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Abstract 

Autonomous vehicles require safe motion planning in uncertain environments, which are largely caused by sur-
rounding vehicles. In this paper, a driving environment uncertainty-aware motion planning framework is proposed 
to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover. First, a 4-degree 
of freedom vehicle dynamics model, and a rollover risk index are introduced. Besides, the uncertainty of surrounding 
vehicles’ position is processed and propagated based on the Extended Kalman Filter method. Then, the uncertainty 
potential field is established to handle the position uncertainty of autonomous vehicles. In addition, the model 
predictive controller is designed as the motion planning framework which accounts for the rollover risk, the position 
uncertainty of the surrounding vehicles, and vehicle dynamic constraints of autonomous vehicles. Furthermore, two 
edge cases, the cut-in scenario, and merging scenario are designed. Finally, the safety, effectiveness, and real-time 
performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop 
experiment bench.
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1  Introduction
1.1 � Motivation
Low-carbonization, electrification, intellectualization, 
and informatization are the future trend of the auto-
motive industry [1–5]. Especially, autonomous driv-
ing is considered one of the revolutionary technologies 
shaping humanity’s future mobility and quality of life. 
Although the technology of autonomous vehicles (AVs) 
has achieved tremendous development in recent years, 
the safety of the intended functionality (SOTIF) issues 
remains one of the key challenges hindering its com-
mercialization. SOTIF can be defined as the absence 
of unreasonable risk due to hazards resulting from 
functional insufficiencies of the intended functional-
ity or reasonably foreseeable misuse [6, 7]. Generally, 

an autonomous system consists of an environment per-
ception system, decision-making (DM) system, and a 
control execution system. Each of these sub-systems 
confronts SOTIF challenges. As for the DM system, its 
SOTIF issues can be assumed as caused by the unknown, 
uncertain driving environment and limitations of the 
algorithm itself [8]. In this paper, motion planning with 
driving environment uncertainty information is the 
focus. In Figure  1, the dynamic driving environment 
with uncertainties of the surrounding vehicles (SVs), blue 
vehicle, particularly its future position, is shown. It can 
be assumed that future behavior and trajectories of the 
surrounding participants are probabilistic. As such, it is 
difficult to predict them always with adequate precision. 
The shaded part in Figure  1 represents positions where 
the vehicle may appear. If the ego vehicle, the red vehicle, 
does not consider the uncertainty, it may adopt strategy 
1 and suffer the risk of collision with the SV. However, 
if uncertainty is considered, the ego vehicle can adopt a 
safe strategy 2. Moreover, the perception system can also 
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produce many physical state uncertainties due to sensor 
noise and algorithmic limitations. Therefore, a more reli-
able DM algorithm should be developed for the ego vehi-
cle to cope with the accumulated uncertainties. Lastly, 
the algorithm must present a safe and anti-conservative 
plan.

1.2 � Related Work
Motion planning plays a key role in guaranteeing driv-
ing safety. In recent years, many investigations have 
been conducted on motion planning issues for AVs [9, 
10]. Those motion planning algorithms can be roughly 
categorized into three classes: graph-based (e.g., A∗ 
algorithm [11], rapidly random tree algorithm [12]), opti-
mization-based (e.g., model predictive control [13–15]), 
and learning-based (e.g., deep reinforcement learning 
algorithm [16]) methods. Though most approaches can 
handle multiple scenarios, they are generally based on the 
assumption that traffic information can be accessed and 
predicted accurately. Nonetheless, this type of assump-
tion may cause catastrophic consequences.

The partially observable Markov decision process 
(POMDP) is an effective way to deal with uncertainty 
[17]. Urban road situation model for proper environ-
ment representation was proposed in Ref.  [18]. The Sit-
uation-aware DM problem was modeled as a POMDP 
and solved via online methods. Furthermore, a POMDP 
approach for a pedestrian collision avoidance system 
was presented for complex urban scenarios to handle 
situations with sensor occlusions [19]. Although POMDP 
planning is effective in processing uncertainties, most 
solvers are computationally expensive and have poor 
scalability, especially when the POMDP model changes 
during runtime and the problem dimension increases. 
In addition, since the accuracy of localization systems 
can be relatively low, the uncertainty of localization was 
taken into consideration by utilizing probabilistic occu-
pancy grid-based approach to ensure the safety of AVs 
[20]. Similarly, the uncertainty of the predicted trajec-
tory was processed based on gaussian propagation. 
Meanwhile, the uncertainty of localization, which is 
caused by AVs and other traffic participants [21], was also 

calculated based on a Linear-Quadratic Gaussian frame-
work. Learning-based motion planning methods like 
deep reinforcement learning have been widely employed 
in recent years. However, current methods are developed 
with a strong reliance on black box predictions from 
deep neural networks. These methods tend to be over-
confident in predictions of unknown scenarios, which 
may lead to dire consequences [22]. To avoid this prob-
lem, Monte Carlo dropout and bootstrapping were used 
to provide computationally tractable and parallelizable 
uncertainty estimates. This method was embedded in a 
model-based reinforcement learning framework to form 
uncertainty-aware navigation around pedestrians. How-
ever, the action space of this method is discrete, which is 
not suitable for AVs [23].

