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Soft Tissue Deformation Modeling 
in the Procedure of Needle Insertion: 
A Kriging‑Based Method
Yong Lei1, Murong Li1 and Dedong Gao2*    

Abstract 

The simulation and planning system (SPS) requires accurate and real-time feedback regarding the deformation of 
soft tissues during the needle insertion procedure. Traditional mechanical-based models such as the finite element 
method (FEM) are widely used to compute the deformations of soft tissue. However, it is difficult for the FEM or 
other methods to find a balance between an acceptable image fidelity and real-time deformation feedback due to 
their complex material properties, geometries and interaction mechanisms. In this paper, a Kriging-based method is 
applied to model the soft tissue deformation to strike a balance between the accuracy and efficiency of deformation 
feedback. Four combinations of regression and correlation functions are compared regarding their ability to predict 
the maximum deformations of ten characteristic markers at a fixed insertion depth. The results suggest that a first 
order regression function with Gaussian correlation functions can best fit the results of the ground truth. The func-
tional response of the Kriging-based method is utilized to model the dynamic deformations of markers at a series of 
needle insertion depths. The feasibility of the method is verified by investigating the adaptation to step variations. 
Compared with the ground truth of the finite element (FE) results, the maximum residual is less than 0.92 mm in the Y 
direction and 0.31 mm in the X direction. The results suggest that the Kriging metamodel provides real-time deforma-
tion feedback for a target and an obstacle to a SPS.
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1  Introduction
In needle-based minimally invasive surgeries, nee-
dle insertion errors always lead to a large probability of 
serious complications and increase the physical pain of 
patients [1–4]. Real-time feedback regarding soft tissue 
deformation during needle insertion, especially in the 
region around the target and obstacles, and the experi-
ence of the attending physicians affect the insertion accu-
racy [4]. The simulation and planning system (SPS) can 
provide pre- and intraoperative deformation information 
and help physicians to sharpen their skills [5], which can 
effectively improve the success rate of minimally invasive 

surgeries. Soft tissue visualization during the needle 
insertion procedure, which is the most important part 
of the SPS, is realized by a deformation model of the soft 
tissue [6].

The soft tissue deformation model has been widely 
studied in Refs. [7–11], of which continuum mechani-
cal-based modeling methods such as the finite element 
method (FEM) are the most popular [11–13]. Dimaio 
et al. [13] established the soft tissue of a simple geometry 
using the FEM, in which the refined elements along the 
needle path were configured and the interaction force 
was experimentally loaded onto the node path. The mate-
rial properties of the tissue were modeled as the linear 
elasticity. Misra et  al. [14] reviewed and sorted out the 
tool-tissue interaction models based on the tissue mate-
rial properties, which revealed that the hyperelastic 
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model had a relatively high accuracy. Kobayashi et al. [15] 
modeled the nonlinear and viscoelastic liver based on the 
finite element method. The complicated organ geometry 
and boundary conditions were taken into account in Refs. 
[16, 17]. The complex boundary conditions and geometry 
of real organs, as well as the viscoelastic and heteroge-
neous material properties, increased the computational 
complexity.

Furthermore, the needle insertion process includes 
material failure and a new internal surface forma-
tion; thus, the underlying physics is also an essential 
part. Some of the traditional FEM modeling methods, 
although able to provide fast calculations of tissue defor-
mation, lead to unpleasing visual results during the nee-
dle insertion procedure due to their rough simplification 
of the needle puncture process. Takabi [18] presented a 
comprehensive survey mainly on the modeling of tissue 
cutting, focusing on the mechanical concepts and mode-
ling techniques. Gokgol et al. [19] modeled the FEM cut-
ting process by defining a fracture work, the nodal in the 
FEM model break when the cutting energy exceeded the 
fracture work. The thresholds can also be other failure 
parameters such as the maximum shear strain [20]. Old-
field and Dini used cohesive elements in the ABAQUS 
commercial software to describe the material failure [21]. 
However, all of these methods require the elements along 
the needle path to be sufficiently small, which may result 
in a large computational burden and instability in the cal-
culations. Recently, the extended finite element method 
(X-FEM), typically utilized for crack propagation, was 
also applied to soft tissue cutting [22]. It reserved the ini-
tial mesh topology without very high-resolution grids in 
modeling the discontinuities, but an appropriate enrich-
ment function was difficult to establish. To eliminate the 
mesh dependence in the traditional FEM, the meshless 
method was proposed for soft tissue deformation mod-
eling, which is particularly suitable for simulating large 
deformation and cutting processes since it is not required 
to calculate equations on the grid [23, 24]. However, the 
basis interpolation function in the meshless method is 
complex and difficult to construct.

