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Fusion
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Abstract 

Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles, Lidars are accurate in 
determining objects’ positions but significantly less accurate as Radars on measuring their velocities. However, Radars 
relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions 
as they have a lower spatial resolution. In order to compensate for the low detection accuracy, incomplete target 
attributes and poor environmental adaptability of single sensors such as Radar and LiDAR, in this paper, an effective 
method for high-precision detection and tracking of surrounding targets of autonomous vehicles. By employing the 
Unscented Kalman Filter, Radar and LiDAR information is effectively fused to achieve high-precision detection of the 
position and speed information of targets around the autonomous vehicle. Finally, the real vehicle test under various 
driving environment scenarios is carried out. The experimental results show that the proposed sensor fusion method 
can effectively detect and track the vehicle peripheral targets with high accuracy. Compared with a single sensor, it 
has obvious advantages and can improve the intelligence level of autonomous cars.
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1  Introduction
Autonomous vehicle is a kind of intelligent car, which 
mainly relies on the computer system and sensor sys-
tem inside the car to realize autonomous. Autonomous 
cars are integrated with automatic control, architecture, 
artificial intelligence, visual computing and many other 
technologies [1]. It is a highly developed product of com-
puter science, pattern recognition and intelligent control 
technology, as well as an important symbol to measure 
a country’s scientific research strength and industrial 
level [2]. It has a broad application prospect in the field 
of national defense and national economy. In recent 
years, auto intelligent technology, such as lane departure 

warning, ACC adaptive cruise, higher driving Assistance 
Systems such as automatic parking (Advanced Driver 
Assistance Systems, ADAS) [3, 4] has been applied in 
car design, and to a certain extent, realize the self-driv-
ing car, bring many convenience to people’s life, and to 
reduce accidents, to provide a safe and convenient driv-
ing experience plays an indispensable role [5, 6]. With 
the continuous development and progress of science and 
technology, intelligent driving technology makes self-
driving vehicles no longer out of reach on the road [7–9].

An autonomous vehicle is inseparable from environ-
mental awareness, decision planning and motion control. 
As one of the keys of autonomous technology, environ-
mental perception technology adds eyes to autonomous 
cars through a variety of on-board sensors to accurately 
perceive the surrounding environment to ensure the 
safety and reliability of driving [10]. At present, the most 
commonly used on-board sensors are LiDAR, radar and 
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vision camera, etc., but all kinds of sensors have their 
advantages and disadvantages.

LiDAR has good directivity, high measuring preci-
sion and is not affected by road clutter. According to the 
structure and type, LiDAR can be divided into two types: 
single-line (two-dimensional) and multi-line (three-
dimensional). Multi-line LiDAR has a certain pitch Angle 
and can realize surface scanning, but its price is relatively 
expensive. LiDAR is difficult to detect in close range 
and can be affected by the surrounding environment 
and weather. In addition, LiDAR is easy to be crosstalk, 
LiDAR can not judge whether the pulse light emitted by 
itself causes the shape of the object can not be judged. 
Radar speed ranging is the use of Doppler frequency 
shift, outward radiation wavelength for millimeter elec-
tromagnetic wave to complete the task of detecting the 
target. The electromagnetic wave is received by the 
receiver after being reflected by the target, and the infor-
mation in the echo is analyzed to obtain the distance and 
relative velocity of the target. Radar has the advantages of 
strong penetrating ability of bad weather and good tem-
perature stability.

However, the accuracy of radar in the detection range 
is directly restricted by the frequency band loss, and it 
is also unable to perceive the surrounding target catego-
ries, and accurate modeling of all surrounding obstacles 
cannot be carried out. Both LiDAR and RADAR can 
sense nearby targets. LiDAR are accurate in determining 
objects’ positions but significantly less accurate on meas-
uring their velocities. However, Radars are more accu-
rate on measuring objects velocities but less accurate on 
determining their positions as they have a lower spatial 
resolution. Different types of targets perceived by differ-
ent sensors will collide.

Our method are two comprehensive LiDAR and radar 
sensor data, through the way of data fusion to perceive 
the autonomous vehicle targets around there are both 
accurate location information and accurate speed infor-
mation, improve the environmental awareness accuracy, 
and control to provide effective data for the decision of 
autonomous cars, and thus reduce the autonomous car 
accidents.

