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Abstract 

Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing 
to the complex structure of reciprocating machinery. Therefore, it is difficult to extract, analyze, and diagnose mechan-
ical fault features. To accurately extract sensitive features from the strong noise interference and unsteady monitoring 
signals of reciprocating machinery, a study on the time-frequency feature extraction method of multi-source shock 
signals is conducted. Combining the characteristics of reciprocating mechanical vibration signals, a targeted optimi-
zation method considering the variational modal decomposition (VMD) mode number and second penalty factor 
is proposed, which completed the adaptive decomposition of coupled signals. Aiming at the bilateral asymmetric 
attenuation characteristics of reciprocating mechanical shock signals, a new bilateral adaptive Laplace wavelet (BALW) 
is established. A search strategy for wavelet local parameters of multi-shock signals is proposed using the harmony 
search (HS) method. A multi-source shock simulation signal is established, and actual data on the valve fault are 
obtained through diesel engine fault experiments. The fault recognition rate of the intake and exhaust valve clearance 
is above 90% and the extraction accuracy of the shock start position is improved by 10°.
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1  Introduction
High-end mechanical equipment, such as high-power 
gas turbines, diesel engines, high-pressure reciprocat-
ing compressors, and large centrifugal pumps, are the 
core power equipment of nuclear power, petrochemi-
cals, shipbuilding, and other industries. The development 
of fault monitoring, diagnosis, and health management 
technology for key equipment has always attracted the 
attention of researchers [1, 2]. The feature extraction 

of equipment operating parameters was the basis for 
establishing effective fault diagnosis and state evaluation 
models [3, 4]. Extracting sensitive features from non-sta-
tionary signals with strong noise interference is a difficult 
problem in early fault diagnosis [5].

Researchers have done a lot of research on feature 
extraction of vibration signals of rotating machinery. 
Rotating machinery, e.g., rotors, bearings, and gears, 
has a close correlation with characteristic frequen-
cies, such as rotation frequency, passing frequency, and 
meshing frequency, in their dynamic characteristics 
under failure. Therefore, the focus of related research is 
on effectively extracting the frequency domain charac-
teristics of early weak faults from the signals of non-sta-
tionary conditions [6–8]. In reciprocating machinery, 
its working process has reciprocating periodicity. The 
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movement and force change laws of the pistons and 
connecting rods are directly related to the crankshaft 
angle. And the periodic time domain and time-fre-
quency characteristics of the fault signal are obvious. 
For example, diesel engine valve wear fault results in 
changes to the valve opening and closing shock angle 
and peak value [9]. Similarly, a reciprocating compres-
sor connecting rod small end bearing wear fault results 
in a crosshead pin force reversal angle shock [10]. 
Therefore, it is important to identify the shock source 
from the complex interference signals and extract the 
time-frequency domain characteristics of the shocks.

Representative methods for decomposition process-
ing and feature extraction of various signals include 
wavelet transform (WT), empirical mode decomposi-
tion (EMD), ensemble empirical mode decomposition 
(EEMD), variational modal decomposition (VMD), etc. 
Recently, new methods based on neural networks have 
been proposed, including autoencoders (AEs) and con-
volutional neural networks (CNNs).

Research has been conducted on improving these 
methods, regarding the above-mentioned feature 
extraction problems. Based on the existing defects 
of signal decomposition methods in nonlinear signal 
analysis and the need to set parameters for WT, EEMD, 
etc., Pan et  al. [11] proposed a symplectic geometry 
mode decomposition (SGMD) method. Li et  al. [12] 
proposed a bandwidth-based method to select the best 
envelope interpolation method to improve the EMD 
frequency band aliasing problem. Focusing on the 
problem of setting the number of decomposition modes 
and the second penalty factor in the VMD, Zhang et al. 
[13] combined a genetic algorithm and nonlinear pro-
gramming to adaptively optimize VMD parameters 
and apply them to bearing fault diagnosis. Regarding 
the problem of the fault characteristics of rolling bear-
ings being affected by working conditions, Li et al. [14] 
proposed a knowledge-mapping adversarial domain 
adaptive method, which was applied to the bearing fea-
ture transfer of a CNN. The existing research mainly 
focused on the optimization of decomposition meth-
ods and the selection of parameters, which are mostly 
applicable to rotating equipment, such as rolling bear-
ings. There have been few studies on multi-source 
shock recognition and adaptive time-domain feature 
extraction of reciprocating machinery. And related 
researches have mostly focused on extracting the fault 
frequency features of rotating machinery. There are still 
research gaps in the field of time-domain shock feature 
extraction and fault diagnosis of reciprocating machin-
ery faults. And early fault feature extraction and recog-
nition were difficult problems that plagued equipment 
health management.

