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Practical Options for Adopting Recurrent 
Neural Network and Its Variants on Remaining 
Useful Life Prediction
Youdao Wang, Yifan Zhao*   and Sri Addepalli 

Abstract 

The remaining useful life (RUL) of a system is generally predicted by utilising the data collected from the sensors that 
continuously monitor different indicators. Recently, different deep learning (DL) techniques have been used for RUL 
prediction and achieved great success. Because the data is often time-sequential, recurrent neural network (RNN) has 
attracted significant interests due to its efficiency in dealing with such data. This paper systematically reviews RNN 
and its variants for RUL prediction, with a specific focus on understanding how different components (e.g., types of 
optimisers and activation functions) or parameters (e.g., sequence length, neuron quantities) affect their performance. 
After that, a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the 
influence of various state-of-the-art RNN structures on the RUL prediction performance. The result suggests that the 
variant methods usually perform better than the original RNN, and among which, Bi-directional Long Short-Term 
Memory generally has the best performance in terms of stability, precision and accuracy. Certain model structures 
may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the 
parameters are not chosen appropriately. It is concluded that parameter tuning is a crucial step to achieve optimal 
prediction performance .
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Bi-directional long short-term memory, Gated recurrent unit
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1  Introduction
Remaining useful life (RUL) prediction is an engineer-
ing discipline that works on the prediction of the future 
state or response of a given system based on synthesis 
observations, calibrated mathematical models, and sim-
ulations [1]. It generally refers to the study of predicting 
the specific time at which the system or the component 
will no longer be able to have its intended functional per-
formance. Salunkhe et al. [2] regard RUL as the time left 
before observing a failure. Okoh et al. [3] define RUL as 
the time remaining for a component to perform its func-
tional capabilities before failure. It is of great importance 

to predict the RUL of a component or a system in the 
industrial world, as it helps to prevent failures or acci-
dents from happening. For example, the failure of the 
aircraft engine would often lead to major accidents and 
casualties [4]. Thus, it is essential to predict the RUL of 
the engine, implement maintenance accordingly and 
eventually prevent catastrophic failure. The degrada-
tion process of an operating device is a process of grad-
ual deterioration and can be detected to a certain extent 
through the measurement of covariate variables [5]. In 
recent years, RUL prediction has attracted vast attention 
from both academic researchers and industrial operators.

RUL prediction approaches are generally catalogued 
into model-based (physics-based) methods, data-driven 
methods and hybrid models, which is a combination 
of the first two methods [5]. As the complex and noisy 

Open Access

Chinese Journal of Mechanical 
Engineering

*Correspondence:  yifan.zhao@cranfield.ac.uk
School of Aerospace, Transport and Manufacturing, Cranfield University, 
Cranfield MK43 0AL, UK

http://orcid.org/0000-0003-2383-5724
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-021-00588-x&domain=pdf


Page 2 of 20Wang et al. Chin. J. Mech. Eng.           (2021) 34:69 

working condition impedes the construction of the phys-
ical systems, it results in difficulties in developing the 
modelling of complex dynamic systems [6]. In addition, 
the difficulty to be updated with the online measured 
data, limits the effectiveness and flexibility of the phys-
ics-based models. In contrast, data-driven approaches 
are gaining popularity due to its quick implementation 
and widespread deployment of low-cost sensors and 
their connection to the internet, where RUL is computed 
through statistical and probabilistic methods by utilis-
ing historic information and routinely monitored data of 
the system [7]. The precondition for setting up the data-
driven models for RUL prediction is the availability of the 
multivariate historical data about the system behaviour, 
which must encompass all phases of the system opera-
tion and degradation scenarios under certain operating 
conditions. In recent years, Artificial intelligence (AI) 
techniques, particularly deep learning (DL) techniques 
are becoming more and more attractive because of the 
rapid growth in the industrial Internet of Things (IoT), 
Big Data and increasing computing power [8]. Research-
ers have exploited applications of AI techniques for RUL 
prediction as well.

Deep learning is one of the sub-branches of machine 
learning, which originated from the Artificial Neural Net-
work (ANN) and featuring multiple nonlinear processing 
layers. It intends to model hierarchical representations 
and predicts patterns behind data through building 
stacked multiple layers of information processing mod-
ules in hierarchical architectures. With the rapid develop-
ment of computational infrastructure and the availability 
of a large volume of data, DL has become one of the main 
research topics in the field of prognostics, given its capa-
bility to capture the hierarchical relationship embedded 
in deep structures [9]. The published literature on DL 
approaches for RUL prediction mainly focus on four rep-
resentative deep architectures, including Auto-encoder 
(AE), Deep Belief Network (DBN), Convolutional Neural 
Network (CNN) and Recurrent Neural Network (RNN) 
[10]. AE and DBN are often used for the pre-training of 
networks. For instance, Jia et al. [11] developed a stacked 
denoising autoencoder (SDA) which is fed with the fre-
quency spectra of time-series data to do the rotating 
machinery diagnosis. Chen et al. [12] proposed an SDA 
to identify the health state of certain systems with signals 
containing ambient noise and working condition fluctua-
tions. Shao et al. [13] developed a deep AE based method 
to diagnose rotating machinery fault. Liao et al. [14] pro-
posed to combine an enhanced Restricted Boltzmann 
Machine (RBM) with a novel regularisation term to auto-
matically extract the features which are suitable for RUL 
prediction. Gan et al. [15] presented a hierarchical diag-
nosis network that combines a wavelet packet transform 