In recent years, the fusion of LiDAR and Radar has 
become a hot topic for researchers at home and abroad. 
In 2017, Kwon et al. [11] created a Detection scheme for 
a partially occluded pedestrian based on occluded depth 
in LiDAR-radar sensor fusion. It is verified that LiDAR 
and Radar fusion data can effectively solve the problem of 
partially occluded targets. In 2019, Lee et al. [12] worked 
out the A Geometric Model based 2D LiDAR/Radar 
sensor fusion for tracking surrounding vehicles. The 
proposed fusion system improved the estimation perfor-
mance by reflecting the characteristics of each sensor is 

confirmed. In 2020, Kim et al. designed Extended Kalman 
Filter (EKF) for vehicle position tracking using reliability 
function of Radar and LiDAR, the study confirmed that 
the accuracy of distance measurements was improved as 
a result of the LiDAR and radar sensor fusion, and the 
method that reflected distance errors was more accurate 
in the extended Kalman filter’s composition. In the same 
year, Farag, Wael put forward Road-objects tracking for 
autonomous driving using LiDAR and radar fusion. In 
this paper, a real-time road-object detection and tracking 
method for autonomous cars is proposed, implemented 
and described in detail [13].

Information fusion is the study of efficient methods for 
automatically or semi-automatically transforming infor-
mation from different sources and different points in 
time into a representation that provides effective support 
for human or automated decision making. In this paper, 
radar and LiDAR, which are relatively mature in engi-
neering applications, are used as environmental sensing 
sensors to solve the detection and tracking problems of 
surrounding targets of autonomous vehicles through 
sensor information fusion, so as to improve the stability, 
reliability and environmental adaptability of the environ-
mental sensing system.

The rest of the work is arranged as follows. In Sec-
tion  2, we provide an overview of related work. In Sec-
tion  3, we derive our algorithms. First, we discuss the 
fusion of Radar and LiDAR. Subsequently, we present 
our modifications of the UKF (Unscented Kalman Filter, 
UKF) architecture to leverage the fused data. In Sec-
tion 4, we discuss our results and finally give a summary 
and an outlook on future work.

2 � Related Work
In terms of the specific model selection of the sensor, 
we used Delphi ESR millimeter wave radar produced by 
Delphi Corporation of the United States and Shenzhen 
Robosense RS-LiDAR-16 lines radar. Radar is a sensor 
that USES electromagnetic wave reflection to measure 
the distance, azimuth and velocity of the target. It is 
accurate and reliable in the measurement of distance and 
velocity information, but has poor identification of azi-
muth. Delphi 77G ESR, the radar frequency band is 77 
GHz, calculates the distance from the target object by 
calculating the time needed to transmit electromagnetic 
wave to the environment and receive reflected wave, 
and calculates the frequency shift of the reflected wave 
received to get the motion velocity of the target object to 
be measured. With this radar, 64 targets can be acquired 
at the same time. Each target contains parameters such 
as the longitudinal distance of the target, the transverse 
Angle of the target and the longitudinal speed of the tar-
get. Radar can directly output the target sequence, but 
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in the detection process, radar sometimes encounters 
the phenomenon of false detection. There is no target in 
the detection range that radar pays attention to, but the 
radar detects the presence of the target. Delphi 77G ESR 
is shown in Figure 1.

The master-slave control is widely employed in the 
robot manipulation. In most cases, the joystick or the 
keyboard is the routine input device for the robot master-
slave control system. The system presented in this paper 
is shown in Figure 1.

In addition, the system characteristics, scanning range, 
accuracy and other performance parameters of Delphi 
77G ESR are shown in Table 1.