This paper proposes a time-frequency domain feature 
extraction method for multi-source shock signals based 
on improved VMD and bilateral adaptive Laplace wavelet 
(BALW) methods. First, the VMD method was improved 
and the vibration signals were adaptively decomposed to 
obtain signals of different frequency bands. Then a new 
BALW was then constructed to extract the shock and its 
characteristics in the time and angle domains. Recently, 
studies on VMD have mostly focused on parameter opti-
mization. Zhao et  al. [15] used envelope nesting and 
a multi-objective function to optimize the two VMD 
parameters and applied them to the fault diagnosis of 
rolling bearings. Tan et al. [16] proposed a fitness func-
tion based on mode mutual information to optimize 
VMD parameters for fault feature extraction of rolling 
bearings.

The multi-source shocks of the reciprocating mechani-
cal vibration signals had certain differences in both the 
time and frequency domains. In view of this characteris-
tic, this study optimizes the decomposition mode number 
based on the difference between adjacent decomposition 
modes. Simultaneously, because the shock frequency 
band required a higher signal-to-noise ratio (SNR) and 
the noise component required a larger entropy value, 
this study combined the normalized SNR of the shock 
frequency band component and the normalized power 
spectral entropy value of the main noise frequency band 
to optimize the second penalty factor.

In terms of shock recognition and feature extraction 
of the rotating machinery, time-domain feature extrac-
tion methods are the current research focus. Based on 
the vibration characteristics of the second-order under-
damped system, the researchers used a Laplace wave-
let (LW) to filter and extract the characteristics of the 
shock [17, 18]. Regarding the unilateral limitation of 
the LW, to obtain a wavelet filter with linear phase-fre-
quency response characteristics, researchers proposed an 
antisymmetric real Laplace wavelet (ARLW). Feng et  al. 
[19] proposed a differential evolution (DE) optimization 
method and an ARLW filter-based method to extract 
the impulsive features buried in noisy vibration signals. 
Wang et  al. [20] proposed a Bayesian inference method 
based on the smoothness index, guided to determine the 
joint posterior probability distributions of ARLW param-
eters, which was used to identify different bearing faults. 
However, the multi-source vibration response of recip-
rocating machinery did not completely conform to the 
unilateral attenuation characteristics [21, 22]. Moreover, 
owing to the sensor characteristics, the collected vibra-
tion signals had a certain degree of distortion [23]. There-
fore, ARLW is not fully applicable to the asymmetric 
vibration and shock signals of the reciprocating machin-
ery. Further, two different damping ratio parameters are 
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used in this study to establish a new BALW, which bet-
ter matches the shock vibration shape and frequency. In 
the iterative search of the wavelet parameter interval, the 
harmony search algorithm [24, 25] establishes a BALW 
parameter search strategy, which solves the automatic 
search problem of wavelet parameters of different time-
domain shock components. Finally, the proposed method 
is tested using diesel engine vibration signals.

The contributions of the new method demonstrated 
in this paper can be summarized as follows: ① Combin-
ing the characteristics of reciprocating mechanical sig-
nals, a parameter optimization method based on VMD 
is proposed. The simulation signal and actual diesel 
engine vibration signal processing results show that the 
new method effectively extracted the shock components 
of each frequency band. ② The proposed BALW has a 
better matching performance to the actual shock signal 
and results in better accuracy when extracting the time-
domain features of the shock signal, such as the shock 
start position and shock frequency characteristics. ③ 
The multi-shock signal wavelet parameter search strat-
egy based on the HS algorithm significantly improves the 
speed and effect. ④ According to the fault data, the fre-
quency and time-domain characteristics of the shock sig-
nal are extracted, which improves the ability to capture 
the local features of the early fault shocks.