(WPT) and DBN for consecutive identification of bearing 
fault location and severity. Thus, research suggests that 
CNN and RNN are generally used as predictive models 
and have proved to outperform traditional prognosis 
algorithms in RUL prediction. CNN based approaches 
are used more in fault diagnosis and surface integration 
inspection [16]. RNN, on the other hand, gained much 
more attention and achievements in the research of RUL 
prediction because of its ability to accommodate time 
sequence data [17]. Therefore, this paper systematically 
reviews the applications of RNN and its variants for RUL 
prediction in recent years. Many novel RNN based meth-
ods have been proposed, and the performance of the RUL 
performance has been greatly improved. However, most 
of these works just focused on how to achieve a better 
prediction performance using a certain approach. Very 
few researchers paid attention to some other factors that 
also affect the prediction result such as the optimizer, 
activation function, neuron number and sequence length. 
Taking the optimizers as an example, they are used to 
shape the model into its most accurate form through 
futzing with the weights. To the best of our knowledge, 
there is no research discussing how different optimizers 
affect the performance of RUL prediction using DL based 
approaches, and what is the underlying principle to opti-
mise the selection. To fill these research gaps, this paper 
not only presents an evaluation of the basic RNN and its 
variants on RUL prediction based on a case study in a 
publicly available dataset, but a specific investigation has 
also been carried out on how different components (e.g., 
types of optimisers and activation functions) or param-
eters (e.g., sequence length, neuron quantities) of these 
approaches affect the overall performance (e.g., stability, 
precision, accuracy) of the RUL prediction.

The remainder of this paper is organized as follows. 
Section 2 briefly introduces the basic conception of RNN 
and its variants. Section 3 presents the different optimiz-
ers that is normally used in DL. Section 4 explains how 
activation functions affect the training of the network 
and demonstrate the advantages and drawbacks of differ-
ent activation functions. Section 5 presents a case study 
that aims to evaluate the factors that influence the per-
formance of RUL prediction based on a publicly available 
dataset.

2 � RNN and Its Variants
2.1 � RNN
In a traditional neural network, inputs are independ-
ent, while in RNN, the front neurons pass the informa-
tion to the following neurons. As illustrated in Figure 1, 
in contrast to a traditional feed-forward neural network, 
an RNN can be regarded as numerous copies of the same 
neural network cell, in which each cell passes the message 
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to the next through the hidden state. In other words, the 
output from a recurrent neuron is connected to the next 
one to characterise the current system state as a function 
of current sensing data and the preceding system state.

In an unrolled RNN, the sensing data (…xt−1 , xt , 
xt+1 …) are fed simultaneously into the corresponding 
neurons, which generate the corresponding neuron time 
series (… ht−1 , ht , ht+1 …). The output of a single recur-
rent neuron can be expressed as:

where Wx , Wh and Wy represent the weight vectors 
respectively. The symbol b and c denote the bias term and 
σ is the activation function, with the hyperbolic tangent 
or Relu being commonly used in RNN. yt is the output 
of the recurrent neuron based on the output of the hid-
den state ht , which can be referred to as a memory space 
containing the information of the current input and the 
former hidden state ht−1 . It is worth mentioning that all 
the weight vectors are shared at every step, which means 
that the same task is repeated at every step with different 
inputs and the memory is renewed accordingly.

2.2 � LSTM
The main issue of the standard RNN is the gradient 
exploring and the gradient vanishing. These issues might 
happen when the network is too deep. In other words, 
when the number of the time step is too large, the infor-
mation carried in the front neuron will be lost because 
no structure in a standard recurrent layer individually 

(1)ht = σ(Wxxt +Whht−1 + b),

(2)yt = softmax
(

Wyht + c
)

,

controls the flow of the memory itself. To solve this prob-
lem, the Long Short-Term Memory (LSTM) network, a 
modified structure of the recurrent cell that incorporates 
the standard recurrent layer along with additional “mem-
ory” control gates, has been proposed. The basic struc-
tures of RNN, LSTM and GRU are illustrated in Figure 2.

The original LSTM was developed by Hochreiter and 
Schmidhuber [18] when researchers discovered a van-
ishing and exploding gradient issue in traditional RNNs. 
LSTM uses storage elements to transfer information 
from the past output instead of having the output of the 
RNN cell to be a non-linear function of the weighted sum 
of the current input and the previous output.

In another words, instead of using a hidden state h 
only, LSTM adopts a cell state C to keep the long-term 
information as shown in Figure  3. The main concept of 
LSTM is utilising three gates to control the cell state C 
(forget gate, input gate and output gate). The forget gate 
is used to control the information from the previous 
cell state Ct−1 to the current cell state Ct ; the input gate 
decides how many inputs should be kept in the current 
cell state Ct ; and the output gate determines the output 
ht from the current cell state Ct.

The output of LSTM at step t is calculated using the 
following equations:

where W  and b are the trainable weights and biases, 
respectively, and i , f  and o represent the input gate, 
forget gate and output gate respectively. These three 
gates have the same shape with different parameters U 
and W  , which need to be learned from the training pro-
cess. The candidate state 

∼
c t cannot be used directly. It 

must pass through the input gate and then be used to 
calculate the internal storage Ct . While Ct is not only 
affected by the hidden state but also by Ct−1 which is 
controlled by the forget gate. Based on Ct , a layer of 
tanh function is applied to the output information ht , 

(3)it = σ

(

Uixt +Wiht−1 + bi

)

,

(4)ft = σ

(

Uf xt +Wf ht−1 + bf

)

,

(5)ot = σ
(

Uoxt +Woht−1 + bo
)

,

(6)
∼
c t = tanh

(

U
∼
c xt +W

∼
c ht−1 + b∼

c

)

,

(7)Ct = Ct−1 · ft +
∼
c
t
·it ,

(8)ht = tanh(ct) · ot ,

Figure 1  Basic Feed-Forward Neural Network structure and 
Recurrent Neural Network structure
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which is constrained by the output gate. The exist-
ence of the gates enables LSTM to fulfil the long-term 
dependencies in the sequence, and by learning the 
gate parameters, the network can find the appropri-
ate internal storage. Therefore, LSTMs are naturally 
suited for RUL prediction tasks using sensor data with 
the inherent sequential nature due to their capability 
of remembering information over long periods. Yuan 
et  al. [19] proposed an LSTM approach for different 
types of faults, where C-MPASS dataset was used as the 
case study. Compared to the traditional RNN, Gated 

Recurrent Unit LSTM (GRU-LSTM) and AdaBoost-
LSTM showed improved performance in all cases. They 
developed a vanilla LSTM approach two years later 
which further improved the prediction performance 
significantly [20]. A multi-layer LSTM approach pro-
vided by Zheng et al. [17] investigated the hidden pat-
terns from sensors and operational data with multiple 
operating conditions, fault and degradation models by 
combining multiple layers of LSTM cells with standard 
feed-forward layers. The superiority of this approach in 
RUL prediction was validated by three widely used data 

Figure 2  Basic structures of RNN, GRU and LSTM

Figure 3  Cell state and three gates in LSTM
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sets, C-MAPSS Data Set, PHM08 Challenge Data Set 
and the Milling Data Set.

