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Deep Learning Based Data Fusion for Sensor 
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Vehicles
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Abstract 

Environmental perception is one of the key technologies to realize autonomous vehicles. Autonomous vehicles are 
often equipped with multiple sensors to form a multi-source environmental perception system. Those sensors are 
very sensitive to light or background conditions, which will introduce a variety of global and local fault signals that 
bring great safety risks to autonomous driving system during long-term running. In this paper, a real-time data fusion 
network with fault diagnosis and fault tolerance mechanism is designed. By introducing prior features to realize the 
lightweight network, the features of the input data can be extracted in real time. A new sensor reliability evaluation 
method is proposed by calculating the global and local confidence of sensors. Through the temporal and spatial 
correlation between sensor data, the sensor redundancy is utilized to diagnose the local and global confidence level 
of sensor data in real time, eliminate the fault data, and ensure the accuracy and reliability of data fusion. Experiments 
show that the network achieves state-of-the-art results in speed and accuracy, and can accurately detect the loca-
tion of the target when some sensors are out of focus or out of order. The fusion framework proposed in this paper is 
proved to be effective for intelligent vehicles in terms of real-time performance and reliability.
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1  Introduction
Road object detection is one of the core technologies 
of autonomous vehicles. It provides real-time informa-
tion on road elements such as surrounding vehicles and 
pedestrians for autonomous vehicles in real time. Tradi-
tional object detection technology is based on environ-
mental perception sensors like cameras. The camera can 
obtain rich color and contour information from the envi-
ronment, which facilitates the machine learning algo-
rithm to find the object of interest and judge its category.

In the 1990s, road object detection tasks were mainly 
completed by artificial features combined with machine 
learning [1]. Artificial features were widely used at that 

time, such as HOG, LBP, and Haar features. A set of 
feature vectors will be obtained after extracting artifi-
cial features in local areas of the image. Using feature 
methods, such as SVM to classify feature vectors, the 
location and category of target objects can be detected. 
With the development of deep learning, the object detec-
tion tasks based on image sensors are mainly completed 
by convolutional neural networks. Krizhevsky presents 
AlexNet [2] which reduces the Top-5 error rate of clas-
sification task to 15.3%. ResNet devides the network into 
several blocks whose input and output are directly con-
nected through a Shortcut structure [3], which effectively 
solves the problem of gradient disappearance. To  solve 
the problem that traditional object detection algorithms 
need to traverse sensor data for many times and thus 
cause serious delay, Girshick et  al. propose RCNN net-
work [4‒6], which uses three stages to complete object 
detection: feature extraction backbone, region proposal 
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network (RPN) and RoI-Pooling. Inspired by RCNN, 
researchers begin to optimize the performance of object 
detection for specific traffic environment. Murugan et al. 
[7, 8] improve the structure of RCNN by using frame dif-
ference information of traffic surveillance video to train 
the network and monitor the moving vehicles in the 
video in real-time. Ref. [9] uses Faster-RCNN combined 
with selective search method to detect forward vehi-
cles, which solves the problem of vehicle loss to a large 
extent. Qu et  al. [10] use CNN to process UAV data, 
focusing on identification of distant moving vehicles and 
achieving high accuracy. To solve the problem of poor 
real-time performance of the multi-stage model, YOLO 
[11‒13] and SSD [14]  are proposed to use the one-stage 
network  to complete the bounding box regression and 
classification at the same time, and increase the object 
detection speed to 20 frames per second (fps).

To reduce the pressure on the computing and storage 
unit of autonomous vehicles, researchers are devoted to 
processing multi-source environmental perception data 
through data fusion methods, the purpose of which is to 
comprehensively use the advantages of each sensor car-
ried by autonomous vehicles to obtain object detection 
results that are better than any single sensor. Generally, 
the data fusion method can be divided into pre-fusion 
method and post-fusion method according to the loca-
tions where fusion occurs. The former fuses the sensor 
data in the original input layer, and then design the object 
detection network to process on the fusion data [15‒18]. 
Compared with the pre-fusion algorithm, the fusion 
position and strategy of post-fusion algorithm are more 
flexible and variable. It usually performs feature extrac-
tion (FE) on each sensor data, and then designs specific 
fusion strategies with specific tasks [19‒21].