On the other hand, many researchers have designed 
rollover index (e.g., Load Transfer Ratio) to prevent 
rollover accidents. These indexes are used to describe 
and determine whether the vehicle has reached the criti-
cal rollover point [24]. Lane-keeping control of autono-
mous ground vehicles considering rollover prevention 
was studied in Ref. [25]. In this study, an enhanced state 
observer-based sliding mode control strategy was pro-
posed to maintain lane-keeping errors and the roll angle 
within the prescribed performance boundaries. In addi-
tion, a nonlinear model predictive control approach, 
which combines braking and steering systems for AVs, 
was presented in Ref.  [26]. A predictive control prob-
lem was formulated to track a given path at maximum 
velocity while satisfying roll angle, yaw rate, and physi-
cal constraints. Instead of improving vehicle stability and 
mitigating risk only from the tracking control perspec-
tive, a new local path planning approach was proposed. 
This method incorporated a time-to-rollover model for 
off-road autonomous driving on different road profiles 
with a predefined global route [27]. In addition, a new 
emergency steering control strategy based on hierarchi-
cal architecture was developed in Ref. [28]. It consists of 
a DM module and a motion control module which ensure 
the stability of the vehicle. Most of these methods gen-
erate a series of candidate trajectories. Then, the opti-
mal one is selected according to a specific cost function 
rather than directly including the risk of the rollover to 
the motion planning algorithm.

1.3 � Contribution
To the best of the authors’ knowledge, few studies consid-
ered both the rollover prevention of AVs and the position 
uncertainty of SVs from the motion planning perspective. 
Three contributions clearly distinguish this research from 
the aforementioned studies:

1) An index that is used to evaluate the risk of the 
rollover is presented based on a four-degree of freedom 

Figure 1  How to generate a safe path to avoid a potential collision 
that can consider the position uncertainty of surrounding vehicles
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(4-DOF) vehicle dynamic model. Furthermore, the index 
is considered in the motion planning module to lower the 
risk of rollover.

2) Uncertainty propagation method is proposed to 
determine the probabilistic safety boundary (PSB) of 
SVs, and a potential field is designed to process position 
uncertainties.

3) A motion planning framework based on model pre-
dictive control (MPC), which considers the risk of rollo-
ver, position uncertainty, obstacle avoidance, and vehicle 
dynamics constraints, is presented. Moreover, its real-
time performance is verified by employing the hardware-
in-the-loop (HiL) platform.

1.4 � Paper Structure
The rest of this paper is organized as follows. In Sec-
tion  2, an index describing whether the vehicle has 
reached the critical rollover point is designed based 
on the 4-DOF vehicle dynamics model. In addition, an 
improved uncertainty propagation method is introduced 
and the PSB of SVs is determined. In Section 3, a poten-
tial field is proposed to consider the position uncertainty 
of SVs. Furthermore, rollover risk and obstacle avoid-
ance which considers position uncertainty and vehicle 
dynamics are included based on the MPC algorithm. In 
Section  4, two challenging scenarios are designed, and 
the proposed method is deployed on the HiL platform 
to verify the feasibility and real-time performance of the 
proposed motion planning method. Finally, key conclu-
sions and future work are summarized in Section 5.

2 � Vehicle Dynamics Modeling and Position 
Uncertainty Propagation

In this section, a 4-DOF vehicle model of AVs is illus-
trated and the risk index of rollover (RIR) is deduced to 
determine whether the vehicle has reached the critical 
rollover point. Furthermore, a general model describing 
motion dynamics of SVs, which considers the uncertainty 
of SVs’ position and the noise of AVs’ perception system, 
is introduced. Moreover, the uncertainty propagation 
method is also proposed based on the extended Kalman 
filter (EKF). Finally, the PSB of SVs is calculated with 99% 
statistical confidence.

