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Abstract 

In previous studies about the synchronization of vibrators, the restoring forces of springs are mainly treated as linear 
directly, whereas the nonlinear features are rarely considered in vibrating systems. To make up this drawback, a 
dynamical model of a nonlinear vibrating mechanical system with double rigid frames (RFs), driven by two vibrators, 
is proposed to explore the synchronization and stability of the system. In this paper, the nonlinearity is reflected in 
nonlinear restoring forces of springs characterized by asymmetrical piecewise linear, where the nonlinear stiffness 
of springs is linearized equivalently using the asymptotic method. Based on the average method and Hamilton’s 
principle, the theory conditions to achieve synchronization and stability of two vibrators are deduced. After the theory 
analyses, some numerical qualitative analyses are given to reveal the coupling dynamical characteristics of the system 
and the relative motion properties between two RFs. Besides, some experiments are carried out to examine the valid-
ity of the theoretical results and the correctness of the numerical analyses results. Based on the comparisons of the 
theory, numeric and experiment, the ideal working regions of the system are suggested. Based on the present work, 
some new types of vibrating equipment, such as vibrating discharging centrifugal dehydrators/conveyers/screens, 
can be designed.
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1  Introduction
When it comes to vibration, in most cases, it is harmful 
and can damage the machine sometimes. Hence, some 
research works [1–3] stressed the theme of vibration con-
trol and suppression enough. In engineering, however, 
some machines are designed and operated by utilizing 
vibrations, such as vibrating feeders, vibrating conveyors, 
probability screen, most of which are based on the self-
synchronization theory of vibrators (unbalanced rotors 
driven by induction motors separately).

As a typical nonlinear phenomenon, synchronization 
expresses great potential in plenty of application areas. 

Refs. [4] and [5] researched the synchronization of robot 
manipulators and the predictive control of the perma-
nent magnet synchronous motor, respectively. Huygens 
[6] and Karmazyn et  al. [7] studied the synchronization 
of the pendulums attached to different structures. As a 
complex dynamical behavior, the synchronization of cha-
oticsystem has become the focus of chaos research [8, 9].

For the synchronization of vibrators, the first definition, 
as well as the early explanation for the synchronization 
mechanism of two identical vibrators, can be found in 
Refs. [10, 11]. After that, many scholars studied the syn-
chronization theory of vibrators. The theory of multiple 
cycle synchronization of the vibrating mechanical system 
driven by vibrators was given in Refs. [12–14]. Wen et al. 
[15] further expanded the synchronization theory and 
applied it to engineering successfully. The composite syn-
chronous motion of vibrators was analyzed in Refs. [16, 
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17]. Hou et  al. [18] studied the influences of the struc-
tural parameters on synchronous characteristics between 
the rotors in an anti-resonance system. Dudkowski et al. 
[19, 20] investigated the synchronization behavior and 
stability of classical lightly supported pendula systems. 
To maintain stability synchronization of vibrators in the 
multi-motor-pendulum vibration system, a combined 
synchronous control strategy was proposed in Ref. [21]. 
The authors in Ref. [22] investigated the synchronization 
of two vibrators with common rotational axis. Besides, 
the influence of non-ideal power source and the particu-
lar phenomena around the resonant point of the system 
were also investigated deeply, for example, some short 
comments on the synchronization of two or four non-
ideal vibrators and the Sommerfeld effect were presented 
in Refs. [23–25]. Du et  al. [26] considered synchronous 
characteristics of a non-resonant system.

Recently, some novel researches on synchronization 
problems of vibrators were presented. For instance, by 
the theoretical and simulation studies, Refs. [27, 28] 
revealed the synchronization mechanism and stability 
of the synchronous states in a vibrating system with two 
homodromy vibrators in detail. From the perspective of 
electromechanical coupling, Zhang et  al. [29] gave the 
explanation for the synchronous phenomenon and stabil-
ity of two vibrators. Besides, Chen et al. [30] investigated 
the stability and coupling dynamical characteristics in a 
vibrating system with a single RF, which is driven by four 
vibrators.

Several methods have been used to study synchroniza-
tion of vibrators. The first method, known as the direct 
separation motion method [10, 11], has been shown to be 
effective. Especially in dealing with the synchronization 
problems of two identical vibrators, this method exhib-
ited good effects in simplifying the investigation by com-
bining the differential equations of the two rotors into the 
differential equations of the phase difference. Taking the 
influences of the damping into account, Wen et  al. [15] 
further developed the synchronization theory by means 
of the average method.

The aforementioned methods have been widely applied 
to solve the synchronization problems of vibrators. How-
ever, according to the authors’ knowledge, in the previous 
literatures, the restoring forces of springs of the vibrat-
ing system were mainly treated as linear directly. This is 
because that when the nonlinear features of the system 
are taken into account, investigation of the synchroniza-
tion and stability of the system is generally difficult. In 
engineering, however, we should emphasize that many 
vibrating systems need to utilize its nonlinear effect, i.e., 
the damping and the restoring forces of springs may be 
nonlinear in most cases. To solve the synchronization 
problems with nonlinear characteristics, the key problem 

is to deduce the motion differential equations of the sys-
tem, i.e., how to introduce nonlinear features into the dif-
ferential equations and make the system be manageable 
by the numerical or simulation methods. According to 
Ref. [15], the main investigation methods to deal with the 
nonlinear problems include the asymptotic methods, the 
method of small parameters, the equivalent linearization 
method, and so on.

