous studies, several methods have been applied 
to the synthesis analysis of tolerances [14–16]. In prelimi-
nary explorations of 3D tolerance methods, the networks 
of zone and datum [17], the kinematic formulation [18], 
and the spatial dimensional chain [19] are first presented 
focusing on the tolerance expression. Then, the direct 
linearization method (DLM) [20], the matrix model [21], 
and the Jacobian matrix model [22, 23], have developed 
correspondingly focusing on the tolerance propagation 
description. For Jacobian-Torsor [24], it combines both 
the advantages of the torsor model in tolerance expres-
sion and the Jacobian model in tolerance propagation 
expression, which is theoretically suitable for geometric 
error analysis of complex assemblies. Jacobian-Torsor 
has successfully applied Jacobian-Torsorfor static toler-
ance analysis of mechanical mechanisms. Chen et al. [25] 
introduced the Jacobian-Torsor model to geometric error 
analysis of the crank-slider mechanism and then applied 
it to the tolerances analysis of the engine assembly pro-
cess successfully. Ding et al. [26] proposed an improved 
Jacobian-Torsor model for the multi-stage rotor assem-
bly process of aero-engine, which greatly improved the 
accuracy and efficiency of the assembly process for the 
aero-engine rotor. Du et al. [27] applied the Jacobian-Tor-
sor model to the error modeling of the machine tool to 
explain how the fundamental errors in mechanical parts 

influence and accumulate to the final assembly error of 
the single-axis part. These theoretical studies verified the 
validity and practicability of the Jacobian-Torsor model 
in dealing with the description and propagation expres-
sion of tolerances in the multi-body mechanism. The 
application of the Jacobian-Torsor model in geometric 
modeling for the multi-body mechanism is helpful for the 
geometric error expression of machine tools efficiently 
and accurately.

Figure  1 shows the topological motion diagram of 
a typical multi-axis machine tool which contains one 
rotation axis and three translation axes. The connection 
characteristics of this machine tool can be described in 
two aspects as a plane to plane contact and cylindrical 
contact. For example, along with the movement of the 
machine tool axis, the propagation path of contact 
characteristic is correspondingly changing, and so it is 
the related geometric error.

This paper focuses on developing a spatial modeling 
methodology based on an improved kinematic Jacobian-
Torsor model, to deal with the spatial expression of geo-
metric errors in a whole working space for multi-axis 
machine tool, which can express the continuous changes 
of geometric error in motion movement. Firstly, a gen-
eral Jacobian-Torsor expression is given for the descrip-
tion of tolerance and its propagation in the assembly 
process. Secondly, the concept of improved kinematic 
Jacobian matrix is introduced to describe the propaga-
tion characteristic between two contact parts while con-
sidering the relative motion of components for multi-axis 
machine tools. The definitions of “direct relative motion” 
and “indirect relative motion” are proposed respectively. 
The influence of translational motion and rotational 
motion for the Jacobian-Torsor model is inferred. Thirdly, 

Figure 1  The topological motion diagram of multi axis machine tool



Page 3 of 15Tian et al. Chinese Journal of Mechanical Engineering           (2023) 36:44 	

according to the error linkage effects among axes, the 
geometric model for the multi-axis machine tool is estab-
lished. Finally, experiments are carried out to verify the 
effectiveness of the proposed improved kinematic Jaco-
bian-Torsor model in modeling spatial geometric error.

The rest of the paper is organized as follows: Section 2 
gives a simple review of the unified Jacobian-Torsor 
model for tolerance expression. Section  3 proposes an 
improved kinematic Jacobian-Torsor model for the spa-
tial expression of geometric error distribution in work-
ing space accommodating the relative motion of the 
multi-axis machine tool. Case studies are taken to study 
the geometric error expression of the multi-axis machine 
tool based on the proposed kinematic Jacobian-Torsor 
model in Section 4. In Section 5, experiments are carried 
out to validate the proposed method in dealing with the 
spatial expression of geometric error based on the pro-
posed model. Section 6 gives the conclusions.