The sensor will inevitably introduce fault signals dur-
ing long-term running. Therefore, the stability of the 
algorithm [22], as well as the ability of fault diagnosis 
and tolerance are very important to the safe driving of 
autonomous vehicles. The work in Ref. [23] presents a 
novel penalty domain selection machine (PDSM) enabled 
transfer learning for gearbox fault recognition (GFR), 
which is an effective tool to solve the real GFR problem 
under insufficient data condition. Yan et  al. propose a 
faster and more accurate deep learning framework for 
highly accurate machine fault diagnosis using transfer 
learning and achieved state-of-the-art results in main 
mechanical datasets [24], which proves that the trans-
fer learning can enable and accelerate the training of the 
deep neural network with high accurate.

In this paper, we utilize a different method to complete 
the object detection task, and concentrate on solving the 
problems that are not considered in the previous works. 
Specifically, we propose a novel data fusion framework 

with a lightweight structure, which can process large-
scale multi-modal data in real time. Importantly, in view 
of the sensor fault problems that may occur during driv-
ing, this paper proposes a fault diagnosis and avoidance 
(FDA) mechanism in the data fusion framework, and 
conducts mutual fault detection through the spatial and 
temporal correlation between sensor data to ensure the 
accuracy and reliability of road object detection.

The main contributions of this work are summarized as 
follows.

(1)	 Compared with the previous object detection net-
work, we use a more lightweight feature pyramid 
network (FPN) [25] structure to ensure the real-
time performance of the data fusion system when 
processing large-scale multi-modal data.

(2)	 The proposed FDA mechanism in the data fusion 
framework guarantees the elimination of the sensor 
fault signal in real time, and the accuracy and reli-
ability of the detection results.

(3)	 Finally, the environmental perception data captured 
in multiple scenes are used to conduct experiments 
to verify the real-time, accuracy and reliability of 
the fusion framework from the aspects of 2D object 
detection performance and fault avoidance perfor-
mance.

2 � Data Fusion Framework
Most data fusion methods mainly study the fusion 
scheme and complete the corresponding object detec-
tion tasks. However, sensor faults are not considered in 
these studies. In this paper, an environmental percep-
tion scheme based on multiple cameras is proposed, in 
which the framework can use any type and number of 
cameras if the external parameters are known. The fields 
of view of multiple cameras are interleaved to form a 
redundancy, and the fusion framework can diagnose the 
credibility of each sensor data in real time through the 
correlation between the space and time of the camera 
data. Furthermore, to ensure the real-time performance 
of object detection when processing large-scale multi-
modal data, this paper proposes a lightweight design for 
the YOLO V3 network, which greatly reduces the load on 
the system calculation and storage unit.

Analogous to Adaboost algorithm, this paper treats 
each camera as a weak classifier. The data fusion algo-
rithm combines these weak classifiers to form a more 
accurate strong classifier, which is used to detect the 
position, attitude and rotation of target objects from the 
environmental information. The fusion results will be fed 
back to the data fusion framework to correct the weight 
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of each sensor in real-time. The overall structure of the 
fusion framework is shown in Figure 1.

The framework is mainly composed of three parts: The 
first part is the RPN, which fuses the image information 
collected by each camera sensor and outputs a series of 
region proposals that may contain targets. The second 
part is the FDA, which is designed to improve the fault-
tolerance of the system. The data fusion framework cal-
culates the local and global confidence of the sensor data 
of the current frame in real time, and removes the noise 
signal during the fusion process, thereby ensuring the 
reliability of data fusion. The global non-maximum sup-
pression (GNMS) processes the prediction results Di of 
RPN and the global confidence Ki of the sensor generated 
by FDA, and the detection results Dfusion are obtained 
after data fusion.

3 � Design of Region Proposal Networks
Image data contains rich color and background informa-
tion, which is convenient for deep networks to separate 
foreground and background. Inspired by Ref. [6], this 
paper uses the anchor area as the basic unit of 2D object 
detection, on which it regresses the prediction of the tar-
get position and type. Meanwhile according to the spatial 
correlation of the image data, the deep network infers the 
confidence coefficient C for each local area of the image, 
which is used to subsequently eliminate redundant and 
erroneous data.