To make up the drawbacks of previous works, in this 
paper, a dynamical model with nonlinear springs char-
acterized by asymmetrical piecewise linearity, driven by 
two vibrators, is proposed to explore the synchroniza-
tion and stability of the corresponding system by theory, 
numeric and experiment. Our goal is to introduce the 
nonlinear features into the vibrating system to make the 
investigate approach more accurate, as well as reveal the 
dynamical characteristics with nonlinear restoring forces. 
The approach proposed in this paper is based on the tra-
ditional average method but with the nonlinear charac-
teristics, where the nonlinear features are reflected in 
the nonlinear stiffness of springs obtained by the asymp-
totic method. The present work, to a certain extent, is an 
extension and deep investigation of the previous litera-
tures, which can provide a guidance for designing some 
new types of vibrating machines corresponding to the 
considered model.

In this paper, according to the ratio between the oper-
ating frequency to the natural frequencies, denoted by 
z, we generally divide the resonant regions of a vibrating 
system into four types: sub-resonant (z<0.9), near sub-
resonant (0.9<z<1), near super-resonant (1<z<1.1), and 
super-resonant (z>1.1).

The rest of the paper is organized as follows: In Sec-
tion 2, the description of the nonlinear vibrating mechan-
ical system is presented, accompanied by deducing the 
motion differential equations, and the equivalent stiff-
ness is derived. In Section  3, the theoretical conditions 
to implement synchronization and ensure its stability are 
deduced by the average method and Hamilton’s principle, 
respectively. Section 4 is devoted to numerical qualitative 
analyses, followed by experimental verifications given in 
Section 5. Finally, conclusions are drawn in Section 6.

In this paper: ‘RF’ is the abbreviation of ‘rigid frame’, 
and ‘SPD’ is the abbreviation of ‘stable phase difference’.

2 � Mathematical Modeling of the System
2.1 � Description of the System
The considered nonlinear vibrating mechanical sys-
tem, illustrated in Figure 1, consists of two RFs (i.e., m1 
and m2 ) linked by the shear rubber springs and the gap-
activated compression rubber spring (see k1y and Δk1y in 
Figure 1, respectively), where the former is symmetrically 
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installed, while the latter is asymmetrically arranged on a 
single side with the average gap μ.

Here m1 and m2 are the main vibrating and isolative 
RFs, respectively, driven by a pair of identical vibra-
tors mounted on both sides of the isolative RF 2. As 
illustrated in Figure 1, two vibrators can rotate with the 
same or opposite directions and generate certain excit-
ing forces. The centroid of the RF 1 coincides with that 
of RF 2, which is also the equilibrium point of the system, 
marked as o, and the coordinate system oxy is established 
with o as the origin.

It should be pointed that the shear rubber springs are 
constrained to generate stiffness only in the horizontal 
direction and thus the relative motion between two RFs 
is restricted in y-direction. The motion of the system is 
considered as the plane motion, and the system has four 
degrees of freedom: the displacements of two RFs in x-, 
y-, and ψ-directions, denoted by x, y1, y2, and ψ, respec-
tively. The angular positions of both vibrators are denoted 
by φ01 and φ02.

To derive the differential equations of motion for the 
system, the nonlinear damping force F1(y1, y2, ẏ1, ẏ2) and 
the nonlinear restoring force F2(y1, y2) are firstly given by 
Eq. (1):

where f1y and Δf1y are the damping constant of relative 
motion between two RFs for the shear rubber spring and 
gap-activated compression rubber spring, respectively; 
k1y and Δk1y are the stiffness of the shear rubber spring 
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f1y(ẏ1 − ẏ2), (y1 − y2) ≥ −µ,
(f1y +�f1y)(ẏ1 − ẏ2), (y1 − y2) < −µ,

F1(y1, y2)

=
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k1y(y1 − y2), (y1 − y2) ≥ −µ,
k1y(y1 − y2)+�k1y(y1 − y2 + µ), (y1 − y2) < −µ,

and gap-activated compression rubber spring, respec-
tively; μ is the gap between the gap-activated compres-
sion rubber spring Δk1y and RF 1.

2.2 � Motion Differential Equations of the System
2.2.1 � Absolute Motion Differential Equation
The equivalent stiffness and the equivalent damping con-
stant of the relative motion between two RFs in y-direc-
tion are assumed to be k ′1y and f ′1y , respectively. The 
absolute motion differential equations for the considered 
system, formulated by using the Lagrange’s principle, are 
as follows:

with
M1 = m1 , M2 = m2 +m01 +m02 , M = M1 +M2 , 

m01 = m02 = m0 , J0i = m0ir
2 , J = Ml2e ,

 where M1 is the mass of RF 1, while M2 is that of RF 2 
(including two vibrators); M is the mass of the total 
vibrating system; m01 and m02 are the mass of the vibra-
tor 1 and 2, respectively; m0 is the mass of the standard 
vibrator; r is the eccentric radius of each vibrator; J0i is 
the moment of inertia of the vibrator i (i=1, 2); J is the 
moment of inertia of the total vibrating system about its 
mass center; l0 is the distance between the rotation center 
of each vibrator and the mass center of the total vibrat-
ing system; le is the equivalent rotary radius of the total 
vibrating system about its mass center; f0i is the damp-
ing coefficient of axis of the induction motor i (i=1, 2); fx, 
f2y, and fψ are the damping constant of the isolative RF in 
x-, y-, and ψ-directions, while kx, k2y, and kψ are the stiff-
ness parameters; βi is the angle between the line from the 
rotation center of the vibrator i to the mass center of the 
total vibrating system and x-axis; Tei is electromagnetic 
torque of the motor i.