The LiDAR system works simply by emitting a laser 
beam to complete a 360° scan in a horizontal direction 
counterclockwise. When the laser spot hits the target, the 
reflected laser beam passes through the optical receiv-
ing system and is detected by the optical detector, and 
then mixed with the original laser beam is converted into 
an electrical signal, which passes through the filter and 
amplifier and is input to the digital signal processor. After 
processing, the output to the computer shows the target 
point cloud. As the distance of the obstacle increases, 
the distance between LiDAR’s two adjacent scan lines 
increases. We use Shenzhen Robosense RS-LiDAR-16 
radar. RS-LiDAR-16, launched by RoboSense, is the first 
of its kind in China, world leading 16-beam miniature 
LiDAR product. RS-LiDAR-16, as a solid-state hybrid 
LiDAR, integrates 16 laser/detector pairs mounted in a 
compact housing. The compact housing of RS-LiDAR-16 
mounted with 16 laser/detector pairs rapidly spins and 
sends out high-frequency laser beams to continuously 
scan the surrounding environment. Advanced digi-
tal signal processing and ranging algorithms calculate 
point cloud data and reflectivity of objects to enable 
the machine to “see” the world and to provide reliable 
data for localization, navigation and obstacle avoidance. 

RS-LiDAR-16 installed on our autonomous vehicle, as 
shown in Figure 2. The related technical parameters are 
given in Table 2.

In this paper, the specific implementation process of 
the peripheral target detection and tracking method 
based on radar and LiDAR information fusion is to firstly 
conduct grid-based clustering of LiDAR point cloud data, 
select the target according to the rectangular box of clus-
tering results, and identify the target centroid position. 
Radar can directly output the target sequence. Then, UKF 
is used to fuse radar and LiDAR targets.

Figure 1  Delphi 77G ESR

Table 1  ESR technical parameters

Parameter Long range Middle range

System characteristics

 Frequency band (GHz)
 Size (mm)

76‒77
130✕90✕39 (w✕h✕d)

Refresh rate (ms) 50 50

Number of detectable targets 64 goals

Cover scope

 Maximum detection distance (m)
  Distance (m)
  Relative velocity (m/s)
  Horizontal vision (°)

100 (0 dBsm)
1‒175
−100~25
±10

50 (0 dBsm)
1‒60
−100~25
±45

Precision

 Distance (m)
 Relative velocity (m/s)
 Angle (°)

±0.5
±0.12
±0.5

±0.25
±0.12
±1

Multi-objective discrimination

 Distance (m)
 Relative velocity (m/s)
Horizontal vision (°)

2.5
0.25
3.5

1.3
0.25
12

Figure 2  RS-LiDAR-16 installed on our autonomous vehicle
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3 � Methodology
In this section, we describe our approach for the fusion 
of Radar and LiDAR. This section gives an overview 
of current research pertaining to the fusion of LiDAR 
and Radar sensor data. In this paper, the radar and liar 
information fusion based sensing system is designed by 
considering the performance of radar and LiDAR. The 
different detection ranges of radar and LiDAR are shown 
in Figure 3. The blue sector represents the LiDAR’s field 
of view, and the purple sector represents the radar. Tar-
gets detected by LiDAR are represented by orange rec-
tangles and radar by blue circles. The detection Angle 
of the radar is small, ±10° on both sides, but the detec-
tion distance is relatively far, with the maximum detec-
tion distance up to 180 m. The LiDAR has a maximum 
measuring distance of 150 m with a measurement accu-
racy of ±2 cm and a number of points up to 300000 
points per second. The horizontal Angle is 360° and the 
vertical Angle is −  15°~15°. We found that combining 
the advantages of LiDAR in position perception with 
the advantages of radar in target speed, the information 
fusion system based on LiDAR and Radar can obtain 
more accurate target position and speed information, 
and effectively improve the surrounding target percep-
tion accuracy of autonomous vehicles. Moreover, our 
results show that the method based on LiDAR and Radar 
information fusion can effectively avoid the malpractice 
of system failure caused by the failure of any sensor and 

improve the robustness of the system. The following sec-
tions explain each part in more detail.