This paper is structured as follows. Section  2 intro-
duces the optimized VMD algorithm and the principle of 
the BALW. Section 3 introduces the application effect of 
the method proposed in this study on the simulated sig-
nal. Section 4 describes the experimental equipment and 
experimental data application effects. Finally, the conclu-
sions are presented in Section 5.

2 � Theory and Method
2.1 � VMD Parameter Optimization Method
Diesel engine vibration includes the shock response of 
various components, and there is aliasing of multi-band 
signals. The fault-sensitive shock signals must be sepa-
rated from them. Therefore, this study used the widely 
used VMD method to decompose diesel engine vibra-
tion signals. In the VMD method, it is necessary to set 
the modal number K and the second penalty factor α in 
advance; however, it is difficult to set these two param-
eters in practice [26, 27]. This paper proposed a VMD 
parameter optimization method based on the character-
istics of large shock vibration signals.

2.1.1 � Optimization of the Second Penalty Factor
The second penalty factor, α , affects the signal recon-
struction accuracy. It is a significant advantage that the 
decomposed shock signal contains less noise interference. 

The shock components often exist in the mid-band of the 
signal so the initial decomposition mode number, K = 
3, is decomposed into three parts: low-frequency IMF1, 
intermediate-frequency IMF2, and high-frequency IMF3. 
The SNR is calculated for the decomposed signal of the 
intermediate frequency; a higher SNR is desired. The 
SNR calculation formula is as follows:

where the RMS is the root mean square value, IMF2 is 
the decomposed mid-band signal, and IMF2_noise is the 
decomposed non-shock component of the mid-band.

For the high-frequency part, the main component is 
noise, and the entropy value of the noise component is 
relatively large; therefore, a high-frequency component, 
IMF3, with a higher power spectrum entropy value must 
be obtained. The power spectrum of each VMD compo-
nent is calculated as follows:

where FIMF

(

f
)

 is the discrete signal Fourier transform of 
the component, and N is the data length.

The power spectrum entropy value is:

where qi is the proportion of the i-th power spectrum 
value in the entire spectrum.

The optimization target of the second penalty factor 
α is the maximum value of the sum of the SNR of the 
normalized intermediate frequency component and the 
power spectrum entropy of the normalized high-fre-
quency component. The optimization objective function 
is as follows:

where nor(SNR(α)) is the normalized SNR vector and 
nor(HP(α)) is the normalized power spectrum entropy 
vector.

2.1.2 � Optimization of the Decomposition Mode Number
During the VMD process of the vibration signal, the fre-
quency band of the signal decomposition becomes finer 
as the value of K increases and the difference between 
adjacent frequency bands becomes smaller. To obtain the 
best signal decomposition effect, the difference between 
adjacent frequency band signals should be maximized. 
Therefore, this study is based on the principle of a mini-
mum average Pearson correlation coefficient between 

(1)SNR = RMS(IMF2)/RMS(IMF2noise),

(2)PIMF =
∣

∣FIMF

(

f
)∣

∣

2
/N ,

(3)HP = −

N
∑

i=1

qi log qi,

(4)F(α) = nor(SNR(α))+ nor(HP(α)),
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adjacent modal components to iteratively optimize the 
decomposition mode number K. The Pearson correla-
tion coefficient calculation formula for each mode is as 
follows:

According to the number of modes, K, the average 
Pearson correlation coefficient ρ is calculated as follows:

2.2 � A New BALW
Different types of shocks had different shock response 
performances, mainly due to the different mechanisms 
and materials. For example, the ignition process of a 
diesel engine is a combustion process in which a single-
point or multiple-point flame spreads to the entire area 
and the vibration signal response has the characteris-
tics of first rising and then decaying. Figure 1 shows the 
vibration signal of diesel engine cylinder head and its 
partial enlarged view. The ignition shock vibration does 
not conform to the characteristics of LW unilateral atten-
uation. Meanwhile, the signal decomposition will cause 
the leakage of impact energy and change its waveform.

Therefore, the commonly used LW derived from the 
Laplace inverse transformation of the second-order 
underdamped system was not completely suitable for 
the reciprocating mechanical shock signal. In this study, 
a BALW was constructed to meet the needs of matching 
various impact signals.