2 � Expression of Unified Jacobian‑Torsor Model 
for Tolerance Analysis

With the Torsor model [28, 29], a set of vectors mov-
ing along the coordinate axis and a set of vectors rotat-
ing around the coordinate axis are defined to describe 
the various features of geometric errors in the tolerance 
domain. The torsor expression of the variation is

where u, v and w are the three translation vectors along x, 
y and z axis, respectively. Similarly, the α, β and γ are the 
three rotation vectors around x, y and z axis, respectively.

The Jacobian matrix is divided into two parts used to 
describe the translation and rotation motions of fea-
tures, respectively. For the translation vector, the direct 
cumulative operation can be done for the translation of 
the target point and it does not affect the rotation move-
ment. For the rotation vector of the feature, the effect on 
the translation of the target point is equal to the cross-
product between the rotation vector and the translation 
distance (here, [Wi

n] is defined to represent it) of the tar-
get point, which is called leverage effect. And the effect 
of rotation vector on the rotation of target point can be 
directly accumulated. [Wi

n] is a skew-symmetric matrix 
and can be defined as Eq. (2).

where, dxi
n= dxn- dxi, dyi

n= dyn- dyi, dzi
n= dzn- dzi. n 

represents the n-th target point, and i represents the i-th 
feature. A complete Jacobian matrix is obtained by com-
bining these two matrices:

(1)T =

[

u v w α β γ
]

T
,

(2)
�

W
n
i

�

3×3
=
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0 dzni −dyni
−dzni 0 dxni
dyni −dxni 0


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3×3

,

where [R0
i]3×3 indicates local orientation of the i-th 

coordinate system relative to the global system, here the 
global coordinate system is represented by the 0-th coor-
dinate system.

Here, the Torsor model can be used for tolerance 
expression and the Jacobian matrix is used to describe 
the tolerance propagation in assembly. Because the 
variation range of tolerance is small, the Torsor model 
can be improved as a small displacement torsor (SDT). 
Consequently, in the Jacobian-Torsor model, the torsor 
model is applied for tolerance representation and the 
Jacobian matrix is used to represent tolerance propa-
gation. The integrated expression can be written as 
follows:

where (u,u) represents the tolerance interval along x 
axis. And the representations of torsors of other compo-
nents are following the identical way as u. The functional 
requirement (FR) and functional elements (FEs) are the 
component elements of dimension chain.

3 � Expression of Kinematic Jacobian‑Torsor Model 
for Spatial Geometric Error

The Jacobian-Torsor model is generally applied for the 
description of tolerance propagation of complex assem-
blies which contain the number of joints for a deter-
mined pose. Whereas it is difficult to be applied dealing 
with movement in assemblies under a kinematic state. 
Eq. (4) is defined according to the type, tolerance, and 
position of feature in assembly. Therefore, when the 
relative position of two features changes, the Jacobian-
Torsor is meant to be changed correspondingly.

Here, two definitions are given to deal with the 
changing of configuration in assemblies. The “direct 
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relative motion”, which means there is kinematic pair 
between two parts, such as rotating or sliding pair, 
while there is relative motion between these two parts. 
The “indirect relative motion”, which means there is no 
kinematic pair between two parts, but these two parts 
have indirectly relative motion through another part 
which is connected to both of them.

3.1 � Kinematic Jacobian‑Torsor Expression for Translation 
Motion of CNC Machine Tool

The motions of the multi-axis machine tool can be 
described as two typical types: translation motion and 
rotation motion. For translation motion, taking Z-axis 
as an example, it can be shown as the Z-axis translation 
motion of the CNC machine tool in Figure 2.

The rotary table on the slider moves along the guide 
from point A to point B. The top surfaces of the guide 
and the slider respectively are specified by profile toler-
ances of T1 and T2 with the corresponding datum. The 
profile of the moving contact part between the guide 
and the slider is defined as Tz. FR is the contact profile 
between the upper surface of the slider and the bottom 
of the guide after assembly. When the slider moves along 
the guide with a distance of z, there will be a translation 
joint between these two components.