3.1 � Moving Object Model
The motion state of the peripheral target of the autono-
mous vehicle is uncertain, so we establish a consistent 
model for the peripheral target [14–17]. We actually sim-
plify the actual moving form of the peripheral target. It 
is assumed that the model object moves along a straight 
line and can also move at a fixed turning rate and a con-
stant speed, as shown in Figure 4. The blue model is our 
autonomous car, and the orange model is our peripheral 
target. At some point, the target object is moving around 
the host Vehicle. The horizontal and vertical displace-
ments of the target object from the host Vehicle are Px , 
Py . The Px and Py here are relative to the coordinate sys-
tem of the host vehicle, that is, the host vehicle is the ori-
gin of the coordinate system, the front is the x axis, and 
the left side of the vehicle is the y axis. The speed of the 
host vehicle is v1 and the speed of the target object is v2, 
δ2 is the heading angle of the target object, δ̇2 is the angu-
lar velocity of the target object. Then the motion state of 
the target object can be described as a vector x, as shown 
in Eq. (1). And it follows that the change in motion state 
of the target object ẋ is expressed as the differential equa-
tion g(x) in Eq. (1). Where, Ṗx , Ṗy is the rate of change of 
position with time, v̇2 is the rate of change of velocity, and 
δ̇2 , δ̈2 are the rate of change of angle and angular accel-
eration. In addition, the relationship between the rate of 

Table 2  RS-LiDAR-16 LiDAR technical parameters

Sensor Time of flight distance measurement 16 channels
Measurement range: 40 cm to 150 m
Accuracy: ±2 cm
Field of view (vertical): ±15.0° (30° in total)
Angular resolution (vertical): 2°
Field of view (horizontal): 360°
Angular resolution (horizontal/azimuth): 0.1°(5 Hz) to 0.4°(20 Hz)
Rotation rate: 5/10/20 Hz (300/600/1200 r/min)

Laser Class 1
Wavelength: 905 nm
Full beam divergence horizontal: 7.4 mrad, Vertical: 0.7 mrad

Output Data rate: ~300000 points/s
100 Mbps Ethernet
UDP packet, include:
Distance
Rotation angle/azimuth
Calibrated reflectivity
Synchronized timestamp (resolution: 1 μs)

Mechanical/Electrical/Operational Power consumption: 12 W
Operating voltage: 9-32 VDC (with interface box and regulated 
power supply)
Weight: 0.840 kg (without cable)
Dimensions: 109 mm diameter × 82.7 mm Height
Environmental protection: IP67
Operation temperature: ‒ 30 ℃ to + 60 ℃
Storage temperature: ‒ 40 ℃ to + 85 ℃
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Figure 3  Detection range of radar and LiDAR (the yellow rectangle target is the target detected by LiDAR, and the blue circle target is the target 
detected by radar)

Figure 4  Moving object model
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change of transverse position Ṗx and the velocity v2 of the 
Target object is shown in Eq. (2):

From Eqs. (1) and (2), the differential Eq. (3) of the 
motion state change of the Target object can be deduced:

Suppose discrete time step k is related to duration 
time value tk , discrete time step k + 1 is associated with 
duration time value tk+1 . The time difference between 
tk+1 and tk is expressed as Δt, then the prediction model 
can be obtained by using ẋ and its integration with time 
xk+1 =

∫

ẋdt.

(1)x =


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It is assumed that turn rate ( δ2 ) and velocity ( v2 ) remain 
unchanged. Because we have noise vk in our equation of 
state, we put vk as a state into our state variable space, 
and its predictive noise includes acceleration and angular 
acceleration as Eq. (5):

If predictive noise is considered, the state of the target 
is described as:

There is a special case that we have to consider, that is, 
when δ̇2 = 0, ( Px,Py ) in our state transition function for-
mula will become infinite, and the vehicle we are tracking 
is actually traveling in a straight line, so our calculation 
formula of ( Px,Py ) becomes:

Now that we’ve generated the prediction point, we 
need to predict the next state of the object because the 
object is going to move in a certain way. Here, the cal-
culation is based on the state transition matrix. We only 
need to insert each prediction point into the process 
model Eq. (6).
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]
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).
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(7)Pxk+1
= Pxk + cos(δk) · vk ·�t,

(8)Pyk+1
= Pyk + cos(δk) · vk ·�t.
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3.2 � Sensor Fusion Using UKF
Kalman filter [18–20] is a linear filter which can fuse mul-
tivariate uncertain information to obtain an optimal state 
estimation. Kalman filter in the continuous change of a 
linear system performance is very good, because it exists 
in the process of the system some interference, therefore, 
even if accompanied by some interference on the system 
and the Kalman filter can be more accurate to calculate 
the actual state, and can be on the system motions make 
reasonable forecast of the future. The prerequisite of 
Kalman filter is that the system is a linear Gaussian sys-
tem. Generally speaking, the Gaussian noise will remain 
Gaussian after the state transition. If the prerequisite of 
linearity is not satisfied, Kalman filtering is no longer 
applicable.