(5)ρ(X ,Y ) =

∑
(

X − X
)(

Y − Y
)

√

∑
(

X − X
)2(

Y − Y
)2

.

(6)ρ =
1

K − 1

K−1
∑

i=1

ρ(IMFi, IMFi+1).

2.2.1 � Principle of the BALW
The LW is a complex exponential wavelet with unilateral 
oscillation attenuation, which conforms to the character-
istics of unilateral attenuation of actual shock signals. The 
complex LW is expressed as:

where the parameter vector γ=
{

ξ , f
}

 determines the 
characteristics of the wavelet. f ∈ R+ is the frequency, 
which determines the LW oscillation frequency. ξ ∈ [0, 1) 
is the damping ratio, which determines the decay rate of 
the LW.

The anti-symmetric real LW is treated as antisymmet-
ric on the basis of the LW:

The BALW is proposed on the basis of the ARLW, 
which has the characteristics of bilateral asymmetric 
attenuation. When the unilateral damping value is large, 
the waveform characteristics are close to the unilateral 
damping type impact. When the bilateral damping val-
ues are both within a reasonable range, the waveform 
characteristics conform to the impact characteristics 
of first increasing and then attenuating. Therefore, the 
BALW has a better impact matching ability. The BALW 
is expressed as:

where ξ1, ξ2 ∈ [0, 1) is the damping ratio.
In the actual signal processing, the real part of the 

BALW is used, Re
(

ψγ

)

:

2.2.2 � Wavelet Parameter Search Method
The wavelet parameter set is φ = F × Z1 × Z2 × T  , a 
four-dimensional matrix, and hence the step-by-step iter-
ative search process for each parameter has a significant 
computational cost. Thus, a search algorithm is needed 
to quickly search for parameters.

(7)

ψγ (t) =




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exp
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−

�

ξ/
�

1− ξ2
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2πft
�

exp
�

−j2πft
�
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0, t < 0,

(8)
ψγ (t) = exp

(

−

(
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√
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.
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Figure 1  Diesel engine vibration signal and partial enlarged view
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The harmony search (HS) algorithm [24] is an optimi-
zation algorithm inspired by the beautiful harmonizing 
of musical instruments. It has been widely studied and 
applied in the field of combinatorial optimization. The 
main features of the algorithm are fewer setting param-
eters, strong solution ability of continuous optimization 
and discrete optimization methods, and a simple con-
cept. This study used the HS algorithm to accelerate the 
search process of wavelet parameters.

The search objective function is defined as f (x) , where 
X = [F ,Z1,Z2,T ] . Set the initialized harmony mem-
ory bank HM, the HM considering rate (HMCR), the 
pitch adjusting rate (PAR), the fine-tuning amplitude 
bw , and the maximum number of iterations MAX. HM 
and HMCR are used to generate a new solution Xnew

i  as 
follows:

where X rand
i,j  is a random individual generated in the pos-

sible range of values.
The PAR parameter is used to adjust the pitch, as 

follows:

The maximum iteration number was selected as the 
stopping criterion of the analyses in this study, although 
there are various alternative criterions.

3 � Simulation Signal Processing and Analysis
3.1 � Simulation Signal Generation
In actual vibration signals, strong shocks can excite two-
order or even multi-order vibration modes, and there is 
coupling and superposition of different shock signals. 
Hence, single-frequency wavelet matching is not suita-
ble. To reflect the applicability of the multi-impact signal 

(11)
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i,j , . . . ,Xnew
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,
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i,j =

�

XHM
i,j for rand < HMCR,

Xrand
i,j for else,

XHM
i =

�

XHM
i,1 , . . . ,XHM

i,j , . . . ,XHM
i,d

�

,

Xrand
i =

�

X rand
i,1 , . . . ,Xrand

i,j , . . . ,Xrand
i,d

�

,

(12)Xnew
i =

{

XHM
i,j ± rand × bw for rand < PAR,

X rand
i,j for else.

search strategy proposed in this study, a simulation sig-
nal s is constructed for verification, where s1 is a bilater-
ally attenuated impulse signal, s2 is the double frequency 
signal of s1 at the same time as τ1 , s3 is another unilateral 
attenuation shock signal at time τ2 , and s4 is the low-
frequency sinusoidal signal. The waveform diagram and 
frequency domain diagram of the simulated signal s are 
shown in Figures 2 and 3, respectively.