When the slider is at point A, the complete Jacobian 
matrix for the guide-slider assembly can be written as:

Similarly, when the slider is at point B, the complete 
Jacobian matrix for the guide-slider assembly can be 
written as:

where 
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respectively.
In this case, the coordinate system 1 and 2, 1’ and 2’ 

are defined as coincident pairs, respectively. Compared 
with point A, the coordinate system of point B only has 
a displacement of z in the Z direction to point A. The 
local orientation of the coordinate systems relative to the 
global system are all unit matrices.

There, Eq. (6) can be rewritten as:
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SDT is a special expression of feature variation in the 
tolerance domain. The SDT expression of tolerance is 
defined according to both the tolerance type and joint 
configuration. When the location of the feature changes, 
the contact joint between two features and the value of 
the contact error will change correspondingly. There-
fore, the SDT expression of tolerance propagation will 
be changed along with the change of feature location. 
According to the SDT expression described above, the 
Torsor expression of the upper surface of the guide that 
contact with the slider can be written as follows:

where Tz is the profile error of the guide contacted to the 
slider, and Tz = Tst+zθ, θ=(T−Tst)/L. L is the total length 
of the guide. Tst is the profile error of nominal length of 
guide. It can be seen that the profile error changes with 
the slider position on the guide. b and c are the width of 
the guide and the length of slider, respectively.

Considering the relative translation motion inside 
the assemblies, when the slider is at point A, the 
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Jacobian-Torsor expression for assemblies can be 
expressed as:

Similarly, when the slider is at point B, the Jacobian-
Torsor expression for assemblies can be expressed as:

In this situation, Eq. (10) can be rewritten as

3.2 � Kinematic Jacobian‑Torsor Expression for Rotation 
Motion of CNC Machine Tool

The rotation motion of the CNC machine tool, taking 
A-axis as an example, can be seen as the A-axis 
rotation motion of the CNC machine tool shown in 
Figure 3. The base and rotary parts of the rotary table 
are assembled concentrically. And the rotary table 
can rotate around the center of the base. The bottom 
surface of each cylinder is defined as the base surface 
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of the part, and the top surface contains a contour 
tolerance to its nominal surface.

In this case, FR is defined as the profile tolerance of the 
upper surface of the rotary table relative to the bottom of 
the base after assembly. The rotary table rotates around 
the center of the base by the angle of θ, and there is a 
revolution joint between them. The complete Jacobian 
matrix for the rotary components before the rotation of 
the rotary table can be written as:

In the same way, the complete Jacobian matrix for the 
rotary components after the rotation of the rotary table 
can be written as:

(12)

JC = [JFEC1J FEC2] =
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Figure 2  The Z-axis translation motion of CNC machine tool

Figure 3  The assembly of rotary table and base
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where 
�

W 2
1

�
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In this situation, Eq. (13) can be rewritten as

where,

(13)
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(14)JD = JC +�JR,

With the rotation of the rotary table from the base, 
the Torsor expression of the matching part of the two 
cylinders can be written as follows:

(15)
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where T1 is the profile error of the rotary table. R is radius 
of the two cylinders. The Torsor expression remains 
unchanged with the rotation of the rotary table from the 
base.

The Jacobian-Torsor expression for the rotary com-
ponents before the rotation of the rotary table can be 
written as:

(16)
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Table 1  The main advantages of the proposed method compared with other existing methods

Methods Advantages and disadvantages

Homogeneous Transformation Matrix It describes the motion relationship between motion pairs, but it is necessary to measure the error at each 
position one by one, and it is necessary to remeasure for different types of machine tools.

Multi-body Kinematics It is easy to establish kinematic model and difficult to measure the position and pose at different positions.

Screw Theory It is generally applied to get analytical solution, but the calculation process is complex.

Differential Motion Matrix It is easy to carry out unified expression of ideal and actual models, with low calculation difficulty. Automatic 
calculation can be realized by computer, but the accuracy is low.