A successful surgery simulation and planning sys-
tem requires two contradictory basic processes: physi-
cal reality and real-time dynamic interaction. However, 
most existing needle insertion deformation models 
with high accuracy during needle insertion are simu-
lated offline. It is difficult for the FEM or other methods 
to balance the acceptable image fidelity and real-time 
deformation feedback, which limits their applications 
in real clinical trainings [25, 26]. In this paper, a Kriging 
metamodel is applied to model and predict the defor-
mation of obstacles and targets inside soft tissue during 
the needle insertion procedure. The Kriging metamodel 

was addressed by the South African mining engineer 
Krige and developed by Matheron, a French mathema-
tician [27]. It is a simplified computer-based simula-
tion model that has an input/output function based on 
the surface response [28]. The innovation of this paper 
is to propose a needle insertion simulation model that 
can balance the computational burden and accuracy of 
needle insertion simulation, according to the soft tissue 
characteristics of needle insertion process. The advan-
tages of this paper are twofold: First, the Kriging meta-
model can reduce the large requirement for computing 
resources and offer real-time simulation, especially 
being able to overcome the challenges of computational 
techniques in complex simulation models [29]. Hence, 
depending on the accurate simulation dataset gener-
ated by other offline needle-tissue interaction models, 
the online Kriging model can be established rapidly 
without reducing the accuracy of the original model by 
much. Second, the computer-based simulation program 
is deterministic, that is, the same input corresponds 
to the same output, which cannot fully reflect the 
uncertainty of mechatronic systems [30, 31]. In robot-
assisted needle insertion systems, complex factors such 
as the imaging equipment, physician’s skill and patient’s 
condition lead to uncertainty regarding tissue deforma-
tion. The Kriging metamodel with the random sampling 
method can reflect the uncertainties of robot-assisted 
needle-tissue interactions.

In our work, the input dataset is generated by Latin 
hypercube sampling (LHS), the parameters of which 
include the material properties of the tissues and nee-
dle, the geometrical properties of the needle and the 
solver parameters. Ten characteristic markers are 
selected to represent the targets and obstacles inside 
the tissue body. The output dataset is generated by run-
ning the needle-tissue coupling FE model presented 
in Ref. [32], which is used as the ground truth of the 
Kriging-based model. The validity and feasibility of 
the proposed Kriging-based model are analyzed, and 
the results suggest that the combination of the Kriging 
metamodel and the high-precision finite element model 
provides real-time deformation feedback for a target 
and an obstacle to the SPS.

The rest of this paper is organized as follows. Sec-
tion 1 introduces the data preparation, the basic theory 
of the Kriging model and the maximum deformation 
modeling of needle insertion at a fixed depth. In Sec-
tion 2, the functional-based Kriging model is applied to 
establish the deformation model at a series of depths, 
of which the adaptation to the step variation is also 
analyzed. Section  3 discusses the proposed Kriging 
model. Finally, conclusions and future work are given 
in Section 4.
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2 � Flowchart of Kriging Deformation Online 
Prediction

A flowchart of Kriging online deformation prediction 
is shown in Figure  1. In offline process, a physic-based 
model, such as finite element based needle insertion 
model is utilized to generate dataset. The dataset includes 
the input parameters and output deformations in dif-
ferent locations. The input parameters include material 
parameters of soft tissues, needle parameters and other 
parameters affecting the deformation results obviously. 
The dataset is provided and offline trained for Krig-
ing meta model. Training process is for tuning Kriging 
parameters to best fit the deformation prediction model. 
Kriging model is in essence a computational model; thus, 
it can realize real-time prediction while maintain the 
accuracy of the physic-based model. In surgery simula-
tion and planning, when input current parameters of tis-
sue and needle, the Kriging model can online predict soft 
tissue deformation for surgery training or needle path 
planning.

3 � Deformation Modeling of Needle Insertion 
at a Fixed Depth

A finite element model for the needle-tissue interaction 
was built by our group to simulate tissue deformation 
[32], in which a modified local constraints method was 
applied. In this paper, we aim to predict the motion of 
the target and obstacles inside the tissue in real time. For 
validation convenient, ten characteristic markers in the 
FE model are selected as the observation points that dis-
tributed in the whole computational domain to represent 
the deformation information of different parts, as shown 
in Figure 2.

The observation points are chosen according to the 
distance from the needle body. In this paper, 10 char-
acteristic markers are selected, which can be classi-
fied into three categories: locations near the needle 

trajectory, locations near fixed boundaries and loca-
tions both away from the needle trajectory and fixed 
boundaries. The locations of the characteristic mark-
ers are determined by the vertical distance of the 
needle trajectory and the vertical distance from the 
fixed boundary. The markers near the needle body 
include N1(− 0.0064, − 0.0256), N2(0.0052, − 0.0238), 
N3(−  0.0058, −  0.0445), N4(0.0054, −  0.0447), 
N5(−  0.0068, −  0.0629) and N6(0.0041, −  0.0641), 
which represent locations near the needle but at dif-
ferent insertion depths, wherein points 1, 3, and 5 are 
distributed on the left side of the needle body and 2, 
4, and 6 are distributed on the right side. They are not 
symmetrical about the needle body even though they 
are distributed bilaterally, as the needle will bend as 
the insertion depth into the soft tissue increases due 
to the beveled needle tip, as shown in Figure 2. Obser-
vation markers N7(−  0.0254, −  0.0232), N8(−  0.0485, 
− 0.0228), are locations both far from the needle body 