2.1 � Vehicle Dynamics Modeling and Risk Index of Rollover
In this paper, the vehicle dynamics model is utilized for 
motion planning with consideration of rollover stability. 
Given that realistic vehicle dynamics are relatively complex, 
a tradeoff between model accuracy and computational 
cost is introduced. Therefore, the 4-DOF dynamics model 
(e.g., 2-DOF bicycle model, 1-DOF longitudinal model, and 
1-DOF rollover model) is deduced with several assump-
tions [29]. In Figure  2a and b, the vehicle model with 

longitudinal, lateral, yaw and rollover dynamics is shown. 
The aforementioned dynamics are described by the follow-
ing equations:

The vehicle’s position concerning global coordinates is 
expressed as:

where αf = δf −
v+lf ϕ̇

ẋ
,  αr = lr ϕ̇−v

ẋ
 and ay = Cf

m (δf −
ẏ+lf ϕ̇

ẋ )+ Cr
m

lr ϕ̇−ẏ
ẋ

 , 
m denotes the total mass of the vehicle, ms represents the 
equivalent sprung mass, Iz and Ix depict the yaw iner-
tia of the vehicle and the roll inertia of the spring-mass, 
respectively, lf  and lr are longitudinal distances from the 
center of the mass to the front axle and the rear axle, 
respectively, Cf  and Cr indicate front and rear tire corner-
ing stiffness, αf  and αr are wheel slip angles of the front 
and rear tire, respectively, h is the height of the center 
of mass and g is the gravitational acceleration, Kr is the 
roll stiffness and Br is the roll damping, Fxf  and Fxr is the 
longitudinal tire force of the front wheel and rear wheel, 
respectively, FxT means the generalized longitudinal tire 
force, Fr denotes the tire resistance and wind drag, δf  is 
the steering angle, u is the longitudinal velocity and v is 

(1)

m(u̇− vϕ̇) = Fxf cosδf + Fxr − Fr = FxT − Fr ,

m(v̇ + uϕ̇) = mshφ̈ + Cf αf + Crαr ,

Izϕ̈ = lf Cf αf − lrCrαr ,

Ixφ̈ = msghsinφ +msayhcosφ − Krφ − Br φ̇.

(2)Ẋ = ucosϕ − vsinϕ,

Ẏ = usinϕ + vcosϕ,

(a)

(b)
Figure 2  The 4-DOF vehicle dynamics model
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the lateral velocity, ϕ means the heading angle, φ depicts 
roll angle of the sprung mass, X and Y  are the longitudi-
nal displacement and lateral displacement, respectively.

Based on the vehicle dynamics model described in Eq. 
(1), RIR that reflects the degree of stability of the vehicle 
can be obtained using the load transfer ratio:

where L is the wheelbase and hr is the height of the roll 
center. When RIR is equal to zero, the vehicle exhibits a 
stable roll dynamic. On the contrary, when this indicator 
approaches ±1 , the risk of rollover increases as well.

2.2 � Uncertainty Propagation of Surrounding Vehicles
Accurate evaluation of current and future positions of SVs 
has a significant impact on the safety of the AV. Current 
positions of SVs can be measured through the perception 
system, like the radar. However, the measurement noise 
still exists and cannot be avoided. On the other hand, there 
are many effective methods to predict the future position, 
intentions, and behavior of AVs [30]. Nonetheless, these 
methods cannot ensure that the prediction results are 
always perfect and accurate. In realistic cases, the uncer-
tainty of the predicted information is still one of the key 
factors resulting in SOTIF issues of DM. The uncertainty 
may cause the motion planner to compute dangerous tra-
jectories and lead to serious consequences in some extreme 
cases [31]. Thus, it is necessary to develop a safe motion 
planning method and process these uncertainties. It should 
be noted that this paper does not focus on extracting 
uncertain information from the trajectory prediction algo-
rithms. It mainly focuses on taking the uncertain informa-
tion of SVs into account. More specifically, the goal of this 
paper is to propose a general motion planning framework 
and mitigate the risk resulting from the uncertainty of SVs’ 
future position and the noise of AVs’ perception systems.

In this section, a motion dynamics model, which includes 
the uncertainty of SVs’ position and the noise of AVs’ percep-
tion system, is established. Here, the stochastic driver model 
of SVs is employed. The uncertainty of driver input prediction 
is modeled using a Gaussian probability distribution. Thus, 
the stochastic driver model of SVs can be modeled as follows:

where st = [xs, ys, θs, vs]
T is state variables includ-

ing global coordinates, heading angle, and velocity of 
SVs at time t . Parameter ct is the control input, N  indi-
cates Gaussian distribution, ĉt is the mean value, Rt is 

(3)RIR =
Fzr − Fzl

Fzr + Fzl
=

2(msghsinφ +msay(hcosφ + hr)− Krφ − Br φ̇)

mgL
,

(4)st = f (st−1, ct), ct ∼ N
(
ĉt ,Rt

)
,

the covariance, and f  denotes vehicle dynamics of SVs, 
which are presented in Ref. [21].

Furthermore, due to the measurement noise of AVs’ 
perception system, the position of SVs is obtained with 
uncertainty, which can also be modeled as Gaussian dis-
tribution according to Ref.  [32]. Therefore, an observer 
considering measurement noise can be described as:

where zt is the measurement at time t , h indicates the observer 
system, qt is the measurement noise of the perception system, 
and Qt is the covariance of the measurement noise.