2.3 � GRU​
The shortcoming of LSTMs is that it is usually time-con-
suming due to the forget gate, input gate and output gate 
added to the structure of the memory blocks. To address 
this problem, an improved structure, named Gated 
Recurrent Unit (GRU), was proposed [21].

GRU is the latest generation of RNN, and it looks very 
similar to LSTM. Instead of using the cell state, GRU uses 
the hidden state to transfer information. Moreover, it 
only has two gates (a reset gate and update gate) instead 
of three. Similar to the forget and input gate of LSTM, the 
function of the update gate is to decide what information 
to keep and what to throw away. The function of the reset 
gate is to decide what to keep from the past information.

The output of GRU at step t is calculated using the fol-
lowing equations:

Since there are fewer tensor operations in GRU, it runs 
relatively faster when training the structure than LSTM. 
However, the accuracy is behind LSTM due to fewer 
gates. Thus, when the computational resource is limited, 
or fast training is required, GRU could be a good option. 
For instance, Chen et  al. [22] adopted a GRU network 
to predict the RUL for a complex system featured with 

(9)zt = σ

(

UZxt +WZht−1 + bZ

)

,

(10)rt = σ
(

Urxt +Wrht−1 + br
)

,

(11)
∼

ht = tanh

(

U
∼

hxt +W
∼

hht−1 · rt + b∼

h

)

,

(12)ht = (1− zt) · ht−1 + zt ·
∼

ht ,

multiple components, multiple states and a large number 
of parameters.

2.4 � Bi_directional LSTM
In recent years, there is another variant of RNN called 
Bi_directional LSTM (Bi_LSTM) that can be seen fre-
quently in literature. The Bi-directional LSTM is pro-
posed with the information flowing back to the former 
LSTM cells. The forward flow of information can dis-
cover the system variation, and it flows back to smooth 
the predictions as illustrated in Figure 4. The outputs of 
the forward path and the backward path are then concat-
enated. The governing equations of Bi-directional LSTM 
can be presented as:

where Eq. (13) refers to the forward path and Eq. (14) 
refers to the backward path, yi is the output of the Bi-
directional LSTM obtained by fusing the results from 
both directional paths.

As for the application, Zhao et  al. [23] presented an 
integrated approach of CNN and bi-directional LSTM 
for machining tool wear prediction named Convolutional 
Bi-directional Long Short-Term Memory (CBLSTM) 
networks. CNN was firstly used to extract local robust 
features from the sequential input. Then, Bi-directional 
LSTM was utilised to encode temporal information. The 
proposed CBLSTM’s capability of predicting the RUL 
of actual tool wear based on raw sensory data was veri-
fied with a real-life tool wear test. Zhang et al. [24] pre-
sented a Bi-directional LSTM network to discover the 

(13)h1i = f
(

U1 · xi +W 1 · hi−1

)

,

(14)h2i = f
(

U2 · xi +W 2 · hi−1

)

,

(15)yi = softmax
(

V ·
[

h1i ; h
2
i

])

,

Figure 4  A Bi-directional LSTM Structure
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underlying patterns embedded in time-series to track the 
system degradation. The Bi-directional LSTM network 
was implemented to track the variation of the health 
index, and the RUL was predicted by the recursive one-
step ahead method. Elsheikh et  al. [25] built a Bidirec-
tional Handshaking LSTM (BHLSTM) network for RUL 
prediction, where short sequences of monitored observa-
tions were given with random initial wear. This method 
was able to predict the RUL with a random start, which 
makes it more suitable for real-world application as the 
initial condition of physical systems is usually unknown, 
especially in terms of its manufacturing deficiencies.

3 � Optimizer
Gradient descent by far is the most commonly used way 
to optimise neural network [26]. It is an iterative optimi-
zation algorithm used to find the values of parameters or 
coefficients of a function that minimizes a cost function. 
Although various algorithms have been developed to 
optimize gradient descent, they are usually used as black-
box optimizers because it is hard to figure out the practi-
cal explanations of their strengths and weaknesses.

Different in how much data used to compute the gradient 
of the objective function, the gradient descent variants are 
classified into two categories: batch gradient descent (BGD) 
and stochastic gradient descent (SGD). BGD is guaranteed 
to converge to a global minimum for convex error surfaces 
and a local minimum for non-convex surfaces. However, 
BGD can be very time-consuming because it needs to calcu-
late the gradients for the whole dataset to perform just one 
update and thus it is intractable for datasets that do not fit 
in memory. In addition, BGD cannot be used to update the 
model online. In contrast, SGD performs one update at a 
time, and thus it will not have any redundant computations 
for large datasets as BGD does. As a result, SGD is usually 
much fast than BGD. Meanwhile, it can be used to learn 
the model online. The drawback of SGD is that the frequent 
updates with a high variance would lead to a heavy fluctua-
tion to the objective function. While if the learning rate is 
slowly decreased over time, SGD shows the same conver-
gence behaviour as BGD, it almost certainly converges to a 
local or the global minimum for non-convex optimization.

Although SGD can often lead to good convergence, few 
challenges need to be addressed. For instance, it is diffi-
cult to determine a proper learning rate and an anneal-
ing schedule, or it is hard to update features to a different 
extent avoiding suboptimal minima. Ruder [26] outlines 
some algorithms that are widely used by the deep learn-
ing community which can deal with these challenges 
includes Momentum, Nesterov accelerated gradi-
ent, Adagrad, Adadelta, RMSprop, Adam, AdamMax 
and Nadam. Ruder also stated that Adagrad, Adadelta, 
RMSprop and Adam can all significantly improve the 

robustness of SGD and do not need much manual tuning 
of the learning rate. These four optimizers are therefore 
selected and discussed in more detail in this paper.