Figure 1  Flowchart of Kriging online prediction

Figure 2  Ten observation points in the needle insertion procedure 
for the Kriging-based model
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and fixed boundaries and N9(− 0.0290, − 0.0637) and 
N10(− 0.0501, − 0.0649) are also near the fixed bound-
aries. Since the Kriging model is built independently 
for each characteristic markers, the location of markers 
have no impact on the prediction model.

There were 11 variables chosen and listed in Table 1, 
wherein x1 , x2 , and x11 are the material parameters of 
soft tissues, x3 ‒  x7 are the needle parameters, x8 ‒  x9 
are the FEM solver parameters and x10 is the friction 
coefficient between the needle and soft tissue. The 
boundary values are chosen from the empirical value 
and simulation results in Ref. [32].

The input variables are denoted as x = [x1, · · · , x11] , 
which are employed to construct the design matrix of 
the Kriging-based model. Running the finite element 
model 20 times by using 20 groups of different combi-
nations of the input variables x = [x1, · · · , x11], the dis-
placements at the 10 observed locations are collected 
as the output responses of the Kriging model, denoted 
by y = [u1xy, · · · ,u

10
xy ]

T
= [y1, y2, · · · , y10]

T, yi ∈ R
20 . 

The soft tissue deformation occurs in both the x and y 
directions in the two-dimensional case; hence, the out-
put response uxy is the resultant displacement in both 
directions and is written as

where ux and uy are the displacements in the x and y 
directions, respectively. Since the resultant displacement 
increases as the needle insertion depth into the tissue 
increases, the maximum value of uxy is chosen as the out-
put response of the Kriging-based prediction model.

(1)uxy =
√

u2x + u2y ,

4 � Kriging Model Construction
The Kriging prediction model is an interpolation of 
known observation locations, of which the mean 
square error equals zero. The Kriging model is usu-
ally expressed as a combination of a polynomial and its 
deviation [27], written as

where f (x) is the basis polynomial func-
tion, usually a regression function. rT(x) 
is the column vector of correction matrix 
Rm×m = [R(xi , x1),R(xi , x2), · · · ,R(xi , xm)]

T, i = 1, 2, · · · ,m . The 
coefficients are calculated as β∗ =

(
F
T
R
−1

F
)−1

F
T
R
−1

Y ,

γ ∗ = R
−1

(
Y − Fβ∗

)
 , where F  is the design matrix, writ-

ten as:

m is the number of groups of FE model, and in this 
application, m = 20. p is the number of basis functions, 
which is determined by the type of basis function. In 
our experiments, p = 12 for first order regression func-
tions. The variable xi is obtained from the FE model by 
the Latin hypercube sampling method, and xi is nor-
malized to the interval [0, 1] , as in

where x̃i is the normalized data of xi and xL and xU are 
the minimum and maximum values of the variable xi , 
respectively.

The mean square error of the Kriging prediction 
model is formulated as [27]

where u = FTR−1r − f (x) and σ 2 = 1

m
(Y − Fβ∗)2R−1(Y − Fβ∗) 

is the maximum likelihood estimate of the variance.

4.1 � Regression Function
The design matrix Fm×p in the Kriging prediction 
model is

where the basis function f (x) has several forms. Usually, 
constant and linear forms of the regression function are 
used to construct the basis function [33].

(2)ŷ(x) = f T(x)β∗ + rT(x)γ ∗,

(3)Fm×p = [f (x1), f (x2), · · · , f (xm)]
T,

(4)x̃i =
xi − xL

xU − xL
, x̃i ∈ [0, 1],

(5)ϕ(x) = σ 2(1+ uT
(
FTR−1F )−1u− rTR−1r

)
,

(6)Fm×p =



f1(x1) · · · fp(x1)

...
. . .

...
f1(xm) · · · fp(xm)



m×p

,

Table 1  Factors and range of values in the soft tissue 
deformation experiment

Factor Range

Minimum 
value xL

Maximum 
value xU

Young’s modulus of the tissue x1 (kPa) 10 50

Soft-tissue Poisson ratio x2 0.3 0.5

Tip angle x3 (°) 0 90

Needle penetration angle x4 (°) − 15 15

Needle radius x5 (mm) 0.2 0.6

Needle length x6 (mm) 100 250

Young’s modulus of the needle x7 (GPa) 200 300

Rayleigh coefficient of damping x8 0.01 0.1

Rayleigh coefficient of damping x9 0.01 0.1

Coefficient of friction x10 (N/m) 30 50

Area density x11 (kg/m2) 20 30
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•	 Constant form, p = 1 , of which the design matrix F  
is a column vector:

•	 Linear form, p = n+ 1, of which the basis function is 
written as Eq. (8):

where the component form of the estimate point x is 
expanded as x = [w1,w2, · · · ,wn] ∈ R

n . In our experi-
ment, both zero order (constant form, p = 1 ) and first 
order (linear form, p = 12 ) functions are adopted and 
compared.