(2)























































































M1ÿ1 + f ′1y(ẏ1 − ẏ2)+ k ′1y(y1 − y2) = 0,

M2ÿ2 − f ′1yẏ1 + (f ′1y + f2y)ẏ2 − k ′1yy1 + (k ′1y + k2y)y2

= m0r[(ϕ̇2
01sinϕ01 − ϕ̈01cosϕ01)+ (ϕ̇2

02sinϕ02 − ϕ̈02cosϕ02)],
Mẍ + fxẋ + kxx = m0r[σ1(ϕ̇2

01 cosϕ01 + ϕ̈01 sin ϕ01)

+σ2(ϕ̇
2
02 cosϕ02 + ϕ̈02 sin ϕ02)],

J ψ̈ + fψψ̇ + kψψ

= m0l0r{[ϕ̇2
01 sin(ϕ01 − σ1β1)− ϕ̈01 cos(ϕ01 − σ1β1)]

+ [ϕ̇2
02 sin(ϕ02 − σ2β2)− ϕ̈02 cos(ϕ02 − σ2β2)]},

J0iϕ̈0i + f0iϕ̇0i

= Tei −m0r[ÿ2 cosϕ0i − σiẍ sin ϕ0i + l0ψ̈ cos(ϕ0i − σiβi)],

σi =
{

(−1)i+1, two counter - rotating vibrators,

1, two co - rotating vibrators,
i = 1, 2,

Figure 1  Dynamical model of a nonlinear vibrating mechanical 
system with two RFs driven by two identical vibrators
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2.2.2 � Relative Motion Differential Equation
Since the vibrating system considered in Figure 1 consists 
of two RFs, it is necessary to derive the relative motion 
differential equation of the system in y-direction.

To facilitate the study, some parameters and omissions 
are set as follows: (i) The average phase and the phase dif-
ference of the two vibrators are set as φ and 2α, respec-
tively, i.e., φ01=φ+α, φ02=φ−α; (ii) When the system is 
operated synchronously, the average angular velocity of the 
two vibrators is denoted by ωm0; (iii) Based on Ref. [15], in 
the steady state, the relationships between acceleration and 
displacement satisfy the fact of ÿi = −ω2

m0yi(i = 1, 2) , and 
the coil isolative springs are relatively very soft, generally 
satisfy the fact of kx(or k2y) << k1y in engineering; (iv) ϕ̈01 
and ϕ̈02 in the second formula of Eq. (2) can be neglected 
when the system is operated synchronously.

Based on the above parameter setting and omissions, the 
formulae with respect to y1 and y2 in Eq. (2), can be rear-
ranged as follows:

where M′
1 = M1 , and M′

2=M2−(k2y/ω2
m0)≈M2 after 

ignoring k2y.
To obtain the solution of the relative motion between 

two RFs in y-direction, by the procedure of Eq. (3)×M′
2/

(M′
1+M′

2)−Eq. (4)×M′
1/(M

′
1+M′

2 ), the motion differential 
equation described by the relative displacement, relative 
velocity, and relative acceleration, are obtained, see Eq. (5):

with
m = M′

1M
′
2

M′
1+M′

2
 , rm2 = m0

M′
2
≈ m0

M2
 , y12 = y1 − y2 , where m is 

called the induced mass of the vibrating system.

2.3 � Motion Responses of the System
2.3.1 � Relative Motion Responses
Based on Eq. (5), the natural frequency of the relative 
motion between two RFs in y-direction, can be deduced as 
Eq. (6):

(3)M1ÿ1 + f ′1y(ẏ1 − ẏ2)+ k ′1y(y1 − y2) = 0,

(4)
M′

2ÿ2 − f ′1y(ẏ1 − ẏ2)− k ′1y(y1 − y2)

= m0rω
2
m0[sin(ϕ + α)+ sin(ϕ − α)],

(5)
mÿ12 + f ′1yẏ12 + k ′1yy12 = −mrm2rω

2
m0[sin(ϕ + α)+ sin(ϕ − α)],

Besides, based on the method of solving responses in Ref. 
[31], the relative motion response, i.e., the solution of y12 , 
can also be obtained, see Eq. (7):

with

F12 = − rm2z
2
0r

√

(1−z20)
2+(2ξ ′1yz0)

2
 , γ12 = arctan

(

2ξ ′1yz0

1−z20

)

,

z0 = ωm0
ω0

 , ξ ′1y =
f ′1y

2
√

k ′1ym
 , where F12 is the coefficient that 

the single harmonic excitation contributes to the effec-
tive vibration amplitude of the relative motion between 
two RFs; γ12 is the relative phase lag angle; z0 is the ratio 
between the operating frequency and the natural fre-
quency; ξ ′1y is the equivalent critical damping ratio of the 
relative motion between two RFs in y-direction.

According to Eq. (7), the relative vibration amplitude, 
denoted by δ12 here, is calculated by δ12 = 2|F12| cosα , 
where δ12 is the absolute value of the sum of amplitude 
vectors.