3.1 � Adagrad
Adagrad is a gradient-based optimizer that adapts the 
learning rate to the parameters, performing larger 
updates for infrequent and smaller updates for frequent 
updates. Thus, it is very suitable for sparse data. It uses 
a different learning rate for every parameter θi at every 
time step t, so the gradient of the objective function gt,i 
regarding the parameter θi at time step t is written as:

The SGD updates for every parameter θi at each time 
step t following equation:

Adagrad modifies the general learning rate η at each 
time step t for every parameter θi based on the past 
gradients:

where Gt ∈ Rd×d is a diagonal matrix where each diag-
onal element i is the sum of the squares of the gradients 
regarding the parameter θi at time step t, ∈ is a smoothing 
term used to avoid division by zero.

One of the main advantages of Adagrad is that it is not 
required to manually tune the learning rate. The default value 
is set as 0.01. The main drawback of this optimizer is that its 
accumulation of the squared gradients in the denominator 
would result in the learning rate to shrink and become infini-
tesimally small, which means that at a certain point, the algo-
rithm can no longer acquire additional knowledge.

3.2 � Adadelta
To reduce the monotonically decreasing learning rate, 
an extension optimizer of Adagrad has been promoted, 
named Adadelta. It uses a fixed-size window of accu-
mulated past gradients instead of accumulating all past 
squared gradients. The sum of the gradient is recursively 
defined as a decaying average of all past squared gradi-
ents. Thus, the running average of the squared gradients 
of the objective function at time step t depends on the 
previous average and the current gradient:

where γ is the fraction of the update vector of the past 
time step to the current update vector, which is normally 
set to 0.9 [26].

(16)gt,i = ∇θt J
(

θt,i
)

,

(17)θt+1, i = θt,i − η · gt,i.

(18)θt+1,i = θt,i −
η

√

Gt,ii+ ∈
· gt,i,

(19)E[g2]t = γE[g2]t−1 + (1− γ )g2t ,
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The SGD update for parameter �θ t at each time step t 
therefore becomes:

And according to the update rule, through simply replac-
ing the diagonal matrix Gt with the decaying average of 
past squared gradients E[g2]t , the parameter update vector 
of Adadelta can be derived as:

As 
√

E
[

g2
]

t
+ ∈ is the root mean squared (RMS) error 

criterion of the gradient, it can then be written as:

Since the update should have the same hypothetical units 
as the parameter, the exponentially decaying average of the 
squared parameter should be used:

Based on the update rule of Adadelta, there is no need for 
setting a default learning rate.

3.3 � RMSprop
RMSprop is an adaptive learning rate method designed 
for neural networks which have been growing in popular-
ity in recent years. Similar to Adadelta, the central idea of 
RMSprop is to keep the moving average of the squared 
gradients for each weight and then divide the gradient by 
square root of the mean square. However, a good default 
value of decay parameter γ and learning rate are set to 0.9 
and 0.001:

(20)�θt = −η · gt,i,

(21)θt+1 = θt +�θt .

(22)�θt = −
η

√

E
[

g2
]

t
+ ∈

· gt,i.

(23)�θ t = −
η

RMS[g]t
· gt,i.

(24)E
[

�θ2
]

t
= γE

[

�θ2
]

t−1
+ (1− γ )�θ2t ,

(25)�θt = −
RMS[�θ ]t−1

RMS[g]t
· gt ,

(26)θt+1 = θt +�θt .

(27)E
[

g2
]

t
= 0.9E

[

g2
]

t−1
+ 0.1g2t ,

(28)θt+1 = θt −
0.001

√

E
[

g2
]

t
+ ∈

· gt,i.

3.4 � Adam
Another method that computes adaptive learning rates 
for each parameter was named Adaptive Moment Esti-
mation (Adam) [27]. Adam not only stores an exponen-
tially decaying average of past squared gradients vt , but 
also keeps an exponentially decaying average of past gra-
dients mt , as shown in Eqs. (29) and (30):

where mt refers to the estimate of the first moment 
(the mean) of the gradients and vt refers to the second 
moment (the uncentered variance) of the gradients. As 
the initial value of mt and vt are vectors of zeros, it is 
observed that when the decay rates are small during the 
initial time, they are biased towards zero. The biases are 
counteracted by computing bias-corrected first and sec-
ond moment estimates:

Therefore, the update rule of Adam can be derived as:

The proposed values for β1 , β2 and ∈ are 0.9, 0.999 and 
10−8, respectively.

4 � Activation Function
The activation function is a function working on a neuron 
in an ANN and mapping the input of the neuron to the 
output. More specifically, each neuron node in the neural 
network adapts the output of the neuron in the upper layer 
as the input and passes it to the next layer (hidden layer or 
output layer). Thus, the activation function refers to the 
functional relationship between the output of the upper 
node and the input of the lower node in the multilayer neu-
ral network. Without an activation function, the input of 
each layer will be linear to the output of the upper layer. No 
matter how many layers the neural network has, the output 
is just a linear combination of the input, which is similar to 
the original perceptron. To enable the neural network arbi-
trarily to any nonlinear function, the activation function 
introduces a nonlinear factor to the neuron. The nonlinear 
activation functions allow the network to learn complex 

(29)mt = β1mt−1 + (1− β1)gt ,

(30)vt = β2vt−1 + (1− β2)g
2
t ,

(31)m̂t =
mt

1− βt
1

,

(32)v̂t =
vt

1− βt
2

.

(33)θt+1 = θt −
η

√

v̂t+ ∈
· m̂t .
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form data and complex function mappings that represent 
nonlinearity between input and output.

There are three types of activation functions normally 
used in the deep learning area: tanh & sigmoid, ReLU and 
swish. In this section, the basic mathematical expression of 
these three types of activation functions is reviewed with 
their advantages and drawbacks. The expression of these 
activation functions and their variants are demonstrated in 
Figure 5.