4.2 � Correlation Function
The Kriging model assumes that the correlation of the 
output is determined by the distance between the input 
variables. The correlation function of the input variables 
is written as the product of n one-dimensional correlation 
equations, as shown in Eq. (9):

where dj = wj − xj and θ is the correlation coefficient. 
In the Kriging model, the most widely used correlation 
model is that shown in Eq. (10):

where � · � denotes the Euclidean distance of dj. When 
p = 1 and p = 2 , the exponential and Gaussian correla-
tion functions are as shown in Eq. (11) and Eq. (12):

The correlation function decreases with the increase in 
the Euclidean distance dj , and a larger correlation coeffi-
cient θ leads to a rapid decline of the correlation function. 
Substituting the correlation function into Eq. (5), the mean 
square error is a function of the covariance σ 2 and the 
correlation coefficient θ . The optimal solution to the cor-
relation coefficient θ∗ is converted into an unconstrained 
global optimization problem [34], as shown in Eq. (13):

(7)f1(x) = 1, x ∈ R
n.

(8)
f1(x) = 1, f2(x) = w1, · · · , fp(x) = wn, x ∈ R

n,

(9)R(w, x) = R(θ ,w, x) =

n∏

j=1

Rj

(
θ , dj

)
,

(10)R(θ ,w, x) =

n∏

j=1

exp(−θj � dj�
p),

(11)Rj

(
θ , dj

)
= exp

(
−θj � dj �

)
,

(12)Rj

(
θ , dj

)
= exp

(
−θj � dj�

2
)
.

(13)θ∗ = argmin
θ

[
ψ(θ) ≡ |R|

1
m σ 2

]
,

where |R| is the determinant value of the correlation 
matrix R.

4.3 � Deformation Modeling of Needle Insertion at a Fixed 
Depth

The input and output data are prepared by running 
the finite element program 20 times, as in Ref. [32]. To 
establish a Kriging model, 19 sets of observation points 
[X in(1, :), · · · ,X in(i − 1, :),X in(i + 1, :), · · · ,X in(20, :)] 
are chosen as the input design sites. The colon in X in 
stands for the input observation points where there are 
11 input variables in each observation point; hence, X in is 
a 19 × 11 matrix. The remaining set X in(i, :) is used as the 
test set. The zero order and first order regression func-
tions and the Gaussian and exponential correlation func-
tions are employed to construct the Kriging model for 
static soft tissue deformation. In this section, the maxi-
mum displacements of the marked points are regarded 
as the static soft tissue deformations. Since there are 10 
markers in the Kriging model, the out- put of Kriging 
would be a 10 × 11 matrix. Given the input and output 
data of the model, the Kriging model would be built by 
two functions, namely the regression function and the 
correlation function to satisfy that the mean square error 
equals zero. Therefore, there are four kinds of Kriging 
model, namely, zero order Gaussian, zero order expo-
nential, first order Gaussian and first order exponential, 
which are shown in Figure 3.

In Figure  3, the experimental values represent the 
finite element simulation results. The abscissa indicates 
the number of observation locations, and the ordinate is 
the value of the maximum resultant displacement. The 
test set of each run is randomly selected. The upper-left 
test set is X in(5, :) , the upper-right test set is X in(6, :) , 
the lower-left test set is X in(7, :) , and the lower-right test 
set is X in(8, :) . From Figure  3, it is also suggested that 
the closer the tissue is to the needle body, the greater 
the deformation. To analyze the impacts of the regres-
sion function and correlation function on the model, the 
residual e of the simulation is defined as the difference 
between the finite element simulation value y and the 
Kriging prediction value ŷ , that is, e = ŷ − y . The maxi-
mum residual values of the zero order Gaussian, zero 
order exponential, first order Gaussian and first order 
exponential Kriging models are 7.5108 mm, 7.3327 mm, 
3.2752 mm and 3.2994 mm, respectively. Furthermore, 
the mean residual of each output response is defined as 
in Eq. (14):

(14)ei =
1

m

m∑

j=1

|eji| =
1

m

m∑

j=1

|ŷji − yji|,
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Figure 3  Comparison results of the Kriging and FEM model (The upper-left test, the upper-right test, the lower-left test set and the lower-right test 
set are Xin(5, :), Xin(6, :), Xin(7, :), Xin(8, :), respectively)

Figure 4  The mean residuals of the Kriging predictions for four different combinations
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where m is the number of finite element program sam-
ples, i.e., m = 20 . i is the position number of the marked 
positions, i = 1, · · · , 10 . The mean residuals of the 10 
observed locations are shown in Figure 4. In Figure 4, the 
mean residuals of the zero order Gaussian and exponen-
tial types are 1.5650 mm and 1.3992 mm, respectively. 
The mean maximum residuals of the first order Gaussian 
and exponential are 0.8941 mm and 0.9177 mm, respec-
tively. From the prediction results, the first order regres-
sion function is better than the zero order regression 
function, and the Gaussian correlation function is slightly 
better than the exponential function from the enlarged 
part.