2.3.2 � Absolute Motion Response
Using the transfer function method and the superposi-
tion theorem [31], the absolute responses in x-, y-, and 
ψ-directions are presented by:

with

Fx = − rmr
ρx

 , F1y = m0rω
2
m0

√

η2c1+η2d1
η2a1+η2b1

,

Fψ = − rmrrl
ρψ le

 , F2y = m0rω
2
m0

√

η2g1+η2d1

η2a1+η2b1
,

γg = arctan
2ξng (ωng/ωm0)

1−(ωng/ωm0)
2 , g = x,ψ , rm = m0

M ,

rl = l0
le

 , ρg = 1− ω2
ng/ω

2
m0, g = x,ψ , ξnx = fx

2
√
kxM

,

ξnψ = fψ

2
√

kψ J
 , ωnx =

√

kx/M , ωnψ =
√

kψ/J ,

(6)ω0 =

√

k ′1y
m

=

√

k ′1y(M
′
1 +M′

2)

M′M′
2

.

(7)
y12 = F12[sin(ϕ + α − γ12)+ sin(ϕ − α − γ12)]

= 2F12 cosα sin(ϕ − γ12),

(8)
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x = Fx[σ1 cos(ϕ + α + γx)+ σ2 cos(ϕ − α + γx)],
y1 = F1y[sin(ϕ + α − γ1y)+ sin(ϕ − α − γ1y)],
y2 = F2y[sin(ϕ + α − γ2y)+ sin(ϕ − α − γ2y)],
ψ = Fψ [sin(ϕ + α − σ1β1 + γψ)+ sin(ϕ − α − σ2β2 + γψ)],

γ1y =
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arctan
�

ηb1ηc1−ηa1ηd1
ηa1ηc1+ηb1ηd1

�

, ηa1ηc1 + ηb1ηd1 > 0,

π+ arctan
�

ηb1ηc1−ηa1ηd1
ηa1ηc1+ηb1ηd1
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, ηa1ηc1 + ηb1ηd1 < 0,
γ2y =
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arctan
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ηb1ηg1−ηa1ηd1
ηa1ηg1+ηb1ηd1
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, ηa1ηg1 + ηb1ηd1 > 0,

π+ arctan
�
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ηa1ηg1+ηb1ηd1

�

, ηa1ηg1 + ηb1ηd1 < 0,
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ηb1 = −ω3
m0

[f ′
1yM2 +M1(f

′
1y + f2y)] + ωm0(f

′
1yk2y + f2yk

′
1y),

ηc1 = k ′1y , ηd1 = ωm0f
′
1y , ηg1 = k ′1y − ω2

m0M1.

2.4 � Derivation of the Equivalent Stiffness Using 
the Asymptotic Method

Since the damping of vibrating machines is relatively very 
small, the nonlinear damping force F1(y1, y2, ẏ1, ẏ2) in Eq. 
(1) can be directly replaced by f ′1y(ẏ1 − ẏ2) . The nonlinear 
restoring force F2(y1, y2) , however, should be equivalently 
linearized, which will be addressed in the following.

Based on the asymptotic method [15], the first approxi-
mate solution of Eq. (5) is obtained as:

with

where θ is the phase lag angle of the response for the rela-
tive motion.

Therefore, the nonlinear restoring force F2(y1, y2) can 
be rewritten as:

where ε is a small parameter derived from the asymptotic 
method, κ0 = arccos(µ/δ12).

The equivalent stiffness is obtained directly as:

Substituting Eq. (10) into Eq. (11), and based on the 
subsection integral method, the expression of the equiva-
lent stiffness under the condition of δ12 ≥ µ , is deduced 
as:

ηa1 = ω4
m0M1M2 − ω2

m0M1(k
′
1y + k2y)

− ω2
m0k

′
1yM2 − ω2

m0f
′
1yf2y + k ′1yk2y,

(9)y12 = δ12 cos(ωm0t + θ) = δ12 cos κ ,

θ = arccot

[

f ′1y
2m

1

(ω2
0 − ω2

m0)

]

,

(10)

F2(y1, y2) = F2(y12) = εf2(y12) = εf2(δ12 cos κ)

=
{

k1yδ12 cos κ , 0 ≤ κ ≤ π− κ0 and π+ κ0 ≤ κ ≤ 2π ,
k1yδ12 cos κ +�k1y(δ12 cos κ + µ), π− κ0 ≤ κ ≤ π+ κ0,

(11)k ′1y =
1

πδ12

∫ 2π

0
εf2(δ12 cos κ) cos κ dκ .

(12)

k ′1y = k1y +�k1y





2

π

arccos

�

µ

δ12

�

−
2µ

πδ12

�

1−
�

µ

δ12

�2


.

3 � Synchronization of the System and Stability 
of the Synchronous States

3.1 � Theory Condition of Realizing Synchronization of Two 
Vibrators

To obtain the synchronization criterion of the two vibra-
tors, based on the chain rule, the responses x, y2, and ψ 
listed in Eq. (8) are differentiated for time t. The obtained 
solutions ẍ , ÿ2 , and ψ̈ are inserted into the last two for-
mulae in Eq. (2), followed by integrating them over φ = 
0‒2π and rearranging it, then we can obtain the average 
balanced equations of two vibrators as follows:

with
Ws1 = −σ 2

1 Fx sin γx + F2y sin γ2y − l0Fψ sin γψ ,

Ws2 = −σ 2
2 Fx sin γx + F2y sin γ2y − l0Fψ sin γψ , 

Tu = m0rω
2
m0/2, 

Wcs = −σ1σ2Fx sin γx + F2y sin γ2y, 
Wss = σ1σ2Fx cos γx + F2y cos γ2y,

Wco1 = −l0Fψ sin(σ1β1 − σ2β2 + γψ),     
    Wco2 = l0Fψ sin(σ1β1 − σ2β2 − γψ),

Wso1 = l0Fψ cos(σ1β1 − σ2β2 + γψ),  
 Wso2 = l0Fψ cos(σ1β1 − σ2β2 − γψ) , where Te0i (i=1, 
2) represents the electromagnetic torque of an induction 
motor operating steadily with ωm0 ; Tu is the kinetic energy 
of the standard vibrator.