(13)s1 =
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�
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�
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�
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�

2πf1(t − τ1)
�

, 0 ≤ t < τ1,

Figure 2  Simulation signal

Figure 3  Simulation signal spectrum

Figure 4  Second penalty factor of the optimized VMD iteration
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where A1 = 10 , A2 = 15 , ξ1 = 0.06 , ξ2 = 0.02,ξ3 = 0.04 , 
f1 = 40 Hz , f2 = 40 Hz , f3 = 10 Hz,  τ1 = 3 s , τ2 = 1 s , 

(14)

s2 =




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A1 exp
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(15)s3 =




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A2 exp
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−

�

ξ3/

�

1− ξ23

�

2πf2(t − τ2)

�

sin
�

2πf2(t − τ2)
�

, t ≥ τ2,
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(16)s4 = sin
(

2πf3t
)

,

(17)s = s1 + s2 + s3 + s4 + noise,

t ∈ [0, 5] s , the noise is Gaussian, and the sampling fre-
quency Fs = 400 Hz.

3.2 � VMD Processing of the Simulated Signal
The optimized VMD is then performed on the simu-
lated signal. According to the optimized VMD param-
eter optimization method proposed in this paper, the 
searched optimal secondary penalty factor α = 859 and 
the optimal decomposition modal number K = 4, as 
shown in Figures 4 and 5. The optimized VMD modal 
signals and their spectrograms are shown in Figure 6. It 
can be seen that the optimized VMD effectively decom-
posed the shock signal components, among which 
IMF2 is a 40 Hz signal component and IMF3 is an 80 
Hz signal component.

Further, the unoptimized VMD is used to process the 
simulation signal. The parameters are set as α = 2000 , 
K = 5 [28]. As shown in Figure 7, the simulation signal is 

Figure 5  Mode number K of the Optimized VMD iteration

Figure 6  Optimized VMD signals and their frequency spectrums
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decomposed into 5 modal signals. Comparing the VMD 
results with optimized parameters α = 859, K = 4 and 
conventional parameters α=2000, K=5 , the method pro-
posed in this paper had a better decomposition effect. 

The cosine distance shown in Eq. (18) is used to measure 
the similarity between the simulated shock signal and the 
decomposed signal.

As shown in Table 1, The decomposed signals based on 
optimized VMD processing has smaller cosine distance, 
which indicates that it is closer to the original signal and 
has less energy loss.

(18)Dist(X ,Y ) = 1−
�X ,Y �

�X�2�Y �2
.

Figure 7  VMD signals and their frequency spectrums

Table 1  The cosine distance of simulated shock signal and the 
decomposed signal

α = 859, K = 4 α=2000, K=5

Dist(s2, IMFs2) 0.0284 0.0313

Dist(s3, IMFs3) 0.0081 0.0097

Figure 8  The simulation signal EEMD components and their spectrum
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To further verify the decomposition effect and advan-
tages of the improved VMD method proposed in this 
paper, it is also compared with other popular signal 
decomposition methods in recent years. EMD is often 
used in fault diagnosis, especially in bearing vibration 
signal decomposition and feature extraction [29, 30]. 
However, there are end effects in the EMD, which affect 
the decomposition effect. EEMD introduces white noise 
to improve the end effect [31], but it has the same modal 
aliasing problem as EMD.

The simulation signal is processed by the EEMD 
method. As shown in Figure 8, there are 40 Hz and 80 Hz 
frequency bands in IMF1. IMF3 and IMF5 contain part 
of the 10 Hz harmonic signal of IMF4. Therefore, EEMD 
has a strong frequency band aliasing phenomenon in 
the process of processing the above signals. It shows the 
advantages of optimized VMD in processing multi-shock 
signals.