Simple Kalman filtering must be applied to systems 
that conform to Gaussian distributions, but not all sys-
tems in reality conform to this. In addition, the transfer 
result of Gaussian distribution in nonlinear system will 
no longer be Gaussian distribution. At this point, you 
need to use an extended Kalman Filter or Unscented 
Kalman Filter instead. Extended Kalman Filter solves 
nonlinear problems with local linearity. The nonlinear 
prediction equation and observation equation are differ-
entiated and linearized by means of tangent lines, that is, 
the first order Taylor expansion is performed at the mean 
value.

EKF and KF [21–23] have the same algorithm struc-
ture, and both describe the posterior probability density 
in the form of Gaussian, which is obtained by calculat-
ing Bayesian recurrence formula. The difference between 
EKF and KF is that both the state transition matrix and 
the observation matrix of EKF are Jacobian matrices of 
state information when calculating variance. In the pre-
diction formula section [11, 24–26], the Jacobian matrix 
of Fk to f is extended by Kalman filtering. In the updat-
ing formula section, the Jacobian matrix of Hk to h is 
extended by Kalman filtering. EKF linearizes the model 
through Taylor decomposition to obtain the probability 
mean value and variance of the prediction model. UKF 
can calculate the mean value and variance of the predic-
tion model by insensitivity transformation. UKF [27] can 
better solve nonlinear problems through insensitivity 
transformation (an approximation method to calculate 
the moments of nonlinear random variables). By sam-
pling and weight of certain rules, the mean value and var-
iance can be approximately obtained. Moreover, the UKF 
effect can reach the effect of second-order EKF due to the 
high approximate accuracy of insensitive transformation 
to statistical moments.

We have two LiDAR and radar sensors. Rs-LiDAR-16 
LiDAR measures the position coordinate (Px,Py) of the 
target object. Delphi ESR measures the distance between 

the Target object and the host Vehicle in the coordinate 
system of host vehicle L as follows:

The Angle between the Target Object and the X-axis 
is δ2 , and the relative distance change rate between the 
Target Object and the host Vehicle is L̇ . The measure-
ment model of LiDAR is still linear, and its measurement 
matrix is:

The prediction is mapped to the LiDAR measurement 
space, that is:

The prediction mapping of radar to the measurement 
space is nonlinear, and its expression is:

There are bound to be errors between the predicted 
data and the actual sensor data, so we need to correlate 
the state space vector with the data available from the 
sensor by measuring the transfer matrix h(x). Since the 
measurement transfer matrix h(x) of radar is a nonlinear 
function, we also need to find some prediction points 
and convert the predicted value �zk+1 into the measure-
ment space through the nonlinear function xk+1|k . Our 
method is to substitute the generated prediction point 
xk+1|k into zk+1 = h(xk+1 + wk+1) to find the value of the 
measured space. Then according to each predicted value 
and weight, the Predicted measurement mean and meas-
urement mean Covariance can be obtained. As shown in 
Eqs. (11) and (12):

where wi is the weight of the average value, and wk+1 is 
the noise in the measurement model.
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Finally, Kalman gain Kk+1|k and cross-correlation func-
tion Tk+1|k were calculated based on the predicted val-
ues x and z, then update the state and the covariance. As 
shown in Eqs. (13) and (14):

(13)Kk+1|k = Tk+1|kS
−1

k+1|k ,

(14)xk+1|k+1 = xk+1|k + Kk+1|k(zk+1 − zk+1|k).

Compute Predicted

Measrements Sigma Points

Predict Measurement Mean

and Covariance Matrices

Predict Measurement Mean

and Covariance Matrices

Compute Cross Correlations 
of Sigma points in state and 

measurement spaces

Compute Kalman Gain,

State Update , and

Covariance Matrix

Update

Processed Sensor Data

Initialize UKF matrices

First

Measurements ?

Initialize state x and

covariance matrices

Compute elapsed time

t

Generate Sigma Points

Use t in Sigma Points

Prediction

Compute State Mean and

Covariance Matrices

Radar or Lidar?