In the above integration process, the change of 2α with 
respect to time t is very small compared with that of φ, 
which can be considered as a slow-changing parameter 
[10], denoted by its integration middle value 2α.

The dimensionless residual torques of induction motors 
1 and 2, denoted by TR1 and TR2, respectively, are presented 
by Eq. (15):

Rearranging Eqs. (13) and (14) by the procedures of addi-
tion and subtraction, respectively, the following expres-
sions are yielded:

(13)

Te01 − f01ωm0

= Tu[Ws1 + (Wcs +Wco1) cos(2α)+ (Wss +Wso1) sin(2α)],

(14)

Te02 − f02ωm0

= Tu[Ws2 + (Wcs +Wco2) cos(2α)− (Wss +Wso2) sin(2α)],

(15)TRi = Te0i − f0iωm0 − TuWsi, i = 1, 2.

(16)(Te01 + Te02)− (f01 + f02)ωm0 = TLoad,

(17)TDifference = TCapture sin(2α + θc),
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with
TLoad=Tu[(Ws1 +Ws2)+WCL sin(2α + θs)],
TCapture = TuWCC , TDifference = TR1 − TR2,

WCL =
√
A2 + B2 , WCC =

√
C2 + D2,

A = Wso1 −Wso2 , B = 2Wcs +Wco1 +Wco2,
C = 2Wss +Wso1 −Wso2 , D = Wco1 −Wco2 , where 

TLoad is the load torque of the vibrating system acting on 
the two motors; TDifference denotes the difference between 
the dimensionless residual torques of the two motors; and 
TCapture is called as the torque of frequency capture.

Rearranging Eq. (17), then we have:

where Da is defined as the synchronization index of the 
system.

According to Eq. (18), we can learn that only the abso-
lute value of Da be equal or greater than 1, can Eqs. (13) 
and (14) be solved. Under the precondition of |Da| ≥ 1 , 
therefore, the theory condition to achieve synchroniza-
tion can be obtained, see Eq. (20), which requires that the 
torque of frequency capture be greater than or equal to 
the absolute value of the difference of the dimensionless 
residual torques of two motors, i.e.,

Based on Eqs. (18) and (19), when the value of Da 
is fixed, there exist two corresponding 2α . Taking the 
condition of Da = 2 , for example, we can deduce the 
facts of 2α + θc= π/6 or 2α + θc= 5π/6 in this case. 
Besides, when two motors are completely identical, we 
have TDifference = 0 while Da → ∞ , which leads to that 
2α + θc= 0 or 2α + θc= π.

According to Eqs. (13)‒(20), the theory condition to 
achieve synchronization and the final phase difference of 
the synchronous states are greatly influenced by the rota-
tion directions and the mounting angles of two motors. 
The necessary condition for achieving the frequency cap-
ture and reach the synchronous operation of two vibra-
tors is that the torque of frequency capture should be 
large enough to overcome the difference in the residual 
torques of the two motors. The system can implement 

θc =
{

arctan(D/C), D/C > 0,
π + arctan(D/C), D/C < 0,

θs =
{

arctan(B/A), B/A > 0,
π + arctan(B/A), B/A < 0,

(18)(2α + θc) = arcsin
1

Da
,

(19)Da =
TCapture

TDifference
,

(20)TCapture ≥
∣

∣TDifference

∣

∣.

synchronization operation, due to the contribution of 
frequency capture torque.

3.2 � Stability of the Synchronous States
As mentioned in Section 3.1, generally there exist two solu-
tions for 2α , here we should point out that, one of these 
two solutions is stable, while the other is not. To reveal the 
stability of the solutions, it is necessary to further deduce 
the stability criterion of the system.

The stability criterion can be obtained by using Ham-
ilton’s principle, where the kinetic energy T and potential 
energy V are given respectively by:

The expression of Hamilton’s average action amplitude 
over one periodic, denoted by I, is presented by:

From Ref. [15], the stable synchronous solution of 2α are 
supposed to correspond to be the minimum of Hamilton’s 
average action amplitude, i.e., the second-order derivative 
of I should be greater than zero, see Eq. (24):

Substituting Eq. (23) into Eq. (24), the stability criterion 
of the system is given by:

with
Ha = Ha1 +Ha2 +Ha3,

Ha1 = −ω2
m0(M1F

2
1y +M2F

2
2y + σ1σ2MF2

x ), 
Ha2 = σ1σ2kxF

2
x + k ′1yF

2
1y + k ′1yF

2
2y + k2yF

2
2y, 

Ha3 = −2k ′1yF1yF2y cos(γ1y − γ2y), 
Hb = −ω2

m0JF
2
ψ.

When the rotation directions and mounting angles of 
two motors are fixed, the stability criterion described in 
Eq. (25) can be further simplified. For example, for two 
co-rotating vibrators with mounting angles β1 = π and β2 
= 0, the stability criterion can be simplified as:

with

(21)
T =

1

2
(M1ẏ

2
1 +M2ẏ

2
2 +Mẋ2 + J ψ̇2)+m0r

2ω2
m0,

(22)V =
1

2

[

k ′1y(y1 − y2)
2 + k2yy

2
2 + kxx

2
]

.