3.1 � Feature Extraction Network (FEN)
After acquiring a frame of image, it is necessary to com-
press and encode it, and extract the topology informa-
tion between pixels through a neural network. The more 
complex the level of the FEN, the larger the perception 
domain of the output feature map, however it also loses 
more local information. To reduce network parameters, 
this paper uses residual neural network [3] as the basic 
structure of the FEN. When designing a network frame-
work, the size of feature maps is reduced by introducing 
priori features, thereby the computing power required by 
the network is greatly reduced. The backbone structure 
of the network is shown in Table 1.

The load of the calculation and storage unit of the neu-
ral network can be estimated by the network computing 
power. For a CNN layer, its computing power can be cal-
culated by Eq. (1):

where H and W represent the height and width of the fea-
ture map, and Cin, Cout are the number of input/output 
channel of the feature map, k represents the kernel size. 
In the FEN, the two-layer 3 × 3 convolutional layer is first 
used to reduce the size of the image, which requires the 
computing power of 3.47 ×  107 FLOPs. Then the subse-
quent residual structures are brought into Eq. (1) for cal-
culation and addition, and the total computing power of 
the network FE layer is 0.686 × 109 FLOPs, compared to 
the 18.569 ×  109 FLOPs computing power required by 
DarkNet-53, the network computing power required in 
this paper is its 1/27.

(1)FLOPs = 2HW (Cink
2 + 1)Cout ,
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The lightweight FPN network extracts 26  ×  26 and 
13 × 13 feature map in backbone to construct a feature 
pyramid, and calculates the output vector {x, y, w, h, C, 
P(0), P(1), P(2)} including local confidence C for each 
local area of the image, the bounding box regression vari-
ables {x, y, w, h} and the target category prediction proba-
bility {P(0), P(1), P(2)}. Note that the target area obtained 
by the ith camera after passing through the lightweight 
FPN network is predicted to be Di. The GNMS module 
specified later will synthesize each camera sensor to pre-
dict Di and its corresponding real-time confidence Ki, 
the RPN unit finally infers the location of the target Dfu-

sion in the 2D image and transmits it to the bounding box 
regression network in the data fusion framework.

3.2 � Estimate RoI Area
The FEN compresses and encodes the original image 
to form multiple feature maps with different degrees of 
compression, similar to the feature pyramid in the SIFT 
operator. In this paper, the feature maps after compres-
sion and encoding at different scales are divided into 
anchor regions, and the target position and local con-
fidence information are extracted. Specifically, for a 
grid  ×  grid feature map, three fixed length and width 
anchors are placed at each position of the feature map to 
detect the target object. The anchor is essentially a two-
dimensional rectangular bounding box, which is gener-
ally represented by a quaternion vector {x, y, w, h} that 
is composed of its position information and length and 
width information. The network also predicts the prob-
ability that its internal target belongs to each category 
{P(0), P(1), … , P(n)} for each anchor. The network detects 
three kind of targets (pedestrians, vehicles, and bicycles), 

thus the output vector size of each object detection layer 
is batch_size × anchor_num × grid × grid × 8{x, y, w, h, 
C, P(0), P(1), P(2)}.

The initial size of Anchor is obtained by k-means clus-
tering on the KITTI training set [26]. When the size of 
Anchor is closer to the size of the target itself, the net-
work is more likely to locate the target correctly under 
the local area divided by Anchor. This paper designs two 
feature layers for the lightweight FPN network, so when 
clustering k = 6, the final sizes of the 6 anchors obtained 
by clustering are (40, 37), (96, 56), (79, 163), (170, 93), 
(256, 155), (372, 210).

3.3 � Loss function
After the construction of the network structure is com-
pleted, it is necessary to use the loss function to guide the 
convergence path of the network parameters to induce 
the network to approach the set nonlinear function in 
continuous self-learning. The network loss function is 
mainly composed of three parts, including bounding box 
regression loss lbbox , bounding box object detection loss 
lconf  , and target classification loss lcls , which correspond 
to the output vector of the model respectively. The confi-
dence of the bounding box and the predicted value of the 
target category are output in the form of probabilities, 
thus lconf  , lcls are calculated using the cross-entropy loss 
function. However, the output of {x, y, w, h} is a specific 
value, and they are taken into the square error loss func-
tion model for calculating lbbox . The specific expressions 
of the three loss functions are designed as follows:

where �noobjij  represents the weighting factor that does not 
include the target Anchor, grid represents the size of the 
output feature map, 1objij  represents whether the Anchor 
(i, j) is responsible for the target, anch represents the 
number of anchors in each unit.