So far, two key factors that cause the uncertainty of 
SVs’ position have been included. A general model that 
describes the uncertainty of SVs is established as follows:

Then, an improved uncertainty propagation algorithm 
inspired by Ref. [21] using EKF is introduced. Priori state 
estimate st and the priori uncertainty covariance matrix 
Pt can be computed as follows:

where Pt−1 represents the posterior uncertainty covari-
ance matrix at time t − 1 , and ∂f

∂s is the Jacobian operation.
Combined with the measurement information of the 

perception system, posterior state estimation st and pos-
terior uncertainty covariance matrix Pt can be obtained 
through the following equations:

where Kt is the Kalman gain and ∂h
∂s  is the Jacobian opera-

tion. Based on Eqs. (7) and (8), uncertainty information 
of SVs can be propagated concerning time.

2.3 � Probabilistic Safety Boundary of Surrounding Vehicles 
Position

According to the above-conducted analyses, uncer-
tainty propagation of SVs is obtained. However, the 
uncertainty of SVs’ position should be quantified to 

(5)zt = h(st)+ qt , qt ∼ N (0,Qt),

(6)
st = f (st−1, ct),
zt = h(st)+ qt .

(7)
st = f (st−1, ct),

Pt =
(
∂f
∂s

)
Pt−1

(
∂f
∂s

)T
,

(8)

st = st + Kt(zt − h(st)),

Pt = (I − Kt
∂h
∂s )Pt ,

Kt = Pt

(
∂h
∂s

)T((
∂h
∂s

)
Pt

(
∂h
∂s

)T
+Qt

)−1

,
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ensure its adequate processing in the motion planning 
framework. In this section, to describe SVs’ position 
with statistical confidence, PSB of SVs’ position is cal-
culated based on Eqs. (7) and (8).

First, let [xs, ys]T represent the possible position of 
SVs. Then, optimal estimation coordinate [xs, ys]

T can 
be calculated based on Eqs. (7) and (8). Commonly 
employed motion planning approaches only consider 
optimal estimation coordinates in motion planning 
algorithms, which is one of the important differences 
between those methods and the proposed method in 
this paper.

Here, the possible position of surrounding vehicles 
is calculated with 99% confidence ( χ2 = 9.210 [33]) as 
follows:

where �1 = MaxEigval(Pt ),�2 = MinEigval(Pt),ϑ = tan−1

(MaxEigvec(y)/MaxEigvec(x)), Pt is posterior uncer-
tainty covariance matrix illustrated in Eq. (8), MaxEigval 
and MinEigval indicate maximum eigenvalue and mini-
mal eigenvalue of the covariance matrix Pt , respectively. 
MaxEigvec(y) and MaxEigvec(x) are eigenvectors of the 
covariance matrix Pt that corresponds to the largest 
eigenvalue in Y  and X coordinate direction, respectively.

(9)

[
xs
ys

]
=

[
xs
ys

]
+

[
cosϑ sinϑ

−sinϑ cosϑ

][√
χ2�1cosk√
χ2�2sink

]
, ∀k ∈ [0, 2π ],

3 � Uncertainty‑Aware Motion Planning Framework 
Design

This section interprets a safe motion planning framework 
that considers RIR and uncertainty of SVs’ position. A 
potential field based on the value of position uncertainty 
of SVs is built. In addition, the road boundary is also pro-
cessed. Then, multi-constraints of vehicle dynamics are 
described. Finally, MPC based motion planning algorithm 
is designed to consider these factors. The overall struc-
ture of the proposed motion planning framework is shown 
in Figure 3. In this paper, the AV controlled by the MPC 
method is also referred to as the ego vehicle.

3.1 � Potential Field for Surrounding Vehicles with Position 
Uncertainties Estimation

Vehicles and pedestrians are important for AVs to make 
decisions, which should be modeled as non-crossable 
obstacles. Collision with non-crossable obstacles could lead 
to damage or instability of the vehicle. Even worse, it might 
threaten human lives. In this paper, the focus is placed on 
non-crossable vehicles with considering the uncertainties 
of SVs’ position. The non-crossable potential field is moti-
vated by Ref. [34], and we include the position uncertainty 
in it. Based on Eq. (9), the non-crossable potential field for 
SVs with position uncertainty is defined as NPF:

where

(10)NPFi(X ,Y ) = aie
βi ,

Figure 3  The overall structure of an environment uncertainty-aware motion planning framework for autonomous vehicles
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where ai and bi are intensity and shape factors of the 
potential field, respectively, i denotes the ID of SVs, e is 
the exponential function, ϑ means the heading angle of 
the SVs and Lxi and Lyi are factors related to vehicles’ 
shape, respectively. Other symbols are described in 
Section 2.