4.1 � Sigmoid & Tanh
Sigmoid function, expressed in Eq. (34), also known as 
Logistic function, is normally used for the output of the 
hidden layer neurons:

The advantage of Sigmoid function is that the output of 
the activation function is limited between 0 and 1, which 
results in a stable optimization and thus good to be used as 
the output layer. The drawback is that the function could 
be very insensitive to small changes in input when a vari-
able takes a very large positive or negative value. During the 
backpropagation, the weight will hardly be updated when 
the gradient gets close to zero. Therefore, the gradient will 
disappear, and the network will be able to complete its 
training. In addition, the output of sigmoid function is not 
zero mean, which leads to the input of neurons in the back 
layer being non-zero mean, and then affects the gradient. 
Besides, due to the exponential form in the sigmoid func-
tion, the computational complexity is very high.

Tanh function, expressed in Eq. (35), is also called the 
hyperbolic tangent function:

(34)σ(x) =
1

1+ e−x
, x ∈ (0, 1),

f (x) = tanh x =
sinh x

cosh x
=

ex − e−x

ex + e−x
,

(35)x ∈ (−1, 1)

Tanh function is the translation and contraction of sig-
moid function: tanh(x)=2⋅σ(2x)−1. Tanh function often 
outperforms sigmoid in practice because its output is 
zero mean. Nevertheless, it still suffers from gradient sat-
uration and computational complexity.

4.2 � ReLU
Rectification of linear unit (ReLU) is the most commonly 
used deep learning neural network activation function. It 
is the default activation function for most of the feed-for-
ward neural networks. The ReLU function is written as:

The advantage of ReLU function is that the SGD algo-
rithm converges faster than sigmoid or tanh. When the 
weight is larger than zero, there are no problems like gra-
dient saturation and gradient disappearance. Since there 
is no need to carry out the exponential operation, the 
computational complexity is relatively low. A threshold 
is needed for achieving the activation value. The limita-
tion of ReLU function is that the output is not zero mean 
either. Besides, the Dead ReLU Problem will occur when 
the weight is in the negative field. During the train-
ing, when x is less than zero, the gradient of the current 
neuron and the neurons after it is always zero. In other 
words, it will no longer respond to any data and the cor-
responding parameters would never be updated. To solve 
this problem, Leaky ReLU, Parametric Rectified Linear 
Unit (PReLU) and Exponential Linear Unit (ELU) were 
introduced.

Leaky ReLU function:

PReLU function:

ELU:

The Leaky ReLU uses a small value of 0.01 to initialize 
the neuron so that the ReLU function can be activated 
in the negative region. The difference between Leaky 
ReLU and PReLU is that α of PReLU function is learned 
through backpropagation. ELU has all the advantage of 
ReLU and no Dead ReLU Problem. It can make the aver-
age activation mean value of neurons close to zero and 
at the same time, which suggests that it is more robust 
to noise. However, because of the exponential form, the 
calculation complexity is relatively higher.

(36)f (x) = max(0, x)

(37)f (x) = max(0.01x, x).

(38)f (x) = max(αx, x).

(39)f (x) =

{

α
(

ex − 1
)

, x ≤ 0,
x, x > 0.

Figure 5  Different activation functions
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4.3 � Swish
Swish is a self-gated activation function proposed by Pra-
jit et.al. [28], who attempted to use an automated search 
technique to find novel activation functions to replace 
the ReLU function without changing the network archi-
tecture. By a combination of exhaustive and reinforce-
ment learning-based search, they found a number of 
novel promising activation functions and named the best 
one of them as Swish.

The Swish function can be written as:

where β is a constant or trainable parameter.

5 � Case Study
5.1 � Benchmark Dataset Overview
The case study focuses on the investigation of the influ-
ence of various practical options of optimizers, acti-
vation functions and other parameters like sequence 
length and neuron number when adopting RNN and 
its variants on RUL prediction. We selected the NASA’s 
Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) dataset, aiming at modelling the dam-
age propagation of aircraft gas turbine engines [29]. This 
engine simulator produced four datasets which are con-
sisted of three operational condition indicators. Each 
subset has different numbers of engines with varied oper-
ational cycles.

In the dataset, engine profiles were simulated with dif-
ferent initial degradation conditions. The maintenance 
was not considered during the simulation. The dataset 
includes one training set and one testing set for each 
engine. The training set consists of the historical run-
to-failure measurement records of the engines from 21 
on-board sensors. The objective is to predict the RUL of 
each engine based on the given sensor measurements. 
The information of the four subsets is listed in Table  1. 
Specifically, FD001 refers to the engine failure arising 
from the high-pressure compressor under a single oper-
ating condition. FD002 refers to the engine failure from 
the high-pressure compressor under six operation condi-
tions. FD003 refers to the engine failure from both high-
pressure compressor and fan under a single operating 

(40)f (x) = x · sigmoid(βx),

condition. FD004 refers to the engine failure from both 
high-pressure compressor and fan under six operation 
conditions. In this study case, FD001 was used because 
the data volume is relatively small, therefore it is more 
time-efficient to do the test.

5.2 � Data pre‑processing
The raw sensor data were normalised to [0, 1]. No dimen-
sion reduction and feature extraction have been taken 
place in this case study and the entire sensor data stack 
was used as inputs for training. In addition, since there is 
no target output in raw datasets, the RUL was labelled at 
every cycle for each sample before training the models.

5.3 � Performance Evaluation
In this case study, the mean square error (MSE) was used 
to evaluate the performance of the trained neural net-
works. The mathematical expression is:

where n is the total number of true RUL targets in the 
related test set and di refers to the difference between the 
true RUL and the predicted RUL.

The RNN algorithm and its variants were tested with 
the dataset FD001, and three different layer structures 
for each method were used. Each algorithm and struc-
ture have been tested five times to achieve the statistical 
result, which was illustrated in the form of a box chart. 
The results were presented and discussed according to 
four main factors: optimizers, activation functions, neu-
ron numbers and sequence lengths against three assess-
ment criteria: stability, precision and accuracy. The ranks 
for precision and accuracy for these four factors will be 
presented. As for the stability, if the network can produce 
a reliable result, it will be marked as 1, otherwise, it will 
be marked as 0.