During network training, each pixel in the output fea-
ture map will select the anchor that is the largest Inter-
section-over-Union (IoU) with the target object. These 
anchors corresponding to 1objij  is set to 1, and their pre-
dicted value will participate in the calculation of lbbox and 

(2)

lconf =
grid2
∑

i=0

anch
∑

j=0

(

�noobj1
noobj
ij − 1

obj
ij

)

logCij ,

lbbox =
grid2
∑

i=0

anch
∑

j=0

1
obj
ij

[

(xij − x̂ij)
2 + (yij − ŷij)

2

+ (
√
ωij −

√

ω̂ij)
2 + (

√

hij −
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2

]

,

lcls =
grid2
∑

i=0

anch
∑

j=0

1
obj
ij

∑

c∈classes

[

Pij(c)− P̂ij(c)
]2
,

Table 1  Feature extraction network structure

Type Channel Filter size Output

Input 3 416 × 416

Convolutional 16 3 × 3/4 104 × 104

Convolutional 32 3 × 3/2 52 × 52

2× Convolutional 32 3 × 3

Convolutional 32 3 × 3

Residual 52 × 52

Convolutional 64 3 × 3/2 26 × 26

2× Convolutional 64 3 × 3

Convolutional 64 3 × 3

Residual 26 × 26

Convolutional 128 3 × 3/2 13 × 13

2× Convolutional 128 3 × 3

Convolutional 128 3 × 3

Residual 13 × 13

Required computing power: 0.686 × 109 FLOPs
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lcls . For anchors whose 1objij  is 0, if their IoU with any tar-
get is less than 0.5, it is considered that there is no object 
in the Anchor, and the corresponding 1noobjij  is set to 1, 
and its predicted confidence C will participate in the cal-
culation of lconf as a penalty term in logarithmic form.

In general, the anchor with no target in the output 
accounts for the vast majority, which will make the value 
of 

∑grid2

i=0

∑A
j=0 1

noobj
ij logCij directly affect the calcula-

tion of lconf  . The network tends to predict all Cij to a very 
small value, such a loss function is meaningless. For this 
purpose, the distribution of the input data needs to be 
artificially modified by the weight coefficient 1noobjij  . Simi-
larly, compared with traditional object detection tasks, 
pedestrian detection for autonomous driving pays more 
attention to the accuracy of target position prediction. 
The single sensor object detection network is used as the 
“preprocessing” link of data fusion, and its estimation 
of the target position will directly affect the data fusion 
effect. Therefore, when calculating the total loss, multi-
ply lbbox by a larger weighting factor �bbox to increase the 
“penalty” of the regression error of the bounding box to 
the network. The final network loss function is calculated 
by

4 � Fault Diagnosis and Avoidance Mechanism
During the driving process of the autonomous vehicle, 
severe weather conditions such as haze and rain may be 
encountered, or the camera lens may be blocked by dirt, 
or the data transmission bus may be cut off. These prob-
lems will introduce noise into the environmental percep-
tion data, leading to problems, such as missed detection 
and wrong detection of targets, which bring huge safety 
hazards to autonomous driving. A fault diagnosis and 
avoidance mechanism of perception system is designed 
to ensure the redundancy of sensor data. Through the 
redundant information for fault diagnosis, the accuracy 
of the sensor data at the current moment can be judged 
and the fault signal can be eliminated. In this paper, 
the FDA mechanism is realized by setting up dynamic 
weights. The data fusion framework calculates the global 
confidence level K and the local confidence level C for 
the sensor data in real time, which are used to deal with 
the local faults and global faults issues. According to the 
confidence coefficient (K, C), the GNMS algorithm elimi-
nates redundant and faulty signals during the fusion of 
the RoI region to obtain accurate fusion results as the 
output of object detection.

(3)l = lconf + �bboxlbbox + lcls.

4.1 � Fault Analysis of Environmental Perception Sensor
For the camera, its imaging structure makes the image 
data susceptible to the light in the environment. Poor 
lighting, complex background information, and changes 
of view will have a certain impact on the perception accu-
racy of the sensors. The noise caused by the environment 
on the camera sensor can be roughly divided into two 
types:

•	 Global fault. Noise signals will be distributed 
throughout the image, such as bad environment, 
complex background, and camera out of focus.