On the other hand, according to traffic rules, the ego 
vehicle should follow the road marker without violat-
ing road boundaries. Furthermore, the ego vehicle cannot 
depart from the road marker unless the lane change or 
overtaking command is executed. This issue can be solved 
by applying the method proposed by the authors’ previous 
work [14]. Here, the quadratic function is applied to design 
the road boundary potential field ( RPF):

where aq is the parameter of road boundaries RPF  , SRq 
indicates the distance from the ego vehicle to road 
boundaries, and Da is the safety threshold between the 
ego vehicle and road boundaries. Based on Eq. (11), RPF  
will push the ego vehicle towards the center if it departs 
from the center of the lane.

Therefore, overall APF includes non-crossable obstacles 
and road boundaries and it is denoted as:

It can be observed that APF is nonlinear and non-convex, 
which increases the required time for solving the optimiza-
tion problem. However, its approximated quadratic convex 
problem can be solved significantly faster. Consequently, 
the problem ought to be converted into a quadratic convex 
problem to reduce the calculated time. Usually, this type of 
problem can be solved with the Sequential Quadratic Pro-
gramming (SQP) method. The main idea is to approximate 
a primal nonlinear and non-convex problem to a series of 
convex subproblems. A detailed proof of this process can 
be found in Ref. [13].

3.2 � Motion Planning Framework Design
In this section, the model predictive control method is 
applied for the motion planning framework design. The 
presented RIR and APF are included in the MPC controller 
objective to achieve road regulation and obstacle avoidance 

βi = −





((X − xs)cosϑ + (Y − ys)sinϑ)

2

2

�
Lxi +

�
χ2�1

�2 +
(−(X − xssinϑ + (Y − ys)cosϑ)

2

2

�
Lyi +

�
χ2�2

�2






bi

,

(11)

RPFk(X ,Y ) =

{
aq(SRq(X ,Y )− Da)

2, SRq(X ,Y ) < Da,

0, SRq(X ,Y ) > Da,

(12)APF =

∑

i

NPFi +
∑

k

RPFk .

while simultaneously guaranteeing stability. First, the non-
linear system described by Eq. (1) is denoted as:

where g represents vehicle dynamics, x represents state 
variables of the system, and u is the control input.

By linearizing the system at the operating point, the 
linear vehicle model can be expressed as:

where x =
[
u v ϕ̇ ϕ ∅̇ ∅ X Y

]T, u =
[
δf FxT

]T,

a1 =
(Cf +Cr )

(mu2)
v − ϕ̇ +

(
Cf lf −Crlr

)

(mu2)
ϕ̇, a2 =

(Cf +Cr )

(mu) , 

a3 = u−

(
Cf lf −Crlr

)

(mu2)
.

b1 =
(Cf lf −Crlr )

Izu2
v +

(
Cf l

2
f +Crl

2
r

)

Izu2
ϕ̇, 

b2 = −

(
Cf lf −Crlr

)

Izu
, b3 = −

(
Cf l

2
f +Crl

2
r

)

Izu

c1 =
hms(Cf vy+Crvy+Cf lf ϕ̇−Cr lr ϕ̇)

Izmu2
, c2 = −

hms

(
Cf +Cr

)

Izmu , 

c3 = −
hms

(
Cf lf −Crlr

)

Izmu , c4 = −
(Kr−ghms)

Ix
.

d1 = −vcosϕ − usinϕ, e1 = −ucosϕ − vsinϕ,

The outputs of the system represented by Eq. (15) are 
defined as lateral position Y  and longitudinal velocity u , 
which are described as follows:

where y =
[
Y u

]T , C =

[
0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

]
.

The desired outputs are denoted as:

(13)ẋ = g(x,u),

(14)ẋ = Ax + Bu,

A =





0 ϕ̇ v 0 0 0 0 0

a1 a2 a3 0 0 0 0 0

b1 b2 b3 0 0 0 0 0

0 0 1 0 0 0 0 0

c1 c2 c3 0 −
Br
Ix

c4 0 0

0 0 0 0 1 0 0 0

cosϕ −sinϕ 0 d1 0 0 0 0

sinϕ cosϕ 0 e1 0 0 0 0





,

B =

[
0

Cf

m

(Cf +Cr )

Iz
0

(Cf hms)

Ixm
0 0 0

1
m 0 0 0 0 0 0 0

]T
,

(15)y = Cx,

(16)ydes =
[
Ydes udes

]T
.
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Next, the zero-order hold method is applied to dis-
crete the system represented by Eqs. (14) and (15), 
which can be rewritten as:

where Ad , Bd and Cd means the discrete matrix of A , B, 
and C , respectively, k represents the sample time.