Kinematic Jacobian-Torsor It can establish the relationship between the spatial error and the coordinate of each axis of the machine tool, 
with high calculation efficiency, and obtain the tolerance range of feature requirements, which is conducive to 
optimal design.
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Similarly, the Jacobian-Torsor expression for assem-
blies after the rotary table rotates around the center of 
the base can be expressed as:

(17)
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Figure 4  The process of modeling machine tool geometric error based on kinematic Jacobian-Torsor model
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With Eq. (16), Eq. (17) can be rewritten as

As can be seen, only the Jacobian matrix and Torsor 
expression of the functional element with direct relative 
motion will be changed, when there is relative motion 
between the components in assemblies. And the change 
of the Jacobian matrix is only reflected by increasing 
the corresponding increment in the direction of relative 
motion. Therefore, when the coordinate origin of the 
assembly is determined, no matter what relative motion 
occurs inside the assemblies, the functional requirements 
after the change can be easily expressed through Eqs. (11) 
and (18).

Therefore, the process of geometric error modeling for 
machine tool based on the proposed kinematic Jacobian-
Torsor model can be shown as Figure 4.

The main advantages of the proposed method com-
pared with other existing methods are shown in Table 1.

4 � Modeling of Spatial Geometric Error 
for Multi‑axis Machine Tool

In this paper, a four-axis horizontal machining center 
is applied to validate the geometric error model. The 
3D model and topological structure of the horizontal 
machining center are shown in Figure  5. The four-axis 
horizontal machining center has four degrees of freedom 
which include one rotation motion (A-axis) and three 
translation motions (X-axis, Y-axis, Z-axis) and their 
basic parameters are shown in Table 2.
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The accuracy of the machine tool is described as the 
error variation of the tool center point in the worktable 
coordinate system. Therefore, FR represents the position 
and direction deviation of the tool center point in the 
workpiece coordinate system. The connection graph of 
functional pairs is shown in Figure 6.

The detail parameters of the machine tool are shown in 
Table 3.

The improved Jacobian-Torsor model can be built 
according to the connection graph of functional pairs and 
based on the proposed model in Section  3. The propa-
gation route of geometric errors can be shown as IFE1-
CFE1-IFE2-CFE2-IFE3-IFE4-IFE5-IFE6. The Jacobian 
matrices and the corresponding tolerance torsors can be 
given in Table 4.

According to the kinematic Jacobian-Torsor model of 
tolerance analysis, as given in Table 1, the expression of 
the spindle and tool error in Z direction in the table coor-
dinate system can be resulted as:

where, A=0,

where, Z is the stroke of the spindle and tool error in Z 
direction in the table coordinate system and it lies in the 
interval of [0, 600], α is the rotation angle of the turnta-
ble along X axis and it lies in the interval of [0, 360°], the 
rotary shaft is called A axis, and the tolerance accumula-
tion must lie in the interval of [−εz, εz].

5 � Experimental Verification and Discussion
In order to validate the proposed kinematic Jacobian-
Torsor model in geometric error modeling for multi-axis 
machine tool, experiments were conducted on five four-
axis machining centers (type CNC-PT50) with a laser 
interferometer which was used to measure the linear axis 
errors. The Renishaw multi-laser interferometer XL-80 
is used to measure the geometric errors of the machine 
tool. The linear measurement accuracy of ± 0.5 µm/m 
is guaranteed and the linear resolution can reach 1 nm. 
Two kinds of measurement processes have been carried 
out for each machining center. One is to make a forward 
movement along the linear axis and the rotation axis, 
and the other is to make a backward movement along 
the linear axis and the rotation axis. The setup of the 
measurement experiment is shown in Figure 7.

(19)εZ = [A,B],

B =

z2(TZ − Tst)

43L
+

z(Tst · L− 300TZ + 300Tst)

43L

−

300Tst

43
+ 18.79+ |3.72 sin α| + |0.28 cosα|,

Table 2  The basic parameters of machine tool

No. Items Parameters Values

1 X-axis Motion stroke(mm) 700 (−282~418)

2 Speed(m/min) 60

3 Y-axis Motion stroke(mm) 800 (−400~400)

4 Speed(m/min) 60

5 Z-axis Motion stroke(mm) 600 (−300~300)

6 Speed(m/min) 60

7 A-axis Motion stroke(°) 360 (−180~180)

8 Speed(r/min) 25

9 Spindle Speed(r/min) 20–18000
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As shown in Figure  8, the movement variation of 
geometric errors along Z axis is figured out both for the 
modeling based on the proposed kinematic Jacobian-
Torsor model and for the measured results in validation 
experiments. In Figure  8, the upper bound is the 
tolerance range modeled by the proposed geometric 
error expression model based on the kinematic Jacobian-
Torsor model. The y1f and y1b are the measurement 
results of the machining centers when there are forward 
movement and backward movement along the linear axis 

and the rotation axis, respectively. It can be observed 
that all the curved surfaces of the positioning error in 
experiments are within the tolerance range gotten by the 
proposed expression model.