•	 Local fault. Parts of the photosensitive chip are not 
working, such as data truncation, partial occlusion 
and lens stains.

During the driving process of the autonomous vehi-
cle, the view angle of target, background and lighting 
conditions are constantly changing. Our fault diagnosis 
mechanism uses a dynamic weight method to update the 
weight in real time according to each frame of image data 
to ensure the reliability of the environmental perception 
system. For global sensor faults, we combine the Kalman 
filter algorithm to estimate the accuracy of each sensor 
data and its contribution to the final result in real time, 
and sequentially modify the overall confidence coefficient 
of the sensor. For local faults, RPN are used to calculate 
confidence coefficient for each local area of the image 
in real time. The data fusion framework uses GNMS to 
combine the local coefficients and global coefficients 
to ensure the accuracy and reliability of the data fusion 
results.

4.2 � Global Confidence Coefficients Correction
In an autonomous driving system, the measurement 
areas of multiple sensors intersect each other, and there 
is redundancy in the acquired environmental percep-
tion data. The data fusion network fuses the sensing 
data according to the global and local confidence coeffi-
cients of the sensors to obtain the theoretically optimal 
object detection results. These results will be fed back 
to the fusion network as Ground Truth and used to cor-
rect the global confidence coefficient K of each sensor. 
This paper used the Kuhn–Munkres (KM) algorithm 
and Kalman filter to assist the correction of global 
confidence coefficient K, where the KM algorithm is 
used to solve the maximum weight matching problem 
in the bipartite graph. In this paper, it is known that 
the tracking mark T predicted in the previous frame 
and the object detection result D in the current frame 
are known, and they respectively constitute two sub-
sets of the bipartite graph G . The KM algorithm finds 



Page 6 of 11Pan et al. Chin. J. Mech. Eng.           (2021) 34:72 

the optimal connection M from G according to certain 
rules and guarantees:

that is, each test result can only be matched to one 
mark. Before running the KM algorithm, it is neces-
sary to obtain the correlation coefficient G(i, j) between 
the points in the bipartite graph, which represents the 
strength of the similarity between the marker Ti and the 
detection result Di. In this paper, the IoU between the 
bounding boxes is used as the correlation coefficient. The 
intersection ratio comprehensively reflects the similarity 
of the position and size of the two bounding boxes, and 
is a simple and effective solution for calculating the cor-
relation coefficient. After calculating the correlation coef-
ficient matrix, we exclude the combination of G(i, j) < 0.2. 
The two bounding boxes in these combinations are too 
far apart and cannot belong to the same object. The cor-
relation coefficient corresponding to the excluded com-
bination is set to 0, indicating that there is no connection 
between the two points. The KM algorithm traverses the 
remaining connections to find the optimal combination 
M, so that the sum of the correlation coefficients between 
Tracker and Detection is maximized under this combina-
tion, namely:

After obtaining the matching matrix M between 
Tracker and Detection, we use Kalman filter to update 
the object tracking information in Tracker. The states 
of vehicles and pedestrians on the road are described 
by the position of the target in the world coordinate 
system p and the current speed v, where p = [ x y z]T , 
v = [ vx vy vz]T . Since the real state of the target can-
not be obtained, Kalman filter assumes that the target 
obeys a Gaussian distribution with a mean value of sk 
and a variance of �k in the kth frame. When the sam-
pling frequency of the environmental perception sen-
sor is high enough, the motion pattern of the target 
between two adjacent frames can be approximately 
regarded as a uniform linear motion, and the equation 
for updating the target state can be written as follows:

However, the law of target motion cannot be a com-
pletely uniform linear motion. As the time difference 

(4)
m−1
∑

i=0

Mij ≤ 1,

n−1
∑

i=0

Mij ≤ 1,

(5)M̂ = arg max
M

m−1
∑

i=0

n−1
∑

j=0

MijGij .

(6)
ŝ =

(

1 �t
0 1

)

sk−1 = Fsk−1,

�̂k =F�k−1F
T.