5.3.1 � Optimizers
Different neural network structures were tested with the 
fixed activation function of ReLU, the neuron number of 
128, the sequence length of 50, four different optimizers 
including Rmsprop, Adam, AdamGrad and AdamDelta. 

(41)MSE =
1

n

n
∑

i=1

d2i ,

Table 1  C-MAPSS dataset

Dataset FD001 FD002 FD003 FD004

Data for training 100 260 100 249

Data for test 100 259 100 248

Operating conditions Single Multiple Single Multiple

Fault conditions Compressor Compressor Compressor & fan Compressor & fan
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The prediction results are displayed using box plots so 
that the stability, precision and accuracy of these opti-
mizers can be evaluated.

As indicated in Figure  6, gradient exploring or gradi-
ent vanishing took place when adopting AdaGrad in 
RNN_2LAYERS, RNN_3LAYERS, LSTM_2LAYERS, 
LSTM_3LAYERS and GRU_3LAYERS and AdaDelta 
in RNN_LAYERS, Bi_LSTM_3LAYERS. This observa-
tion suggests that RMSprop and Adam are less sensible 
to the parameters than AdaGrad and AdaDelta, which 
means they are more workable in this case. More spe-
cifically, AdaGrad and AdaDelta are more likely to lose 
their stability when the network gets more complicated. 
In terms of accuracy, generally speaking, AdamGrad can 
help to achieve the most accurate prediction result in 
most network structures, regardless of the stability. As 
for Rmsprop, the change in the structure layers would 
make a great difference to the prediction performance. In 
contrast, this influence can hardly be seen when adopting 
Adam and AdaDelta as the optimizers. As for the preci-
sion, Rmsprop has the worst performance among these 
four optimizers where the other three can all produce 
relatively precise outcomes.

The assessment of the four optimizers have been made 
for all network structures such as the example set in 
Table 2, and all the optimal optimizers have been summa-
rized in Table 3. In this case, AdaGrad can be regarded as 
the optimal optimizer for most of the network structures.

5.3.2 � Activation Functions
In this section, the evaluation of five activation func-
tions is performed with the fixed optimizer (Adam), 
neuron number (128) and sequence length (50). Both 
Sigmoid and Tanh functions have also been tested, but 
these two activation functions were found to be greatly 

Figure 6  Performance of different optimizers on the testing dataset

Table 2  Assessment of different optimizers using network 
structure RNN-1LAYER

Optimizers Stability Precision Accuracy Assessment

RMSprop 1 4 4

Adam 1 3 3

AdaGrad 1 1 1 √

AdaDelta 1 2 2
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affected by the gradient vanishing and gradient explor-
ing problem. Therefore, these two functions are not 
discussed in this section. As demonstrated in Figure 7, 
the performance of ReLU, Leaky_ReLU, PReLU and 
ELU is quite similar, and they are generally better than 

Swish in both precision and accuracy. However, gradi-
ent exploring, or gradient vanishing occurred when 
adopting ReLU, PReLU and ELU in RNN_1LAYER and 
GRU_3layer, which suggests that Swish and Leaky_
ReLU are more stable than these three activation func-
tions. The Optimal activation functions in this case for 
different algorithms are listed in Table 4.

5.3.3 � Sequence Length
In this section, the impact of different sequence length 
on the prediction result has been compared with a fixed 
optimizer (Adam), activation function (ReLU) and neu-
ron number (128). As indicated in Figure  8, generally 
the longer the sequence length uses, the better perfor-
mance the algorithms achieved. In this case, gradient 
vanishing happened when adopting GRU_3LAYERS 
network structure which suggests that the choice of the 
sequence length may also affect the workability of GRU. 
The optimal sequence length for different algorithms is 
listed in Table 5 considering the workability, precision 
and accuracy.

Table 3  Optimal optimizers for different algorithms

Algorithms Optimal optimizers

RNN_1LAYER AdaGrad

RNN_2LAYERS Adam

RNN_3LAYERS Adam

LSTM_1LAYER AdaGrad

LSTM_2LAYERS Adam

LSTM_3LAYERS Adam, AdaDelta

Bi_LSTM_1LAYER Adam, AdaGrad, AdaDelta

Bi_LSTM_2LAYERS AdaGrad

Bi_LSTM_3LAYERS AdaGrad

GRU_1LAYER Adam, AdaGrad

GRU_2LAYERS AdaGrad

GRU_3LAYERS AdaGrad

Figure 7  Performance of different activation functions on the test dataset
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5.3.4 � Neuron Number
Figure  9 shows the influences of different neuron num-
ber has on the performance of RUL prediction with a 
fixed optimizer (Adam), activation function (ReLU) and 
sequence length (50). Gradient exploring, or gradient 
vanishing occurs in this case when using network struc-
ture RNN_1LAYER and all GRU structures which may 
suggest that neuron number is a sensitive parameter for 
RNN and GRU in terms of stability. The performance of 

different neuron number varies significantly using differ-
ent algorithms. Taking the LSTM network structure as 
an example, the influence of different neuron numbers 
is smaller when using LSTM_1LAYER than the other 
two. In addition, for LSTM_3LAYERS, the observation 
shows that the more neuron number is used, the less 
accurate the result turns out to be, while this tendency 
cannot be found in the other two network structures. 
As only three different neuron numbers were tested, the 
optimal neuron for each network structure could not be 
achieved. Nevertheless, the optimal neuron number for 
different algorithms in this case is listed in Table 6 just for 
reference.

5.3.5 � Overall Performance of Each Algorithm
Figure  10 demonstrates the performance of different 
algorithms using a certain group of parameters. As in this 
case, gradient exploring, or gradient vanishing occurred 
when using RNN_1LAYER and GRU_3LAYRES. It seems 
that generally, the performance of LSTM, Bi_LSTM and 
GRU network structures seems to be relatively close and 
significantly better than RNN. The accuracy of LSTM is 
close to Bi_LSTM and GRU, but the precision is relatively 
poor. GRU turns out to be very accurate and precise, 
but it suffers from stability problems. Thus, a Bi_LSTM 
structure might be a better option in this case.