3.3 � Time‑Frequency Feature Extraction of the Shock 
Signals

3.3.1 � Search Strategy for Wavelet Parameters 
of the Multi‑shock Signals

A group of vibration signals often contains multi-shock 
components. During the global search process for the 
optimal wavelet parameters, there are multiple shocks 
corresponding to the optimal local parameter values. 
However, the harmony search algorithm searched for the 
global optimal solution and only one of the shock com-
ponents could be found. Therefore, the search algorithm 
lacked the ability to search for wavelet parameters for 
multi-shock vibration signals. Aiming at the above prob-
lems, a wavelet parameter harmony search strategy for 
multi-shock signals was proposed.

(1)	 Perform VMD processing on the original signal to 
obtain the frequency band signal of the shock com-
ponent, and determine the search frequency inter-
val of each frequency band signal.

(2)	 Calculate the peak position of each shock frequency 
band signal separately to determine the time point 
parameter τ . The time interval T ∈ [τ − δ, τ + δ] 
can be set to capture the peak position more accu-
rately owing to noise interference.

(3)	 Calculate the best wavelet parameters based on the 
cosine distance. Set the wavelet envelope Env cut-
off point threshold to 0.01 (the threshold size can 
be selected and set as required) and zero the signal 

Table 2  Parameter search time of different algorithms

HS algorithm Iterative search Differential evolution 
algorithm

Time (s) 3.15 361.23 3.53

Figure 9  IMF1 signal

Figure 10  Signals constructed by parameters after searching

Figure 11  IMF2 signal

Figure 12  Signals constructed by parameters after searching
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between the wavelet cut-off points of the original 
signal. The signal envelope formula is as follows:

(4)	 Repeat (2) and (3) until the cosine distance is less 
than the threshold of 0.2 so as to complete the 
wavelet matching parameter search of all shock 
components.

3.3.2 � Multi‑shock Recognition of the Simulated Signal
The wavelet parameter search strategy of multi-shock 
signals is used to match the wavelet parameters of 
the two frequency band signals of IMF1 and IMF2. 
First, we determine the frequency search interval 
F ∈ {35 : 1 : 45, 75 : 1 : 85} and the damping ratio search 
interval Z ∈ {0.01 : 0.01 : 0.99} . Second, we determine 
the HMS = 20, HMCR = 0.5, PAR = 0.5, bw = 5 and 
MAX = 10000, and then perform the harmony search. 
The damping ratio at the rising end of the search wave-
form of the s2 signal differed from the actual value by 
0.01, while the remaining parameters matched. This 
is caused by the loss of the signal decomposition. The 

(19)
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
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�

, t ≥ τ ,
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��

ξ2/

�

1− ξ22

�

2πf (t − τ )

�

, 0 ≤ t < τ .

damping ratio of the falling end of the search of the s3 
signal matches and the damping ratio of the rising end 
reaches 0.21, which is consistent with the original decom-
posed signal in terms of shape and frequency.

Meanwhile, the calculation time between different 
search methods is compared. As shown in Table  2, the 
HS algorithm search time is 3.15 s, the iterative search 
time is 361.23 s, and the differential evolution algorithm 
search time is 3.53 s. The search time of HS algorithm is 
better than that of other methods.

As shown in Figures  9, 10, 11, 12, in terms of vibra-
tion waveforms, the decomposed modal signals and the 
parameter matching signals have a high degree of simi-
larity, indicating that the method proposed in this paper 
has a good shock parameter extraction result. The spe-
cific matching parameters are listed in Table 3.

We analyzed and compared the search results and 
search time of the iterative search, differential evolution 
algorithm, and harmony search algorithm for the s1 sig-
nal. All three methods show consistent search results.

4 � Experimental Equipment and Fault Simulation 
Data Verification

4.1 � Test Bench Introduction and Fault Setting
We conduct a confirmatory experiment on a TBD234V12 
direct-injection diesel engine. The common abnormal 