∆t increases, the error between the predicted value 
and the real value will also accumulate. Therefore, it 
is necessary to correct the predicted value in real time 
through the measurement data fed back from the sen-
sor. In this paper, the sensor data is fused to obtain the 
position, size and steering information of the target in 
the 3D reference frame. The speed information meas-
ured by the sensor is obtained by dividing the difference 
between the detection and the tracker position by the 
time. Combine the position and velocity information 
measured by the sensor and record it as zk, and fuse the 
target state prediction distribution Ppred and the sensor 
measurement distribution Psensor through Kalman filter, 
we get:

Finally, the reconciled distribution is projected back to 
the original target state space, we have

From Eqs. (8) and (10), the target state prediction dis-
tribution Pk = N (sk ,�k) is obtained by Kalman filter. 
This distribution will be recorded in the corresponding 
Tracker for prediction of the target state of the frame k 
+ 1. The location information in sk will be used to correct 
the global weights (K0, K1, K2, K3) of the four cameras. 
This operation is completed by the following steps:

(1)	 For the information Di of the target bounding box 
predicted by the 2D object detection network, the 
traditional NMS method is used to generate indi-
vidual prediction information for each camera sen-
sor D̂i.

(2)	 Extract the target location information pk in sk, and 
map it to the pixel coordinate system of the camera0 
according to the perspective projection change, and 
set it as ck.

(3)	 Use all predictions ck in frame k as Ground Truth 
to calculate the mean IoU value Mi of D̂i under ck. 
Specifically, for each prediction bounding box D̂i[j] 
in D̂i , find the nearest ck to its center to match. Con-
struct a bounding box with the size of D̂i[j] as the 
corresponding ck, and calculate its IoU value with 
D̂i[j] . All IoU values are weighted and averaged 
according to the confidence coefficient C of D̂i[j] , 
and the mean IoU value of D̂i under ck is obtained.

(7)

Hsk =Hŝk − L(zk −Hŝk),

H�kH
T =H�̂kH

T − LH�̂kH
T,

L =H�̂kH
T(H�̂kH

T +�′
k)

−1.

(8)

sk = ŝk − L′(zk −Hŝk),

�k = �̂k − L′H�̂k ,

L′ = �̂kH
T(H�̂kH

T +�′
k)

−1.
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(4)	 Update the overall confidence of each sensor 
according to the mean IoU. For the sensor i, the 
confidence coefficient Ki can be updated as follows:

4.3 � Global Non‑maximum Suppression
At the moment of t − 1, the global confidence level of the 
sensor Ki is updated by Eq. (11), and it will be fed back 
to the GNMS module for the fusion of the next frame of 
data. In the next stage, the image data at time t is input 
into the data fusion network, and after processing by the 
lightweight FPN network, a ROI area set {Di}Ni=1 is gen-
erated. The GNMS algorithm performs fault diagnosis 
according to the confidence coefficient (K, C) of the cur-
rent frame, redundant and wrong sensor data are elimi-
nated, and accurate fusion results are generated.

Compared with traditional environment perception 
algorithms, GNMS can filter sensor data based on real-
time calculated global and local confidence coefficients, 
and complete data fusion tasks in a targeted manner. 
After the image ROI set {Di}Ni=1 is suppressed by the 
global non-maximum value, the redundant and faulty 
data is eliminated, and the missing data is completed. 
Finally, the results of object detection after sensor fusion 
is obtained.

5 � Evaluation of Network Performance
5.1 � Experimental Setup
The results in the following sections are all based on the 
settings in this section. The model is first pre-trained on 
the COCO [27] dataset for 500000 steps with a batch size 
8. Training by Adam optimizer follows the learning rate 
which is warmed up to 10−3 in the first 1000 steps and 
is multiplied by a hyper-parameter l_drop =  0.1 at step 
400000 and step 450000. Then the pre-trained model 
is trained on the KITTI dataset for 100 epochs with a 
fixed learning rate. The weighting factor of bounding 
box regression loss mentioned in Section 3 is set to 1 for 
faster convergence. All training experiments are executed 
on two RTX 2080Ti GPUs.

5.2 � Performance of Object Detection
The KITTI dataset provides researchers with a com-
pleted model evaluation program. The program improves 
the average precision (AP) calculation method proposed 
in PASCAL VOC. It does not care about targets that are 
too small in the environment and targets that are too far 
away from the camera. To a certain extent, the require-
ments on the model are relaxed. At the same time, 

(9)
α = 1

2
ln

(

mean(IoU)

1−mean(IoU)

)

,

K ′
i = Ki exp [α(IoUi −mean(IoU))].