Table 4  Optimal activation functions for different algorithms

Algorithms Optimal activation functions

RNN_1LAYER Leaky_ReLU

RNN_2LAYERS Leaky_ReLU, ELU

RNN_3LAYERS ELU

LSTM_1LAYER ReLU

LSTM_2LAYERS PReLU

LSTM_3LAYERS ELU

Bi_LSTM_1LAYER PReLU

Bi_LSTM_2LAYERS ReLU, Leaky_ReLU

Bi_LSTM_3LAYERS PReLU

GRU_1LAYER ReLU

GRU_2LAYERS ReLU

GRU_3LAYERS Swish

Figure 8  Performance of different sequence length on the test dataset
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A more detailed comparison of different algorithms is 
displayed in Table  7. The optimal parameters (with the 
base parameters) for this subset are highlighted using a 
yellow hatch for every network structure. Although the 

global optimal parameters cannot be selected for the 
dataset based on this table since it has not considered all 
combinations, it provides a level of useful options with 
certainty.

Table 5  Optimal sequence length for different algorithms

Algorithms Optimal 
sequence 
length

RNN_1LAYER 50

RNN_2LAYERS 50,75,100

RNN_3LAYERS 75

LSTM_1LAYER 100

LSTM_2LAYERS 100

LSTM_3LAYERS 100

Bi_LSTM_1LAYER 100

Bi_LSTM_2LAYERS 75

Bi_LSTM_3LAYERS 100

GRU_1LAYER 75,100

GRU_2LAYERS 100

GRU_3LAYERS 100

Figure 9  Performance of different Neuron number on test dataset

Table 6  Optimal Neuron number for different algorithms

Algorithms Optimal 
Neuron 
number

RNN_1LAYER 64,32

RNN_2LAYERS 32

RNN_3LAYERS 32

LSTM_1LAYER 128

LSTM_2LAYERS 32

LSTM_3LAYERS 32

Bi_LSTM_1LAYER 32

Bi_LSTM_2LAYERS 64

Bi_LSTM_3LAYERS 64

GRU_1LAYER 128

GRU_2LAYERS 128

GRU_3LAYERS 64
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6 � Conclusions
A systematic review of the applications of RNN and 
its variants for RUL prediction in recent years is pre-
sented in this paper. An evaluation of these algorithms 
has been conducted using the NASA’s C-MAPSS data-
set, where different parameters, such as optimisers, 
activation functions, neuron quantities, and sequence 
length are discussed using a sensitivity analysis. It can 
be seen that some of the network structures are very 
parameter sensitive from the result of the evaluation. 
The influence of these parameters on the performance 
of RUL prediction is different according to differ-
ent network structures. Instead of giving the optimal 
parameters and the network structures for the data-
set, the result of this case study offers some practical 
choices of parameters for different network struc-
tures. Although the conclusions achieved above from 
this case study could not be applied to other cases 
directly, it at least suggests the influence of these fac-
tors on the RUL prediction. Moreover, it provides 
some options for researchers when they consider 
adopting DL to carry out the similar prediction task 
for their own cases.

Figure 10  Performance of different algorithms on Dataset FD001, 
where Optimizer: Adam; Activation function: ReLU; Neuron Number: 
128; Sequence Length: 50

Table 7  The average MSE recorded with regards to different parameters

Optimizer Activation function Neuron Number Sequence Length

Algorithms ReLU L_ReLU PReLU ELU Swish Rmsprop Adam AdaGrad AdaDelta 128 64 32 25 50 75 100

RNN_1L 569 871 569 487 286 478 533 553 994 478 596 

RNN_2L 651 491 710 488 646 494 406 476 651 494 444 930 476 565 425 

RNN_3L 547 563 539 440 831 325 572 547 547 531 493 670 547 570 431 

LSTM_1L 310 443 439 382 725 566 397 260 464 310 419 379 836 464 196 181 

LSTM_2L 432 526 391 464 670 398 358 396 432 522 369 632 396 221 199 

LSTM_3L 515 460 480 531 872 411 375 397 515 458 436 617 397 284 209 

Bi_LSTM_1L 526 458 423 516 562 718 422 362 428 526 473 385 714 428 294 185 

Bi_LSTM_2L 423 431 538 507 672 441 413 228 513 423 465 467 557 513 243 286 

Bi_LSTM_3L 508 492 494 611 673 473 434 285 508 508 435 450 512 508 253 198 

GRU_1L 363 393 356 392 450 457 383 389 540 363 360 658 540 220 166 

GRU_2L 336 415 383 423 486 417 365 535 405 336 459 570 405 179 231 

GRU_3L 458 410 417 398 414 160 
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Appendix 1. Performance evaluation—Optimizers
Recommended optimizers for different structures.

RNN-1LAYER

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 4 4

Adam 1 3 3

AdaGrad 1 1 1 Recommended

AdaDelta 1 2 2

RNN-2LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 3 2

Adam 1 1 1 Recommended

AdaGrad 0 0 0

AdaDelta 1 2 3

RNN-3LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 1 1 Recommended

Adam 1 2 2

AdaGrad 0

AdaDelta 0

LSTM-1LAYER

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 4 4

Adam 1 1 2

AdaGrad 1 2 1 Recommended

AdaDelta 1 3 3

LSTM-2LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 3 3

Adam 1 1 1 Recommended

AdaGrad 0 0 0

AdaDelta 1 2 2

LSTM-3LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 3 3

Adam 1 2 1 Recommended

AdaGrad 0 0 0

AdaDelta 1 1 2 Recommended

Bi_LSTM-1LAYER

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 4 4

Adam 1 1 3 Recommended

AdaGrad 1 3 1 Recommended

AdaDelta 1 2 2 Recommended

Bi_LSTM-2LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 2 2

Adam 1 4 3

AdaGrad 1 1 1 Recommended

AdaDelta 1 3 4

Bi_LSTM-3LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 3 3

Adam 1 1 2

AdaGrad 1 2 1 Recommended

AdaDelta 0 0 0

GRU_1LAYER

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 3 3

Adam 1 1 2 Recommended

AdaGrad 1 2 1 Recommended

AdaDelta 1 4 4

GRU_2LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 2 2

Adam 1 1 1 Recommended

AdaGrad 1 3 4

AdaDelta 1 4 3

GRU_3LAYERS

Optimizers Workability Precision Accuracy Assessment

Rmsprop 1 2 2

Adam 1 1 1 Recommended

AdaGrad 0 0 0

AdaDelta 0 0 0
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2. Performance evaluation—Activation functions
Recommended activation functions for different 
structures.