(23)I =
∫ 2π

0
Ldϕ =

1

2π

∫ 2π

0
(T − V )dϕ.

(24)
d2I

d(2α)2

∣

∣

∣

∣

∣

2α=2α∗0

> 0.

(25)
Ha cos(2α

∗
0)+Hb cos(2α

∗
0 − σ1β1 + σ2β2) > 0.

(26)
{

H cos(2α∗
0) > 0,

H = H2 +H3 −H1,
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 H1 = ω2
m0

(M1F
2
1y

+M2F
2
2y
), H2 = (kx − ω2

m0
M)F2

x + ω2
m0

JF
2
ψ ,

where H is defined as the coefficient of the ability of sta-
bility of the system. According to Eq. (26), for two co-
rotating vibrators with mounting angles β1=π and β2=0, 
the stability criterion is described as that the product 
between the stability coefficient and the cosine of the 
phase difference should be greater than zero.

According to Eq. (26), we can note that H>0 are in 
compliance with the stable phase difference (SPD) 
2α∗

0 ∈ (−π/2,π/2),, while 2α∗
0 ∈ (π/2, 3π/2) holds for 

the fact of H<0.
It should be noted that the above stability criterion is 

derived by the principle of minimum of Hamilton’s aver-
age action amplitude, and we here only discuss the stabil-
ity of synchronous states for two vibrators, so the type of 
the stability belongs to the local stability.

4 � Numerical Qualitative Analyses on Coupling 
Dynamical Characteristics of the System

4.1 � Parameters Setting of the Nonlinear Vibrating 
Mechanical System

Based on the above theoretical analyses, in this section, 
taking the condition of β1 = π, β2 = 0 for example, we 
numerically give some results on coupling dynamical 
characteristics of the nonlinear vibrating system, includ-
ing the stability coefficient, the SPD, and the relative 
vibration amplitudes in y-direction, as shown in the fol-
lowing Figures  2‒5. Here, the parameters of the system 
are: m0 = 0.9 kg, m1 = 255 kg, m2 = 460 kg, μ = 0.0005 
m, r = 0.05 m, kx = k2y=400.5 kN/m, kψ = 390 kN/rad, 
fx = f2y, ξx = ξψ = 0.07 , ξ ′1y = 0.02 , l0=0.4775 m, le=0.36 
m. Also, the two motors are selected as identical: three 
phase squirrel-cage (model VB-1082-W, 380 V, 50 Hz, 
2-pole, Δ-connected, 0.75 kW, rated speed 2810 r/min).

H3 = k ′1y(F
2
1y + F2

2y)+ k2yF
2
2y − 2k ′1yF1yF2y cos(γ1y − γ2y),

For the parameters of rubber springs, including dynam-
ical stiffness k1y and static stiffness Δk1y, the former can 
only be tested in experimental system operating steadily, 
while the latter is generally obtained using the tensile test 
bed. According to our experiences in engineering, the 
dynamical stiffness of each rubber spring can be treated 
as linear under the relative small deformation interval. 
Hence, the nonlinear stiffness of rubber springs in this 
paper, can be treated with piecewise linear. The stiffness 
of the shear rubber spring and the gap-activated com-
pression rubber spring in present work are set as: k1y = 
9800 kN/m, and Δk1y = 3300 kN/m.

4.2 � Numerical Qualitative Results on Coupling Dynamical 
Characteristics of the System

Based on the stability criterion and considering both 
two counter-rotating or co-rotating vibrators, the stabil-
ity coefficient (i.e., H ), as well as the SPD, are plotted in 
Figures 2, 3, 4. In Figure 2, for the case of two counter-
rotating vibrators, the coupling dynamical characteristics 
of the system can be explained according to two courses 
concerning ωm0, i.e., the ωm0 increasing course and the 

Figure 2  Coefficients of the ability of stability versus ωm0
Figure 3  Absolute values of SPD versus ωm0 for two counter-rotating 
vibrators

Figure 4  Absolute values of SPD versus ωm0 for two co-rotating 
vibrators
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ωm0 decreasing course, which are described by the solid 
arrows and the dotted arrows, respectively.

As illustrated in Figure  2, the H-ωm0 plane is divided 
into two regions: regions I and II, where in region I, H>0 
complies with the fact of –π/2<2α<π/2, while in region II, 
H<0 holds for the fact of π/2<2α<3π/2. Particularly, for 
two identical vibrators considered in present work, the 
phase difference is stabilized in the vicinity of zero or π, 
see Figures 3 and 4.

For the increasing course of ωm0, in region I, the value 
of H continues to increase along with the increment of 
ωm0 until a sharp decrease as the curve approaches point 
D (i.e., the resonant point of ω0≈279.3 rad/s). Moreover, 
the curve occurs a break around point D (jump down 
from points D to D′ ), where the value of H changes from 
positive to negative, and in the meantime the correspond-
ing SPD jumps from zero to π for two identical vibrators, 
see D to D′ in Figure  3. After the point D′ , the value of 
H increases again along the curve. When it approaches 
point F, however, the curve changes from region II to 
region I and the value of H is greater than zero again. In 
this condition, the curve of SPD changes from G′ to G 
in Figure 3. For the ωm0 decreasing course, the trend of 
the curve of H is plotted with the dotted arrow. Similarly, 
there exists a breakpoint from points E′ to E, where the 
SPD jump down from π to zero simultaneously.