5 � Sensitivity Analysis of the Parameters
The Kriging-based prediction model of soft tissue defor-
mation takes into account the 11 input parameters in 
the finite element simulation process, and the effect of 
the parameters X = [x1, x2, · · · , x11] on the tissue defor-
mation Y = [y1, y2, · · · , y10] is investigated with the first 
order Gaussian Kriging-based prediction model in this 
section.

In this section, the ‘local’ sensitivity for each variable 
is investigated, i.e., only one column is varied for each 
row selected, while the other columns are fixed. Since 
the 20 groups sample is randomly generated, there is no 
specific law for the order of rows. Hence, we construct 

the parameter test matrix by randomly selecting the four 
rows of data X(1, :) , X(7, :) , X(13, :) and X(18, :) . The var-
ied variable is evenly distributed in the interval [0, 1] (the 
interval is divided into 100 equal parts), while the other 
input variables retain the same values. The sample size is 
4×100×11, which are enough to reflect the sensitivity.

The sensitivity of parameters is reflected by the 
average sensitivity index (SI), which is the aver-
age change in the output response and input vari-
able of the four selected groups of samples, that is, 
SI = 1

4

∑4
k=1 �u

kj
xy/�xki(j = 1, · · · , 10, i = 1, · · · , 11) . When the 

output displacement increases with the variables, the SI 
is greater than zero. In the opposite case, the SI is less 
than zero. According to the range of the SI, the 11 input 
variables can be classified into three types, i.e., lead-
ing parameters, nonleading parameters and disturbed 
parameters, as shown in Figure 5, where the abscissa rep-
resents 11 variables and the ordinate represents the SI.

Since there are ten observation points inside the tissue, 
there are also ten sensitivity indices for each variable; thus, 
we choose a box plot to show the extremum (black line 
at both ends), the interquartile range (blue box) and the 
median (red line) of one group of the dataset. We classify 
the 11 variables into three categories based on the sensitiv-
ity index: The leading parameters include Young’s modu-
lus of the soft tissue x1 , the soft-tissue Poisson ratio x2 , the 
needle length x6 and the coefficient of friction x10 , of which 
the absolute value of the median of the SI is larger than 0.5 

Figure 5  Effects of the leading inputs on the output responses
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and the effect on different markers is consistent (indices are 
either all distributed above or below zero). For example, the 
SI of x1 is always below zero, which means that the soft tis-
sue deformation decreases as x1 increases. These variables 
have an obvious impact on the deformation due to the 
large absolute value of the SI. By contrast, the deformation 
increases as x2 increases, with x2 having a relatively small 
impact on the deformation.

The disturbed parameters include the angle of the needle 
tip x3 , insertion angle x4 , Young’s modulus of the needle x7 
and area density x11 . The effect of the disturbed parameters 
varies for different markers. For the disturbed parameters, 
the sensitivity index covers the yellow line, which means 
that the deformations of some markers increase with the 
parameters, while some markers decrease.

The nonleading parameters include the needle diameter 
radius x5 and the Rayleigh damping coefficients α ( x11 ) and 
β ( x9 ), which means that the absolute value of the median 
sensitivity is less than 0.02. The nonleading parameters 
affect the output displacement slightly and can be regarded 
as constants.

Sensitivity analysis of the parameters can offer a thor-
ough understanding of the impacts of the input parameters 
on soft tissue deformation. To ensure rigor of results, other 
rows of data are also tried in the same way, and the tenden-
cies and slopes came to the same conclusion. The leading 
and disturbed input parameters play key roles in predicting 
tissue deformation, directly affecting the overall trend and 
accuracy of the prediction results. The nonleading parame-
ters have little effect (SI<0.02) on the prediction results and 
can be removed from the input parameters.

The sensitivity analysis provides a basis for reducing the 
number of input parameters of the Kriging-based predic-
tion model. For a more complex FE model with more input 
parameters, such as that for a nonlinear, viscoelastic tissue 
material, the sensitivity analysis of parameters is beneficial 
for selecting the optimal input parameters and reducing 
the computation time.