Table 3  Comparison of simulation signal search parameters

Parameter form s1 s2 s3

Actual parameters Parameters 
after search

Actual parameters Parameters 
after search

Actual parameters Parameters 
after search

Frequency (Hz) 40 40 80 80 40 40

Damping ratio 0.06/0.02 0.06/0.02 0.06/0.02 0.07/0.02 None/0.04 0.21/0.04

Time (s) 3.0 3.0 3.0 3.0 1.0 1.0

Figure 13  Diesel engine and measuring point installation

Figure 14  Valve clearance adjustment



Page 10 of 14Zhao et al. Chinese Journal of Mechanical Engineering           (2023) 36:36 

valve clearance fault of diesel engines is selected as the 
analysis object. According to the transmission path of 
vibration, the vibration generated by the valve finally 
reflects the surface of the diesel engine cylinder head. 
Hence, the upper surface of the diesel engine cylinder 
head is taken as the vibration measuring point (as shown 
in Figure  13). This diesel engine is a 12-cylinder diesel 
engine and its cylinders are divided into columns A and 
B. The vibration signals and pulse signals are sampled 
by the DATA acquisition (DAQ) system. The DAQ card 
has a 24-bit ADC resolution, with a maximum sampling 

rate of 102.4 K/s for each channel and a maximum of 32 
analog inputs.

Under normal circumstances, the intake valve clear-
ance is 0.3 mm and the exhaust valve clearance is 0.5 
mm. Taking the intake valve as the research object, the 
B4 cylinder is used in an intake clearance fault simulation 
experiment. The intake valve clearance is set to 0.3 mm 
and 0.9 mm and the exhaust valve clearance is set to 0.5 
mm and 1.1 mm. The valve clearance setting process is 
shown in Figure  14. When the diesel engine is running 
at 1500 r/min, 1800 r/min, and 2100 r/min, the cylinder 
head vibration signals are collected.

4.2 � Feature Extraction of Valve Clearance Fault
According to the flywheel gear pulse signals, the vibra-
tion signals are intercepted throughout the period, and 
the time-domain vibration signals are converted to corre-
spond to the crankshaft angle. Figures 15 and 16 show the 
vibration signals of B4 cylinder under normal and fault 
conditions. Compared with the normal signal, the intake 
valve closing shock peak in the fault state is significantly 
larger (shown in the red box). The shock amplitude of the 
intake valve closing increases and the starting position is 
advanced (the dotted frame area near the 480° crankshaft 
angle). However, the valve closing shock amplitude is 
affected by the operating conditions of the diesel engine 

Figure 15  Normal signal

Figure 16  Fault signal

Figure 17  Normal signal spectrum

Figure 18  Fault signal spectrum

Figure 19  Second penalty factor of the optimized VMD iteration

Figure 20  Mode number K of the optimized VMD iteration
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and the valve closing shock start phase is relatively fixed. 
Thus, the shock start position is a very critical fault fea-
ture. From the spectrum analysis (as shown in Figures 17 
and 18), the shock frequency band is mainly around 

Figure 21  VMD mode signals and their frequency spectrum

Figure 22  Actual shock signal and BALW signal

Figure 23  Actual shock signal and LW signal

Figure 24  Actual shock signal and ARLW signal

Figure 25  Starting position of intake valve closing shock signal

Figure 26  Peak value of intake valve closing shock signal
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5 kHz but it is difficult to obtain the characteristic fre-
quency of the fault.

According to the VMD parameter optimization 
method proposed in this paper, VMD ( K = 4, α = 61 , 
the iterative process of parameter optimization is 
shown in Figures  19 and 20) processed modal decom-
position signals and their spectra are shown in 
Figure 21.

It is determined that the shock frequency band is 
mainly concentrated at around 5 kHz, i.e., the IMF2 
signal. The search frequency band F ∈

{

4 k : 0.1 k : 6 k
}

 
and the damping ratio range Z ∈ {0.01 : 0.01 : 0.99} are 
set, and a wavelet parameter search for the valve clos-
ing shock is performed according to the method pro-
posed in this paper. As shown in Figures 22, 23, 24, the 
BALW proposed in this paper has a better waveform 
matching ability for the closing shock of the intake 
valve after VMD than the LW and ARLW. The pro-
posed method based on the BALW accurately extracts 
the starting angle of the valve closing shock. However, 

the extraction angle of the other two methods differed 
by approximately 10° from the real situation, which 
induces significant interference with the actual valve 
fault monitoring process; this causes fault misjudgment 
and is thus not suitable for actual situations.