Different from Figure  3, when two vibrators rotate in 
the same direction, there only exits one breakpoint dur-
ing the ωm0 increasing course (see D to D′ in the solid 
arrows route) and the ωm0 decreasing course (see E′ to E 
in the dotted arrow route) according to Figure 4.

The characteristics of the stability and SPD, have a 
direct influence on the motion characteristics of the 
system. By numerical methods, the changing curves 
between the relative vibration amplitude in y-direction 
(i.e., δ12) and the operating frequency ωm0 is plotted 
in Figure  5. Since in region I the stability coefficient is 

positive and the corresponding SPD is around zero for 
two identical vibrators, the positive superposition of the 
exciting forces of the two vibrators, as well as the rela-
tive linear motion between two RFs in y-direction can be 
achieved in this case. As shown in Figure 5, in the sub-
resonant and near sub-resonant state for ω0 (the resonant 
point ω0≈279.3 rad/s is around point D in Figure 5), the 
vibration amplitude of the relative motion is relatively 
large, which is consistent with the requirements in engi-
neering. Besides, the corresponding breakpoints are also 
observed. On the one hand, for both the two counter-
rotating vibrators and two co-rotating vibrators, there 
exists a breakpoint around D-D′ for the ωm0 increasing 
course and that of E′ -E for the ωm0 decreasing course. On 
the other hand, when the value of ωm0 is around points G′ 
or G, we can observe an additional breakpoint when two 
vibrators rotate in the opposite direction.

Besides, as can be seen in Figure 5, although the rela-
tive vibration amplitude is greater than zero in the right 
of point G for two counter-rotating vibrators, the value 
of δ12 is not large enough for engineering applications in 
this curve interval.

Based on the above numerical qualitative analyses, 
the ideal working points of the vibrating machines cor-
responding to the considered model, should be selected 
in the sub-resonant or near sub-resonant states of ω0. 
Especially in the latter condition, the phase difference 
between two identical vibrators is stabilized in the vicin-
ity of zero, the vibration amplitude of the relative motion 
between the two RFs in y-direction, is relatively larger. In 
this case, the energy is saved due to the resonant effect 
and the relative ideal stability of the system is obtained, 
see points A and B in Figures 2, 3, 4, 5, these features are 
just the desires in engineering. It should be pointed out 
that the points A, B, and C correspond to the experimen-
tal verification points in Section 5, where the former two 
points are located in the ideal working region, while the 
characteristics of point C is useless in engineering.

5 � Experimental Verifications
From the aforementioned theoretical and numerical 
qualitative analyses, the coupling characteristics of the 
system are revealed, and the ideal working region has 
been given. Based on the synchronization condition and 
stability criteria of the system obtained from the theo-
retical analysis, the numerical qualitative analyses of the 
system is carried out. In order to verify the effectiveness 
of the theoretical methods and the correctness of the 
numerical results, two sets of experiments are imple-
mented in this section, one of which is selected in the 
ideal working region mentioned in numerical analyses, 
whereas the other is the opposite. It should be pointed 

Figure 5  Relative vibration amplitude versus ωm0



Page 9 of 14Zhang et al. Chinese Journal of Mechanical Engineering          (2022) 35:151 	

out that the experimental results correspond to that 
marked by points A-C in Figures 2, 3, 4, 5.

5.1 � Experimental Illustration
The experimental system corresponding to the dynami-
cal model plotted in Figure 1 is shown in Figure 6, where 
two identical vibrating motors (i.e., vibrators) are installed 
on both sides of the isolative RF 2 (m2) symmetrically. The 
eccentric mass of each vibrator is adjusted to m0 = 0.9 kg 
and the parameters of the experimental system are the 
same as those in numerical analyses. Using Tri-axial accel-
eration sensors and Hall-sensors, the vibration responses 
of the system in x-, y-, and ψ-directions, and the phases of 
the two vibrating motors can be measured, respectively.

The corresponding experimental results are shown in 
the following sub-sections.

5.2 � Experimental Results in the Sub‑resonant State for ω0
Figure 7 illustrates two sets of experimental results under 
the operating frequency of 41 Hz, where two verification 
points are selected in the ideal working region mentioned 

in numerical analyses, i.e., the sub-resonant state for ω0. 
Besides, the results for the two counter-rotating and co-
rotating vibrators correspond to the numerical results of 
points A and B in Figures 2, 3, 4, 5, respectively.

Since two vibrators are selected as identical, we can 
observe that the system reaches the synchronous and sta-
ble operation quickly after the starting procedure.

As shown in Figure  7a and b, the synchronous rota-
tional velocity for two counter-rotating and co-rotating 
vibrators are around 2400.1 r/min (ωm0 = 251.2 rad/s) 
and 2395.2 r/min (ωm0 = 250.7 rad/s), respectively, while 
the SPD is around −41°. These results are roughly in 
agreement with the numerical analyses of points A (ωm0 
= 251.2) and B (ωm0 = 250.7) in Figures 3 and 4. Under 
the condition of this phase difference, the system exhib-
its the relative linear motion between two RFs and the 
vibration amplitude is large enough to be useful in engi-
neering, see Figure  7c‒f. Moreover, from Figure  7c, the 
phase relationship between y1 and y2 is almost the oppo-
site phases, the value of the relative vibration amplitude 
(y1−y2 = δ12) for two counter-rotating and co-rotating 