6 � Deformation Modeling of Needle Insertion 
at a Series of Depths

6.1 � Kriging Model of the Functional Response
According to the continuum mechanics, the motion equa-
tion of a point inside the tissue O in the Euclidean space is 
expressed as Eq. (15):

where x = x
−→
i + y

−→
j + z

−→
k  is the position vector at the 

initial time, X = X
−→
i + Y

−→
j + Z

−→
k  is the position vec-

tor at time t, and u = ux
−→
i + uy

−→
j + uz

−→
k  is the dis-

placement of point O at time t. The displacement of 
tissue nodes is related to the time and space coordina-
tion, and it is a functional response with time and space 

(15)X = χ(x, t) �→ u = X − x = χ(x, t)− x,

indices. When the Kriging metamodel is used to solve the 
functional response problem, the calculation of the cor-
relation coefficient of the maximum likelihood estima-
tion includes the inverse matrix and the determinant of 
the correlation matrix, which leads to the instability and 
time complexity of the computation [35]. The Kronecker 
product is employed to construct the correlation matrix 
and to reduce the computational burden of the Kriging 
method [36].

The input variables in the FE simulation experiment 
are x = [x1, x2, · · · , xn]

T , xi ∈ R
n, i = 1, 2, · · · ,m , and 

the output response is a function of time t . The output 
response yi = [yi1 , yi2 , · · · , yiri ]

T is recorded at each time 
t i = [ti1 , ti2 , · · · , tiri ]

T , where ri denotes the time step. The 
Kriging model of the functional response is written as Eq. 
(17) on the basis of Eq. (2):

where y(x, t) is the output response of the input vari-
able x at time t. F(x, t) = [f1(x, t), · · · , fp(x, t)]

T is a set 
of known polynomial basis functions, where usually 
f1(x, t) = 1 . β is an unknown basis function coefficient. 
z(x, t) is a zero-mean Gaussian random function, the 
covariance function of which is shown in Eq. (17):

Assume that the correlation function R(x1 − x2, t1 − t2) 
is the product of n one-dimensional correlation equations, 
as shown in Eq. (18):

where Ri(xi1 − xi2) is the correlation function of the ith 
set of variables and RT (t1 − t2) is the correlation function 
at time t.

The functional response is assumed to be the ( N × 1)

-dimensional vector Y = [yT
1
, yT

2
, · · · , yTn ]

T , and N =
∑m

i=1 ri . 
When the time step is r , then N = mr . The corresponding 
(N × n)-dimensional design matrix X = [X1,X2, · · · ,XN ] 
is represented with the Kronecker notation as shown in Eq. 
(19):

(16)y(x, t) = F(x, t)β + z(x, t),

(17)
V (x1, x2) =cov(z(x1, t1), z(x2, t2)

=σ 2R(x1 − x2, t1 − t2).

(18)

R(x1 − x2, t1 − t2) =




n�

j=1

Ri(xi1 − xi2)


RT (t1 − t2),
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where ⊗ is the Kronecker product operator and 
1ri is the column vector with length ri = 1 . When 
the time steps are the same, X is an mr × n matrix. 
T = [tT1 , · · · , t

T
n ]

T = [t∗1, t
∗
2, · · · , t

∗
N ]

T ∈ R
N×1 is the cor-

responding functional space. Combined with Eq. (2) and 
Eq. (16), the Kriging model of the functional response is 
written as shown in Eq. (20):

where F is written as

where RX , t is an N × N  correlation matrix, the elements 
of which are R(X i − X j , t

∗
i − t∗j ) . The correlation coeffi-

cient θ is optimized with Eq. (13). The optimization of the 
correlation coefficient requires a large number of solu-
tions of R−1

X , t and 
∣∣RX , t

∣∣ so that the computational cost is 
extremely high.

In this paper, we consider the functional output on the 
regular grid, i.e., t1 = · · · = tn = t , r1 = · · · = rn = r . 
The correlation matrix R

X, t of the functional response 
is written as Eq. (22):

where RX is an (m×m) - dimensional correlation matrix 
whose elements are R(x1 − x2) and Rt is an ( r × r)

-dimensional correlation matrix whose elements are 
RT (t i − t j) . The Gaussian correlation function is used to 
construct the correlation matrix, and the inverse of the 
correlation matrix is simplified to:
R−1
X ,t = R−1

X ⊗ Rt
−1 . Substituting this matrix into Eq. 

(20), we can write the Kriging model of the functional 
response as Eq. (23):

The computational complexity of the inversion matrix 
is reduced from O(n3m3) to O(n3 +m3) with the Kro-
necker product operator.

(19)

XN×n =
�
1Tr1 ⊗ x1, · · · , 1

T
rn
⊗ xn

�T

=




x11 x12 · · · x1n
...

...
...

...
x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
...

...
xm1 xm2 · · · xmn




�→ Row1
...