Moreover, the initial angle position and peak charac-
teristics of 360 groups of inlet valve closing shocks are 

Figure 27  Fault diagnosis process

Table 4  Features of different methods

Feature name Features of optimized 
VMD+BALW method

Optimized VMD + 
Conventional features 
method

Formula Prompt

Angle of shock initiation √ ×
a = ang

(√
1−ξ22 ln 0.01

2πf ξ2
+ τ

)

ang(·) converts 
time into angles

Peak value √ √ p = max {|x|}

Shock frequency √ × ω = argmax
ω

{∣

∣x̂
∣

∣

}

x̂ is the Fourier 
transform of the 
signal x

Root mean square √ √ xrms =

√

1
n

∑n
i=1 x

2
i

Standard deviation √ √ σ =

√

1
n

∑n
i=1 (xi − x)2

Kurtosis √ √
ku = 1

n

n
∑

i=1

(

xi−x
σ

)4

Crest factor √ √ c = p/xrms

Skewness √ √
s = 1

n

n
∑

i=1

(

xi−x
σ

)3

Table 5  Comparison of the results of the recognition rate of 
intake and exhaust valve clearance

Recognition rate of intake and exhaust valve clearance (%)

Optimized 
VMD+BALW

Optimized VMD 
+ conventional 
features

Normal intake valve 90.2 68.5

Abnormal intake valve 90.6 64.5

Normal exhaust valve 97.4 67.5

Abnormal exhaust valve 93.7 64.0
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calculated and compared. As shown in Figures  25 and 
26, the feature of initial shock angle has more advan-
tages than the feature of peak value in fault recognition.

4.3 � Fault Identification Result
The abnormal valve clearance fault signals of diesel 
engines are used for fault diagnosis. As shown in Fig-
ure 27, the main process of this fault diagnosis process 
is as follows:

(1)	 The vibration signals of the diesel engine cylinder 
head are processed by optimized VMD. Then, the 
signals of the shock frequency band are extracted.

(2)	 The shock search algorithm based on BALW and 
the harmony search algorithm is used for shock 
search. Then the feature values are extracted to 
train the Softmax classifier, and finally, the fault 
classification is realized. The extracted features are 
shown in Table 4.

(3)	 Meanwhile, conventional features are extracted 
from the optimized VMD processed shock signals. 
Then train the Softmax classifier to realize fault 
classification. The extracted features are shown in 
Table 4.

(4)	 Finally, compare the two methods in (2) and (3).

The commonly used Softmax classifier is used for 
fault classification. There are 240 sets of data for the 
three speeds, a total of 720 sets, of which normal and 
fault data each account for half. The 480 sets of data are 
randomly selected as the training set and the remaining 
360 sets of data as the test set. The clearance fault of the 
intake and exhaust valve is then recognized.

Table  5 shows the classification results. The fault rec-
ognition rate of the intake and exhaust valve clearance of 
the methods (optimized VMD + BALW) proposed in this 
paper was above 90%. However, the fault recognition rate 
of the intake and exhaust valve clearance for the VMD + 
conventional features method was 60%–70%. The results 
showed that the shock feature extraction method pro-
posed in this paper realized the effective extraction of the 
feature and obtained an accurate fault recognition effect.

5 � Conclusions
Based on the characteristics of multi-source shock cou-
pling and strong noise interference in the shell vibration 
signal of reciprocating machinery, this study improved 
the parameter selection of the VMD method.

By introducing different bilateral damping ratio param-
eters to improve the ARLW, a new BALW was estab-
lished, which had bilateral asymmetric attenuation 
characteristics. Considering the difficult problem of opti-
mal selection of wavelet local parameters for multi-shock 

signals, a wavelet local parameter search strategy for 
multi-shock signals was established via the harmony 
search algorithm. The search time was 3.15 s, which 
improved upon the other methods.

The new method proposed in this paper solved the 
problem of accurately extracting different types of time-
domain shock signals, and realized the optimization of 
wavelet parameters of multi-source shocks and the adap-
tive extraction of local shock features. A diesel engine test 
bench was used to obtain abnormal data for simulated 
valve clearance, the shock feature extraction effect was 
verified, and the fault recognition accuracy rate exceeded 
90%. Moreover, the extraction accuracy of the shock start 
position was improved by 10°.

In the future, we will combine other methods to further 
improve the performance of shock extraction.
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