Moreover, vehicle dynamic constraints should also 
be taken into account in the motion planning model 
to ensure that optimized trajectory can be executed by 
AVs. Specifically, the values of control variables should 
satisfy physical constraints of the actuator capacities:

where δmax is the maximum steering angle, Tmax is the 
maximum propelling torque, and Rw is the radius of 
wheels.

Dynamic performance of the vehicle is not only 
restricted by the maximum propelling torque, but also 
by attachment conditions between tires and roads. 
Here, longitudinal and lateral accelerations should sat-
isfy the following conditions:

where ax and ay represent longitudinal acceleration and 
lateral acceleration, respectively, and µ is the friction 
coefficient between the tires and the road.

Furthermore, AVs should also obey the traffic rules. 
Here, the velocity of the vehicle is considered con-
strained within the allowable range. This constraint is 
represented as:

where umin and umax indicate minimal and maximum 
allowed velocity, respectively.

Finally, the risk of rollover, potential field, as well 
as dynamic constraints are filled into the MPC 
framework:

(17)
x(k + 1) = Adx(k)+ Bdu(k),
y(k) = Cdx(k),

(18)

∣∣δf
∣∣ ≤ δmax,

FxT ≤
Tmax
Rw

,

(19)
√
a2x + a2y ,

(20)umin ≤ u ≤ umax,

(21)

min
�u,ε

∑Np

k=1
(�RIR(t + k , t)�2Q + �y(t + k , t)− ydes(t + k , t)�2P

+PF (t + k , t)+ �εk�
2
R)+

∑Nc
k=1 ��u(t + k , t)�2S ,

s.t., x(t + k) = Adx(t + k − 1)+ Bdu(t + k − 1),

y(t + k − 1) = Cdx(t + k − 1),

umin(t + k − 1) ≤ u(t + k − 1) ≤ umax(t + k − 1),

�umin(t + k − 1) ≤ �u(t + k − 1) ≤ �umax(t + k − 1),

u(t+k) = u(t + k − 1), ∀k ≥ Nc,

where Np is the prediction horizon, Nc is the control 
horizon, t + k indicates the time step, x(t + k) represents 
the predicted state values of the system, y(t + k) denotes 
predicted outputs of the system over prediction horizon, 
umin and umax are the lower and upper bounds of the 
actuator, and �umin and �umax are various ranges of con-
trol variables at each moment.

Within the cost function shown in Eq. (21), matrices 
Q , P , R , and S are weight matrices corresponding to 
the risk of rollover, tracking of the desired path, slack 
variables, and violation of the control input, respec-
tively. So far, the motion planning problem has been 
converted into solving the optimal control issues over 
the prediction horizon.

4 � Experimental Results and Analysis
In this section, the test environment and corresponding 
experimental procedures are presented. Two cases are 
designed via PreScan software: cut-in scenario and merg-
ing scenario. HiL experiment, whose system is shown in 
Figure  4, is implemented to validate the real-time per-
formance of the framework. The system consisting of an 
AUDESSE FlexCase controller and a host computer is set 
up. Besides, the Simulink Desktop Real-Time environ-
ment is configured. The Simulink Desktop Real-Time 
provides a real-time kernel for executing Simulink mod-
els on Windows. The communication between the Flex-
Case controller and the host computer is enabled via 
CAN (PEAK device). Motion planning algorithm was 
deployed in FlexCase controller, and vehicle dynamics 
model is running in the host computer. Vehicle model 
parameters used in this experiment are listed in Table 1.
Baselines: To demonstrate the feasibility of the pro-

posed uncertainty-aware motion planning method that 
also considers the risk of rollover (subsequently referred 
to as UAMP-RR), two baselines are utilized. Firstly, a con-
ventional motion planning (CMP) approach is developed, 
which does not consider the position uncertainty of SVs 
and the risk of rollover. Secondly, another baseline that 

Simulink desktop 
real-time host

FlexCase 
controller

CAN monitor
Real-time CAN 

interface

Controller host

Figure 4  The hardware-in-the-loop experimental bench system
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considers the position uncertainty of SVs and does not 
consider the risk of rollover (called UAMP) is also adopted.

In addition, to quantify the benefits and disadvan-
tages of the proposed decision-making algorithm, the 
safety-related evaluation indicator should be established. 
The following is the definition of the longitudinal safe 
distance:

where ul and uf  are the leading and following vehicle’s 
current velocities, respectively, t0 is the reaction time, 
amax is the maximum deceleration of the vehicles, and X0 
is the longitudinal standstill distance.

Similarly, the lateral safe distance is defined as follows:

where vf  is the following vehicle’s lateral velocity, and Y0 
is the lateral standstill distance.

The safety index (SI) is represented as follows.

(22)Xs = X0 + uf t0 +
(uf − ul)

2

2amax
,

(23)Ys = vf t0 + Y0,

where �X , �Y  mean absolute longitudinal and lateral 
Euclidean distance between the AV and SV, respectively.