�→ Row ri
�→ Row ri+1

...
�→ RowN

,

(20)ŷ(x, t) = F(x, t)β̂ + RT(x, t)R−1
X ,t(Y − F β̂),

(21)

F = [F(X1, t
∗
1 ), · · · , F(XN , t

∗
N )]

T,

β̂ = (FTR−1
X , tF )

−1FTR−1
X , tY,

R(x, t)= [R(x − X1, t − t∗1), · · · , R(x − XN , t − t∗N )]
T,

(22)RX ,t = RX ⊗ Rt ,

(23)
ŷ(x, t) = F (x, t)β̂ + RT(x, t)R−1

X ⊗ Rt
−1(Y − F β̂).

Eq. (16) takes account of the coupling effect between 
the input variable x and time t . The basis function 
F(x, t) is identified by estimating the average value of 
the functional response.

In the case of r1 = · · · = rn = r , we define 
e·j =

1
m

∑
m

i=1(yij − yi·) and yi· =
1
r

∑r
l=1 yil . e = [e·1, · · · , e·r]

T 
and y = [y1·, · · · , ym·] are fitted as shown in Eq. (24):

The unknown polynomial basis functions k(x) and 
g(x) are constructed using the regression function. Fur-
thermore, the basis function in Eq. (23) is written as 
F (x, t) = [1, kT(x), gT(x)]T and the matrix F  is expressed 
as F = [F(X1, t

∗
1 ), · · · , F(XN , t

∗
N )]

T.

6.2 � Deformation Modeling of Needle Insertion at a Series 
of Depth

One hundred sets of input variables are generated with 
LHS to construct the functional response Kriging model. 
After the normalized inverse operation, the finite ele-
ment program runs 100 times to generate the deforma-
tions in the X and Y  directions at 10 marked points for 
31 time steps, as shown in Figure  2. For needle inser-
tion at a constant speed, the insertion time is replaced 
with the depth d . Here, the 31 time steps are expressed 
as d = [1.0 mm, 2.0 mm, 5.0 mm, · · · , 89 mm] , and the 
increment of the insertion depth is 3 mm , except in the 
first step.

Forty sets of data are randomly selected from 100 sets 
of records and used to construct the functional Kriging 
prediction model of soft tissue deformation, and an inde-
pendent set of data is used to test the model. According 
to the former analysis, the polynomial basis functions are 
first order regression functions, and the correlation func-
tions are Gaussian random functions. To evaluate the 
real-time performance of the Kriging module, the mean 
residual ẽi and the relative mean residual ε̃i at each time 
step (insertion depth) are defined for each observation 
location, written as Eq. (25):

where r is the total number of puncturing steps, i.e., 
r = 31 , and i is the position number of the output 
response, where i = 1, · · · , 10.

(24)
e(t) = kT(t)βt + z(t),

y(x) = gT(x)βx + z(x).

(25)

ẽi =
1

r

r∑

j=1

|eji

∣∣∣∣∣∣
=

1

r

r∑

j=1

|ŷji − yji

∣∣∣∣∣∣
,

ε̃i =
1

r

r∑

j=1

∣∣ŷji − yji
∣∣

∣∣yji
∣∣ ,
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The procedure of needle insertion is recorded from the 
time of contact between the soft tissue and the needle tip 
to the time at which a depth of 90mm is reached inside 
the tissue. With the functional response Kriging model, 
the displacement in the X and Y  directions can be pre-
dicted, and Figure 6 plots the displacements of N2 shown 
in Figure  2, which is close to the needle. In Figure  6, 
‘Kriging value’ denotes the prediction results obtained 
using the functional response Kriging model, and ‘FEM’ 
denotes the results obtained with a finite element simula-
tion. From Figure 6, the displacement fluctuations at the 
initial and final time steps are relatively large, while the 
fluctuations between these two time steps are smaller. 
The functional response Kriging model follows the law 

of tissue deformation during the needle insertion pro-
cedure. The model can also predict the displacements at 
other locations at different time steps very well. Figure 7 
shows the displacements at N8, which is far away from 
the needle.

With Eq. (25), the mean residuals and relative mean 
residuals of the 10 locations are as listed in Table 2.

The fluctuation occurs at the initial time steps which is 
derived from the spring-back of the tissue surface as the 
needle punctured the tissue. And as the Kriging model is 
inherently a data-driven model which the interpolation 
function is applied to predict other unknown region, the 
prediction accuracy of the data which has large fluctua-
tion would decrease. Overall, the Kriging model smooths 

Figure 6  Kriging predictions for insertion depth-tissue displacement curve (N2)

Figure 7  Kriging predictions for insertion depth-tissue displacement curve (N8)
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the original finite element model, and the prediction 
accuracy of the initial stage is poor. The maximum resid-
uals of the Kriging predictions and finite element calcula-
tions in the X and Y  directions are 0.37mm and 1.24mm , 
respectively, and both occur in the fifth time step, at 
which the needle tip punctures the surface of the soft 
tissue. The average residuals in the X and Y  directions 
occur within 0.05mm and 0.12mm , respectively, and the 
relative mean residual is at most 16%.