RNN-1LAYER

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 0 0 0

Leaky_ReLU 1 1 1 Recommended

PReLU 0 0 0

ELU 0 0 0

Swish 1 2 2

RNN-2LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 5 5

Leaky_ReLU 1 1 1 Recommended

PReLU 1 4 4

ELU 1 3 2 Recommended

Swish 1 2 3

RNN-3LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 4 3

Leaky_ReLU 1 2 4

PReLU 1 3 2

ELU 1 1 1 Recommended

Swish 1 5 5

LSTM-1LAYER

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 2 1 Recommended

Leaky_ReLU 1 4 3

PReLU 1 1 2

ELU 1 3 4

Swish 1 5 5

LSTM-2LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 1 2

Leaky_ReLU 1 3 4

PReLU 1 2 1 Recommended

ELU 1 5 3

Swish 1 4 5

LSTM-3LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 4 4

Leaky_ReLU 1 3 2

PReLU 1 2 3

ELU 1 1 1 Recommended

Swish 1 5 5

Bi_LSTM-1LAYER

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 4 3

Leaky_ReLU 1 3 2

PReLU 1 2 1 Recommended

ELU 1 1 4

Swish 1 5 5

Bi_LSTM-2LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 2 1 Recommended

Leaky_ReLU 1 1 2 Recommended

PReLU 1 4 4

ELU 1 3 3

Swish 1 5 5

Bi_LSTM-3LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 3 3

Leaky_ReLU 1 4 1

PReLU 1 1 2 Recommended

ELU 1 5 5

Swish 1 2 4

GRU_1LAYER

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 1 1 Recommended

Leaky_ReLU 1 4 3

PReLU 1 2 2

ELU 1 5 4

Swish 1 3 5
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GRU_2LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 1 1 1 Recommended

Leaky_ReLU 1 4 3

PReLU 1 3 2

ELU 1 5 5

Swish 1 2 4

GRU_3LAYERS

Activation 
functions

Workability Precision Accuracy Assessment

ReLU 0 0 0

Leaky_ReLU 1 1 2

PReLU 0 0 0

ELU 0 0 0

Swish 1 2 1 Recommended

3. Performance evaluation—Sequence length
Recommended sequence length for different structures.

RNN-1LAYER

Sequence 
length

Workability Precision Accuracy Assessment

25 1 3 3

50 1 1 1 Recommended

75 0 0 0

100 1 2 2

RNN-2LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 2 2 Recommended

75 1 1 3 Recommended

100 1 3 1 Recommended

RNN-3LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 1 2 4

50 1 3 3

75 1 1 2 Recommended

100 1 4 1

LSTM-1LAYER

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 3 3

75 1 2 2

100 1 1 1 Recommended

LSTM-2LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 3 3

75 1 2 2

100 1 1 1 Recommended

LSTM-3LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 1 3

75 1 2 2

100 1 3 1 Recommended

Bi_LSTM-1LAYER

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 3 3

75 1 2 2

100 1 1 1 Recommended

Bi_LSTM-2LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 2 3

75 1 1 1 Recommended

100 1 3 2
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Bi_LSTM-3LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 3

50 1 3 4

75 1 1 2

100 1 2 1 Recommended

GRU_1LAYER

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 3 3

75 1 1 2 Recommended

100 1 2 1 Recommended

GRU_2LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 1 4 4

50 1 3 3

75 1 2 2

100 1 1 1 Recommended

GRU_3LAYERS

Sequence 
length

Workability Precision Accuracy Assessment

25 0 0 0

50 0 0 0

75 0 0 0

100 1 1 1 Recommended

4. Performance evaluation—Neuron number
Recommended Neuron number for different structures.

RNN-1LAYER

Neuron 
number

Workability Precision Accuracy Assessment

128 0 0 0

64 1 2 1 Recommended

32 1 1 2 Recommended

RNN-2LAYERS

Neuron 
number

Workability Precision Accuracy Assessment

128 1 3 3

64 1 1 2

32 1 2 1 Recommended

RNN-3LAYERS

Neuron 
number

Workability Precision Accuracy Assessment

128 1 2 3

64 1 3 2

32 1 1 1 Recommended

LSTM-1LAYER

Neuron number Workability Precision Accuracy Assessment

128 1 3 1 Recommended

64 1 2 3

32 1 1 2

LSTM-2LAYERS

Neuron number Workability Precision Accuracy Assessment

128 1 1 2

64 1 2 3

32 1 3 1 Recommended

LSTM-3LAYERS

Neuron number Workability Precision Accuracy Assessment

128 1 3 3

64 1 2 2

32 1 1 1 Recommended

Bi_LSTM-1LAYER

Neuron number Workability Precision Accuracy Assessment

128 1 3 3

64 1 2 2

32 1 1 1 Recommended
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Bi_LSTM-2LAYERS

Neuron number Workability Precision Accuracy Assessment

128 1 3 2

64 1 2 1 Recommended

32 1 1 3

Bi_LSTM-3LAYERS

Neuron number Workability Precision Accuracy Assessment

128 1 3 3

64 1 1 1 Recommended

32 1 2 2

GRU_1LAYER

Neuron number Workability Precision Accuracy Assessment

128 1 2 1 Recommended

64 0 0 0

32 1 1 2

GRU_2LAYERS

Neuron number Workability Precision Accuracy Assessment

128 1 1 1 Recommended

64 1 2 2

32 0 0 0

GRU_3LAYERS

Neuron number Workability Precision Accuracy Assessment

128 0 0 0

64 1 1 1 Recommended

32 0 0 0
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