Furthermore, the distributions of geometric errors 
of machine tools at different Z coordinate positions are 
analyzed. Set Z value as (–300, 0, 100, 300), respectively, 
the geometric error distribution of the machine tool in 
four positions is shown in Figure 9. The mean value of the 
geometric error distribution is shown in Table 5. The μm is 
the mean value of the geometric error distribution of the 
machine tool calculated by the model, and μe is the mean 
value of the geometric error distribution of the machine 
tool obtained in experiments, respectively. It can be seen 
that the mean value of the geometric error distribution of 
the machine tool obtained in experiments is close to those 
obtained by the kinematic Jacobian-Torsor model. And 
the fluctuation range and fluctuation degree trend of the 
error are consistent with the change of Z. It can be seen 
from Figure 9 that the mean value of the theoretical value 
and the measured value are consistent, and the standard 
deviation difference is large. The consistent mean value 
indicates the accuracy and effectiveness of the model. For 
the standard deviation, the measured value fluctuates less, 
and the theoretical value fluctuates more. The reason is that 
the establishment of the model is based on the premise that 
the errors of machine tool parts are randomly distributed 
within the tolerance range. However, the machine tool 
parts belong to the same batch and the sampling number is 
limited, the error distribution will be more convergent than 
those in simulation for the random distribution sampling. 

6 � Conclusions

(1)	 The non-uniformly distributed geometric errors 
of the multi-axis machine tool can be spatially 
expressed in the different moving positions.

(2)	 It can be applied for different types of machine 
tools with different configurations, thus providing 
thermotical guidance for the comprehensive toler-
ance design of machine tools.

(3)	 Furthermore, by introducing variables such as 
speed and acceleration, the relationship between 
tolerances and kinematic characteristics of the 
machine tool can be analyzed.

Figure 5  The structure and topological structure of a horizontal 
machining center
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Figure 6  Connection graph of functional pairs

Table 3  The detail parameters of the machine tool

No. Parameters Values (mm)

1 Distance between the center of the workbench and the A-axis head frame 548

2 Flatness of worktable 0.01

3 Length of worktable 800

4 Width of worktable 500

5 Distance from A-axis head frame to A-axis center in Y-direction 292

6 Distance from A-axis head frame to A-axis center in Z-direction 220

7 Coaxially between stator and rotor of A-axis 0.002

8 Rotation diameter of A-axis 340

9 Z-direction distance from A-axis center to A-axis installation base plane 416

10 Y-direction distance from A-axis center to A-axis installation base plane 40

11 Flatness of A-axis installation base plane 0.011

12 Length of A-axis installation slider 154

13 Width of A-axis installation slider 86

14 Z-direction distance between A-axis slider and bed center 161

15 X-direction distance between A-axis slider and bed center 300

16 Z-direction distance from the center of the bed to the center of the column 161

17 Y-direction distance from the center of the bed to the center of the column 280

18 Z-direction distance between column center and vertical sliding plate center 283

19 X-direction distance between column center and vertical sliding plate center 276

20 Length of spindle box 250

21 Thickness of spindle box 153

22 Radial runout of spindle 0.002

23 Overhang length of spindle 580

24 Spindle diameter 411
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Table 4  Jacobian matrixes and deviation torsors

No. FEs Jacobian matrixes Tolerance torsors
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


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Table 4  (continued)

No. FEs Jacobian matrixes Tolerance torsors
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Figure 7  The setup of the measurement experiment

Figure 8  Multiple measurement results of the positioning error of the machine tool of PT50
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Figure 9  The geometric error distribution of the machine tool in four different Z coordinates
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