It can be found that the lower the value of SI, the higher 
the risk. Finally, vehicle dynamic parameters are pre-
sented in Table 1.

4.1 � Case 1: Evaluation of Obstacle Avoidance in the Cut‑in 
Scenario

As aforementioned, the motion information of SVs plays 
a key role in the motion planning system of AVs. There-
fore, a cut-in scenario is built to validate the effectiveness 
of the proposed method. In Figure 5, a two-lane scene is 
depicted where the ego vehicle lies in lane #2 (lower lane 
in Figure 5) with the initial velocity of 25 m/s and posi-
tion [0 m, 1.75 m]. Four SVs are placed in the proximity 
of the ego vehicle: SV #1 with the velocity of 20 m/s and 
the initial position [20 m, 5.25 m] in lane #1 (upper lane 
in Figure 5), SV#2 with the velocity of 20 m/s, and initial 
position [60 m, 1.75 m] in lane #2, SV #3 with the veloc-
ity of 20 m/s and the initial position [− 40 m, 5.25 m] in 
lane #1, SV #4 with the velocity of 20 m/s and the initial 
position [− 30 m, 1.75 m] in lane #2. In this scenario, SV 
#1 is set to make an abrupt lane change from lane #1 to 
lane #2. This represents a challenge for the ego vehicle 
concerning making the correct decision and planning. 
Because the position of SVs is hard to predict accurately, 
even when applying some advanced prediction algo-
rithms. In other words, for the ego vehicle, the future 
position of SVs has greater uncertainty.

HiL experimental results are presented in Figures 5, 6, 
7, 8, 9 and 10. In Figure 5, the trajectory of UAMP-RR, 
UAMP, and CMP algorithms are demonstrated, where 
only the key positions are marked. Based on the results, 
it can be concluded that the three methods behave 

(24)

SI =






�X/Xs, �X/Xs > 1&�Y /Ys < 1,

�Y /Y s, �X/Xs < 1&�Y /Ys > 1,

min(�X/Xn,�Y /Y s), else,

Table 1  Vehicle parameters of autonomous vehicles

Symbol Value

Total vehicle mass m ( kg) 2407

Vehicle sprung mass ms ( kg) 2257

Moment of inertia about Z axis Iz ( kg ·m2) 3524.9

Moment of inertia about X  axis Ix (kg ·m2) 846.6

Wheel spacing L ( m) 1.75

Distance between the roll center to the CG of the sprung mass 
hr ( m)

0.4

Distance of CG from the front axle lf  ( m) 1.33

Distance of CG from the rear axle lr ( m) 1.81

Cornering stiffness of front tires Cf  ( N/rad) 80000

Cornering stiffness of rear tires Cr ( N/rad) 80000

Roll stiffness coefficient Kr ( N ·m/rad) 5730

Roll damping coefficient Br ( N ·m · s/rad) 6000

Figure 5  Trajectory of ego vehicle and SVs in case 1
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differently. Specifically, UAMP-RR and UAMP choose to 
make a lane change at about 1  s to avoid collision with 
SV #1, whereas CMP selects to change lane at around 
1.55 s, which is 0.55 s later than UAMP-RR and UAMP. 
In Figure 6, the comparison of SI values for these three 
methods is demonstrated. It can be found that the SI val-
ues of CMP for SV #1 are less than 1 from 2  s to 2.9  s, 
which represents a high collision risk. The reason why 

UAMP-RR and UAMP exhibit safely is that the position 
uncertainty of SVs is considered. Besides, the SI values of 
UAMP-RR for other SVs are also given in Figure 7, which 
means that UAMP-RR can make the ego vehicle keep a 
safe distance from other SVs. Moreover, the comparison 
of RIR values and corresponding roll angle are shown in 
Figures 8 and 9, respectively. From the results, it can be 
concluded that both UAMP-RR and UAMP can keep the 

Figure 6  SI values for SV #1 in case 1

Figure 7  SI values of UAMP-RR for other SVs in case 1

Figure 8  RIR values of ego vehicle in case 1
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ego vehicle at a low risk of rollover, but the RIR values of 
CMP are higher. Note that although the risk of rollover 
is not considered in UAMP, it chooses the safe trajectory 
approximate to UAMP-RR, and thus, the RIR values are 
lower. In case 2, the difference between UAMP-RR and 

UAMP will be displayed and highlighted. Finally, in Fig-
ure 10, the values of steering angle and longitudinal force 
are shown. It can be observed that constraints are well 
processed, i.e., the steering angel and longitudinal force 
are limited in reasonable ranges.