Yes

No

Predict

Update

Lidar Radar

Figure 5  LiDAR and radar data fusion using UKF
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Figure  5 presents the LiDAR and radar data fusion 
technique employing the UKF. The resulted predicted 
sigma points are then used to compute the state mean 
and covariance matrices.

4 � Results
In this paper, the results of Radar and LiDAR fusion are 
validated. The results section is divided into detection 
results and results analysis. The experimental platform 
is Intel dual-core processor, 4G memory, the operating 
system is Ubuntu16.04 LTS, the programming software is 
ROS (Robot Operating System). A test vehicle as shown 
in Figure 6 was used for both recording the internal data 
and evaluating the sensor fusion and tracking effects in 
practice. The sensor fusion runs at 20 Hz, synchronized 
with the Radar.

Our methods have been evaluated on our autonomous 
vehicle. In the test section where the distance is meas-
ured in advance, data is collected and regarded as truth 
value. We designed a test section containing 6 work-
ing conditions for horizontal tracking and longitudinal 
tracking of surrounding targets of autonomous vehicles: 
(1) close to, (2) faraway, (3) turn left, (4) turn right, (5) 
left curve, (6) right curve. At the same time, the amount 
of target tracking time is counted, so as to facilitate the 

Figure 6  Our self-driving car

Figure 7  Our algorithm is performing real car verification.
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visual comparison of the tracking effects of LiDAR, Radar 
and fusion data. Figure 7 shows the interface of our algo-
rithm in the real car test. The yellow and red point clouds 
in the figure are LiDAR point clouds, the white rectan-
gle box is the vehicle surrounding targets detected after 
the LiDAR point cloud clustering, the bright yellow 
square box is the target tracked by radar, and the target 

velocity information is displayed in real time on the tar-
get tracked.

The horizontal and vertical tracking experiments in 
all six scenarios recorded about 80‒90 s of video. Our 
fusion method runs in real-time and is lightweight. After 
the tracking target is determined on the road, our self-
driving car will drive within the range of 10‒80 m behind 

Figure 8  Vertical tracking results of autonomous vehicle

Figure 9  Horizontal tracking results of autonomous vehicle
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the target vertically and −10~10 m behind the target 
laterally, so as to track the target vehicle in front. Multi-
ple tracking targets of each tracking test were classified 
according to their ID Numbers and then averaged.

Figures 8 and 9 are the effect experiments of longitudi-
nal and lateral tracking of cars by intelligent driving vehi-
cles, respectively. In Figure  8, it can be intuitively seen 
that the longitudinal target tracking provided by LiDAR 
is very stable with only a small range of fluctuation. In 
contrast, the longitudinal distance observed by the radar 
has obvious fluctuation. As can be seen in Figure 9, the 
horizontal target tracking provided by LiDAR is relatively 
stable, while radar fluctuates sharply when the horizontal 
distance is too large due to the limitation of field angle. In 
line with our initial expectations, radar and LiDAR have 
their advantages and disadvantages in both horizontal 
and vertical tracking.

Table 3 lists the comparison of the final detection and 
tracking results of popular algorithms. As shown, the 
accuracy and detection rate of our approach performed 
best in these types of models.

Our fusion approach is especially applicable to some 
small networks, and the test speed improvement of small 
networks is more obvious.

However, it can be seen from Figures 8, 9 and Table 3 
that our fusion approach detection and tracking effect is 
closer to the truth standard value, which shows the effec-
tiveness of the fusion algorithm in this paper.

5 � Conclusion and Future Work

(1)	 Based on the research of single sensor environment 
awareness technology, a peripheral target detection 
and tracking method based on UKF LiDAR and 
Radar information fusion is proposed.

(2)	 Our fusion method combines the millimeter-wave 
radar and LiDAR sensor in the vehicle-mounted 
environment.

(3)	 Introduces the UKF nonlinear data fusion method 
to match the observed values, thus realizing the tar-
get detection and tracking based on the millimeter-
wave radar and LiDAR, which can effectively reduce 

the problem of incomplete attributes of peripheral 
targets perceived by a single sensor.

(4)	 The actual vehicle test and tracking test of periph-
eral target movement under six common conditions 
are carried out, and the effectiveness of the fusion 
algorithm is verified, which can effectively improve 
the intelligence level of the autonomous vehicle.
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