Figure 6  Synchronization bedstand with two vibrators and the corresponding testing instruments: a Synchronization bedstand; b Testing 
instruments
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Figure 7  Experimental results in the sub-resonant state for ω0: a Rotational velocities of the two motors, b Phase difference between the two 
vibrators, c Displacement: y1 and y2 in the steady state, d Displacement: y1−y2 (δ12) in the steady state, e Displacement: x in the steady state, f 
Displacement: ψ in the steady state
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Figure 8  Experimental results in the near super-resonant state for ω0: a Rotational velocities of the two motors, b Phase difference between the 
two vibrators, c Displacement: y1 and y2 in the steady state, d Displacement: y1−y2 (δ12) in the steady state, e Displacement: x in the steady state, f 
Displacement: ψ in the steady state



Page 12 of 14Zhang et al. Chinese Journal of Mechanical Engineering          (2022) 35:151 

vibrators is 2.83 mm and 2.63 mm, respectively, which 
are approximately consistent with numerical results of 
points A (δ12 = 2.57) and B (δ12 = 2.43) in Figure 5.

Based on the above analyses, the experimental results 
illustrated in Figure  7a‒f can be well matched with 
numerical qualitative results in Figures 2, 3, 4, 5.

5.3 � Experimental Results in the Near Super‑resonant State 
for ω0

To further examine the validity of the used analytic 
method and the obtained numerical results, it is also nec-
essary to give the additional experimental verification 
for the other resonant region. As shown in Figure 8, two 
co-rotating vibrators are operated in the near super-res-
onant state for ω0, under the power supply frequency of 
48 Hz.

From Figure 8a and b, in the steady state, the synchro-
nous rotational velocity is in the vicinity of 2850.4 r/min 
(ωm0 = 2 98.3 rad/s) and the phase difference is stabilized 
around 160°, which are approximately consistent with 
the point C (ωm0 = 298.3) in Figure  4. With this SPD, 
the vibration responses of the system are approximately 
zero, see Figure 8c‒f. As presented in the theoretical and 
numerical analyses, in this case, the exciting forces of two 
vibrators are almost completely canceled, which leaves 
the system almost at rest or without vibration.

In the meantime, since the system is operated in the 
near super-resonant state in this condition, the obvious 
resonant phenomena is witnessed, see Figure 8c–f.

For the characteristics of the relative motion between 
two RFs, as shown in Figure 8(d), the vibration amplitude 
of (y1−y2) is about 0.5 mm, while the numerical result 
is 0 (see point C in Figure  5). The reason for this slight 
distinction between numeric and experiment is that the 
SPD is not exactly 180° but nears it, this is because that 
the exciting forces of two vibrators cannot be canceled 
with each other completely, which leads to the fact that 
the relative linear motion with small vibration amplitude 
is possible. Therefore, we may conclude that the experi-
mental results can roughly agree with what is shown in 
the above theoretical and numerical ones.

From the above Figure  8b (or Figure  7b), one can see 
that the phase difference in time domain analysis is not a 
fixed value, this is called as the uncertainty of phase dif-
ference, which is generally caused by the following rea-
sons: (i) Although the two driving motors are completely 
identical, their actual electromagnetic output torque are 
not completely identical due to the difference of motor 
characteristics caused by processing and manufacturing; 
(ii) The fluctuations of supply current (or voltage) may 
influence the output characteristics of motors; (iii) The 

random fluctuations of loads may also leads to the uncer-
tainty of phase difference, etc.

Additionally, the practical functions of vibrating 
machines are mainly depend on the stability of system, 
and such stability is mainly referred to as the stability of 
phase difference between the two vibrators. Although 
there are some small fluctuations (i.e., uncertainty) in 
time domain for the phase difference in the steady state, 
generally in engineering these fluctuations are so small 
that they can not influence the practical function of 
vibrating machine according to our engineering experi-
ences. So in practical utilization of the analytical results, 
such stability of synchronous state can guarantee the 
normal technological treatment process in engineering.

6 � Conclusions

(1)	 The mathematical modeling for a nonlinear vibrat-
ing mechanical system with double RFs driven by 
two identical vibrators is constructed, where the 
nonlinear stiffness of springs is treated by the pro-
cess of equivalent linearization using the asymp-
totic method.

(2)	 The criterions for implementing synchronization 
and ensuring its stability are deduced. According 
to the synchronization criterion, the torque of fre-
quency capture should be greater than or equal to 
the absolute value of the difference of the dimen-
sionless residual torques of two motors. For the 
stability characteristics of the synchronous state, 
taking two co-rotating vibrators with the mounting 
angles of β1 = π and β2 = 0 for example, the stabil-
ity criterion requires that the product between the 
stability coefficient and the cosine of the phase dif-
ference be greater than zero.

(3)	 Based on the theory, numeric and experiment anal-
yses, the ideal working region of vibrating machines 
similar to the present model should be selected in 
the sub-resonant or near sub-resonant states for ω0. 
In this condition, the SPD between two vibrators is 
close to zero and the positive superposition of the 
exciting forces can be achieved, which satisfies the 
requirements in engineering. Especially in the near 
sub-resonant state for ω0, the vibration amplitude 
of the relative motion between two RFs is relatively 
larger, and the energy is saved due to the resonant 
effect.

(4)	 The present work can lay a theoretical foundation in 
designing some new vibrating equipment with dou-
ble RFs driven by two vibrators, such as vibrating 
discharging centrifugal dehydrators, vibrating con-



Page 13 of 14Zhang et al. Chinese Journal of Mechanical Engineering          (2022) 35:151 	

veyers, vibrating screens, vibrating tables, vibrating 
compactors.
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