Figure 9  Roll angle of ego vehicle in case 1

Figure 10  Steering angle and longitudinal force of ego vehicle with UAMP-RR method in case 1

Figure 11  Trajectory of ego vehicle and SVs in case 2
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4.2 � Case 2: Evaluation of Obstacle Avoidance 
in the Merging Scenario

To further verify the effectiveness of the proposed frame-
work, another challenging scenario represented by the 
merging scene is built. In Figure 11, a two-lane road with 
a ramp on the highway and ego vehicle in lane #2 (lower 
straight road in Figure 11) with the velocity 30 m/s and 
initial position [0  m, 1.75  m] is displayed. In addition, 

there are also four SVs placed in the proximity of the ego 
vehicle. More specifically, SV #1 is located in Ramp Road 
with a velocity of 32  m/s and an initial position [16  m, 
− 32.4  m], SV #2 is located in lane #1 (upper straight 
road in Figure 11) with the velocity of 30 m/s and the ini-
tial position [25 m, 5.25 m], SV #3 is located in lane #1 
with the velocity of 30 m/s and initial position [− 35 m, 
5.25 m], SV #4 is located in lane #2 with the velocity of 

Figure 12  SI values for SV #1 in case 2

Figure 13  SI values of UAMP-RR for other SVs in case 2

Figure 14  RIR values of ego vehicle in case 2
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30 m/s and initial position [− 40 m, 1.75 m]. In this case, 
SV #1 is set to perform a merging behavior from ramp 
road to lane #2, which is also a challenging case for the 
ego vehicle to avoid the collision. Similarly, the experi-
mental results are demonstrated in Figures 11, 12, 13, 14, 
15 and 16.

Figure  11 depicts the trajectory of the UAMP-RR, 
UAMP, and CMP algorithms, with only the essential 
position highlighted. It can be seen that CMP adopts 
a different control strategy compared with UAMP-RR 
and UAMP. Specifically, CMP keeps the vehicle within 
its lane, whereas the others choose to change the lane 
to avoid collision with SV #1 at 2.4 s. The inherent rea-
son why CMP made such a decision is that it predicts 
the future trajectory of SV #1 without uncertainty. In 
other words, the algorithm assumes that the prediction 
is accurate. Besides, the comparison of SI values for the 
three approaches is shown in Figure 12. From 3 s to 4 s, 
the SI values of CMP for SV #1 are less than 1, indicating 
that there is a high danger of collision. Because the posi-
tion uncertainty of SVs is taken into account, UAMP-RR 
and UAMP exhibit securely. Figure 13 also shows the SI 

values of UAMP-RR for other SVs, implying that UAMP-
RR can maintain the ego vehicle at a safe distance from 
other SVs. In addition, Figures  14 and 15 demonstrate 
the comparison of RIR values and roll angles, respec-
tively. It can be found that the RIR values and roll angles 
of CMP are close to 0. The reason is that in this case, 
CMP adopts an unsafe strategy, i.e., keeping lanes (i.e., 
between 3 s and 4 s, the value of SI is less than 1 in Fig-
ure  12). Therefore, this does not show that the CMP 
method is better than the other two methods, despite 
low RIR values. Because, for the vehicle, crash safety is 
the priority. UAMP-RR and UAMP have in common that 
they both consider the position uncertainty of SVs, and 
the difference is that UAMP does not consider the risk of 
rollover. They both perform safer behaviors, as shown in 
Figure 12. But UAMP-RR has a lower RIR value, imply-
ing that it can increase vehicle rollover stability while 
guaranteeing collision safety. Finally, results for steering 
angle and longitudinal force are displayed in Figure  16. 
The steering angle and longitudinal force are both con-
strained in appropriate limits, indicating that constraints 
are effectively handled.

Figure 15  Roll angle of ego vehicle in case 2

Figure 16  Steering angle and longitudinal force of ego vehicle with UAMP-RR method in case 2
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5 � Conclusions
An environment uncertainty-aware motion planning 
approach for AVs with considering the risk of the rollo-
ver was proposed in this paper. First, the 4-DOF vehicle 
dynamic model was used to design the index describ-
ing the risk of rollover. Then, an extended Kalman filter 
was applied to process and propagate the uncertainty of 
SVs’ position. Furthermore, the PSB of SVs was deter-
mined, and a potential field was established to account 
for the uncertainty. To achieve obstacle avoidance while 
guaranteeing stability, the MPC was adopted to account 
for all of the previously mentioned items. Finally, two 
cases, i.e., the cut-in scenario, and merging scenario are 
designed on a hardware-in-the-loop experiment bench. 
The results demonstrate the effectiveness of the pro-
posed method.

Future work may focus on extracting prediction 
uncertainty from advanced trajectory prediction meth-
ods like long short-term memory. In addition, more 
edge cases in the urban situation will be studied to 
improve its generalization and the real vehicle test will 
proceed.
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