The runtime is also compared. Both the Kriging model 
and FEM model run on the same computer with macOS 
Mojave 10.14.6, a 2.7 Hz Intel Core i5 and 8 GB of RAM, 
and the program is written in MATLAB 2019b. The aver-
age runtime of 5 runs is recorded, with the average time 
for the Kriging-based method being 0.0294 s and that of 
the FEM model being 4.6912 s. Note that neither of the 
two reported times includes a visualization of the soft tis-
sue deformation process. The reported results indicate 
that the Kriging model runs approximately 160 times 
faster than the FEM model.

6.3 � Adaptation of the Deformation Modeling to Step 
Variations

From the above analysis, the Kriging prediction model 
based on the observations at 31 time steps can reflect the 
soft tissue deformation at fixed (known) time steps. How-
ever, it is necessary to obtain the motion information of 
the sensitive area inside the soft tissue at any time step 
for both the path planning and the virtual training sys-
tem. In this section, the adaptation to different time steps 
is studied.

Additional insertion time steps are expressed as 
d1 = [1.0 mm, 2.5 mm, 5.0 mm, · · · , 90 mm] , the inser-
tion depth increment is 2.5 mm and the total depth 
achieved by the needle is 90mm . The displacements of 
10 observation locations at d1 insertion time steps are 
recorded to compare with the Kriging model. Forty sets 
of data randomly selected from 100 sets of records are 
used to construct the real-time Kriging prediction model 
of soft tissue deformation, and an independent set of data 
is used to test the model.

Figure  8 shows a comparison between the predic-
tion and the computer-based experimental results at 
the N3 location. From Figure 8, the Kriging model with 

Table 2  Kriging prediction errors at different positions

Note: subscript max: maximum residual, subscript re: relative mean residual

Error N1 N2 N4 N5 N6 N7 N8 N9 N10

Xmax 0.31 0.20 0.22 0.16 0.11 0.31 0.29 0.24 0.28

Ymax 0.76 0.92 0.55 0.37 0.37 0.51 0.37 0.32 0.29

Xre (%) 24 33 20 21 49 25 25 15 12

Yre (%) 6 7 7 8 7 6 6 6 6

Figure 8  Kriging predictions for insertion depth-tissue displacement curve (N3)
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a functional response can fit the computer-based experi-
mental results very well and can reflect the fluctuation 
trends at the initial and end time steps. The maximum 
residual occurs at the 6th insertion time step, and its 
maximum residuals and relative mean residuals in the X 
direction are 0.22 mm and 21% , respectively. The maxi-
mum residuals and relative residuals in the Y  direction 
are 0.55 mm and 8% , respectively. The maximum residu-
als and relative mean residuals of the remaining nine 
observation positions are listed in Table 3.

From Table  3, the maximum residual in the X direc-
tion occurs at N1 and N7; its value is 0.31 mm . The 
maximum residual in the Y  direction appears at N2; its 
value is 0.92 mm . The relative mean residual in the Y  
direction is less than 8% and has a relatively high accu-
racy. For the real insertion procedure, the displacements 
in the X direction are very small, sometimes approach-
ing zero; hence, the relative mean residual is larger than 
20% . However, the absolute mean residual of each loca-
tion is less than 0.31 mm , which can meet the estimation 
accuracy.

7 � Conclusions and Future Work
In this paper, a computer-based experimental analysis of 
the Kriging metamodel is presented to predict the defor-
mations of soft tissues. The input data include the mate-
rial properties of the tissues and needle, the geometrical 
properties of the needle, and the solver parameters, and 
they are sampled by the LHS method. The corresponding 
output dataset is generated by an accurate needle-tissue 
coupling FE model offline. Ten markers are used to repre-
sent the deformations at different positions inside the tis-
sues. Unlike other mechanical-based simulation models, 
our model can consider both the accuracy and efficiency 
if high-precision data of the original dataset are well pre-
pared. The results suggest that the proposed Kriging-
based model with first order regression and Gaussian 
correlation functions can well reflect the mechanism of 
soft tissue deformation. The functional response Kriging-
based model can provide feedback regarding deformation 
at a series of depths for the SPS, of which the time and 
space indices are both taken into account. The reported 
time indicates that the Kriging model runs approximately 
160 times faster than the original FEM model. Moreover, 

we also verify that the model has excellent adaptation 
to step variations. Compared with the ground truth, the 
maximum residual is less than 0.92 mm , which can sat-
isfy the requirements of the SPS.

The performance of the proposed Kriging-based 
model depends on the accuracy of the dataset gener-
ated by the mechanical-based simulation greatly. There-
fore, future work will focus on combinations with a 
more accurate simulation model, considering complex 
tissue behavior ranging from hyperelasticity to viscoe-
lasticity, and the needle deflection will be modeled at 
the same time. The sensitivity of additional parameters 
will be analyzed to improve the accuracy and efficiency 
of the Kriging-based model.
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