KITTI’s model evaluation program divides the task into 
three difficulty levels according to the size of the target 
bounding box and the degree of occlusion: Easy, Moder-
ate and Hard. The specific division of each difficulty is 
shown in Table 2.

The evaluation procedure of the KITTI dataset divides 
the objects into three categories: vehicles, pedestrians, 
and bicycles. For vehicle targets, use AP70 to evaluate 
network performance, and for pedestrian and bicycle 
targets, calculate AP50. Since the KITTI does not pro-
vide the official label of the test set, we adopt the set aside 
method for network performance evaluation, and ran-
domly selected 1000 images from the training set as the 
test set. Note that these 1000 images do not participate 
in the network training. Finally, we compile the evalua-
tion results of some well-known networks on the Leader 
Board of KITTI’s official website to compare with our 
network performance, as shown in Table 3.

The precision and recall (PR) curve drawn by the net-
work in this paper under Easy, Moderate and Hard dif-
ficulty is shown in Figure 2(a). At the same time, the PR50 
curve obtained under all test sets compares YOLO_V3, as 
shown in Figure 2(b). The object detection network needs 
to run on four 2D images simultaneously. Considering 
the GPU memory and the real-time performance of the 
algorithm, we have adopted a series of methods to reduce 
network parameters and required computing power, such 
as HOG feature extraction, residual network. Based on 

Table 2  Difficulty division of KITTI dataset

Difficulty level Minimum 
box height

Maximum occlusion Maximum 
truncation

Easy 40 pixels Fully visible 15%

Moderate 25 pixels Partial occlusion 30%

Hard 25 pixels Hard to identify 50%

Table 3  Performance comparison of 2D object detection

Network Running 
time (s)

Easy (%) Moderate (%) Hard (%)

Faster-RCNN 2 88.97 83.16 72.62

RetinaNet [28] 0.2 93.97 82.73 68.37

RefineNet [29] 0.2 91.91 81.01 65.67

MonoFENet [30] 0.15 91.68 84.63 76.71

ResNet-RRC​ 0.06 91.45 85.33 74.24

Fast-SSD 0.06 85.19 66.79 57.89

YOLO800 0.13 78.93 74.31 63.83

The new method 0.02 95.36 88.20 86.44
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Table 3 and Figure 2, although our object detection net-
work has been greatly optimized in terms of parameters 
and computing speed, it still guarantees considerable 
accuracy and recall rate, and its object detection perfor-
mance can fully meet the current requirements of auton-
omous vehicles for environmental perception accuracy.

5.3 � Fault Diagnosis and Avoidance Performance
The FDA framework of this paper is mainly designed for 
two types of faults, namely, the global and local faults. 
In the experiment, the camera out-of-focus problem 
is used to simulate the global faults. By down-sampling 
the image, the resolution of the entire image is reduced, 
and the image becomes blurred, and the target object in 
the image could not be identified and difficult to locate. 
Assuming that the original image matrix is Img and the 
output fault image matrix is Err, for the camera out-of-
focus fault, the down-sampling operation as shown in Eq. 
(10) can be used to simulate:

where s is the step size of the down-sampling operation.
For local faults, the problem of image truncation is 

used to simulate, and the row arrangement of the local 
area of the image is disordered to simulate the more seri-
ous garbled effect. Because the fault signal is generated 
on the basis of the original data, this kind of garbled code 
also makes the network more prone to error detection 
problems, and the comparison effect is more obvious in 
the experiment. Assumed that the shuffle() function can 
slice and shuffle a series of continuous data, the way to 
simulate local garbled characters can be expressed by

As a control group, the network uses exactly the same 
network parameters, but removes the GNMS module 
and Kalman filter part, and only uses the weight-based 
method for simple fusion. After simulating the sensor 
fault on the KITTI Raw-Data dataset through the soft-
ware, we use our fusion framework and the control group 
to run on it to obtain object detection results, and cal-
culate the Mean-IoU value obtained by the two types of 
fault data when processing out-of-focus and truncation. 
The results are shown in the Table 4.

Draw the mean IoU curve of the network under the 
video data with the number of frames as the x-axis and 
the IoU value of each frame as the y-axis, which can more 
intuitively compare the FDA performance of the two net-
works. Select the video data numbered 09-26-0056 as 
input, and draw the mean IoU curve of this network and 
the traditional data fusion network under sensor fault as 
shown in Figure 3.

To detect the maximum fault ability of the data fusion 
framework designed in this paper, we impose more seri-
ous global and local sensor faults on the sensor data of 
multiple cameras, and measure the mean IoU value 
according to the same method. When two cameras have 
local and global faults simultaneously, the mean IoU 
value obtained by our network and the control group is 
shown in the Table 5.

(10)Err(i, j) = Img(i − (i mod s), j − (j mod s)),

(11)Err(i, j) = Img(shuffle(i), j).

a

b

Figure 2  Performance of 2D object detection

Table 4  Comparison of fault tolerance performance

Video 
number

Out-of-
focus 
(FDA)

Out-of-focus Truncated 
(FDA)

Truncated

09-26-0009 0.8091 0.7390 0.8115 0.6858

09-26-0017 0.8820 0.8014 0.8881 0.6661

09-26-0051 0.7710 0.6542 0.7708 0.5901

09-26-0056 0.8812 0.7556 0.8816 0.7903

09-26-0057 0.8364 0.7461 0.8294 0.7334
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Select the video data numbered 09-26-0056 as input, 
and draw the IoU curve obtained when two cameras fail 
at the same time, as shown in Figure 4.

When the same fault is applied to three of the four 
cameras, the fault avoidance system of the network in 
this paper fails, and the mean IoU curve has dropped sig-
nificantly, as shown in Figure 5(a).

Analyzing the reason for the fault of the network is that 
our network uses each detection result as ground truth 
feedback and corrects the sensor weight. When the same 
fault is applied to the three cameras, these three sets 
of detection results will obtain similar fault detection 
results under the influence of the same mode of fault, 
which makes the initial fusion detection result and the 
real ground truth have a large deviation, and makes the 
fault tolerance system invalid. When garbled characters 
with different positions and different generation modes 
are applied to the three cameras, and the mean IoU curve 
obtained on such data is shown in Figure  5(b), and the 
faults imposed on the sensor are correctly eliminated.

Printing the detection results of the data fusion frame-
work in this paper and the control group on the original 

image data can more intuitively show the impact of fault 
signals on object detection accuracy and the perfor-
mance of our network to eliminate fault detection results. 
The comparison of the detection results of the two net-
works under the interference of the fault signal is shown 
in Figure 6.

It can be seen from the above experiments that when 
two or more cameras have real data, the fault diagno-
sis mechanism designed in this paper can effectively 
avoid the noise information caused by the global and 
local faults of the sensor. Even if the sensor does not 
have a serious fault phenomenon, the global and local 
confidence methods can also eliminate the perception 
errors during network operation in time, and make full 

a

b

Figure 3  FDA performance

Table 5  Performance comparison of multi-sensor fault tolerance

Video 
number

Out-of-
focus 
(FDA)

Out-of-focus Truncated 
(FDA)

Truncated

09-26-0009 0.8040 0.6938 0.7977 0.5890

09-26-0017 0.8540 0.7622 0.8603 0.5046

09-26-0051 0.7619 0.5649 0.7751 0.6319

09-26-0056 0.8764 0.7288 0.8759 0.6959

09-26-0057 0.8117 0.6849 0.8282 0.6659

b

a

Figure 4  FDA evaluation (two sensor faults)

b

a

Figure 5  FDA evaluation (three sensor faults)
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use of more accurate sensor data to obtain the best data 
fusion effect.

6 � Conclusions

(1)	 Aiming at the problem of object detection in auton-
omous driving scenarios, a data fusion framework 
with fault diagnosis mechanism is proposed, which 
realizes the mutual diagnosis of faults between 
environmental perception sensors by setting global 
and local confidence levels, and eliminates the noise 
information introduced when the sensors collect 
environmental data.

(2)	 The data fusion network in this paper greatly 
reduces the load on the computing and storage 
units of the multi-source environment sensing sys-
tem while ensuring the accuracy of object detection 
through the experiments on KITTI dataset.

(3)	 The proposed FDA mechanism enables the data 
fusion network to timely eliminate fault informa-
tion when the sensor has a serious global or local 

fault, ensuring the accuracy and reliability of data 
fusion.
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