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Abstract 

Topology Optimization (TO) is a powerful numerical technique to determine the optimal material layout in a design 
domain, which has accepted considerable developments in recent years. The classic Finite Element Method (FEM) 
is applied to compute the unknown structural responses in TO. However, several numerical deficiencies of the FEM 
significantly influence the effectiveness and efficiency of TO. In order to eliminate the negative influence of the FEM 
on TO, IsoGeometric Analysis (IGA) has become a promising alternative due to its unique feature that the Computer-
Aided Design (CAD) model and Computer-Aided Engineering (CAE) model can be unified into a same mathematical 
model. In the paper, the main intention is to provide a comprehensive overview for the developments of Isogeomet-
ric Topology Optimization (ITO) in methods and applications. Finally, some prospects for the developments of ITO in 
the future are also presented.
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1  Introduction
Structural optimization [1] has attracted considerable 
attentions among researchers ranging from theoretical 
research to engineering applications, which aims to solve 
the optimal design of the load-carrying structures with 
the reasonable structural features, like the connectivity of 
holes, the shapes of boundaries. Overall speaking, struc-
tural optimization mainly contains three components as 
far as the design stage, presented in Figure 1, namely the 
conceptual design stage of Topology Optimization (TO), 
the basic design stage of shape optimization and the 
detailed design stage of size optimization. One of them, 
TO, has been identified as an important but with more 
challenges sub-discipline, and the main intention of TO is 
to seek for the optimal material layout with the expected 
structural performance in a design domain without the 

prior knowledge subject to several pre-defined con-
straints [2].

As we know, TO originates from a pioneering work [3] 
that discusses the frame-structures under the limits of 
economy of materials. Cheng and Olhoff [4, 5] addressed 
the optimal design of solid elastic plates, which is consid-
ered as the seminar work for the structural optimization 
of continuum structures and attracts a wide of discus-
sions in the last three decades. In 1988, Bendsøe and 
Kikuchi [6] used the homogenization approach to opti-
mize the structural topology by gradually changing the 
sizes and orientations of holes in a design domain. After 
that, TO has accepted a myriad of discussions ranging 
from the developments of TO methods to the applica-
tions of different problems, and the details can refer to 
some comprehensive reviews of TO [7–11]. Up to now, 
there are several different topology optimization meth-
ods with the unique positive features which have been 
proposed in recent years.

The developed TO methods can be mainly divided into 
two branches as far as the representation model of the 
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structural topology, including Material Description Mod-
els (MDMs) and Boundary Description Models (BDMs). 
In the first branch of TO methods, MDMs discrete the 
design domain to be a series of designable points or ele-
ments with the densities, namely the density-based TO 
methods. The density in each designable point or ele-
ment determines the non/existence of material at the 
corresponding location in a design domain. This branch 
mainly contains the Solid Isotropic Material with Penali-
zation (SIMP) method [12, 13], and the Evolutionary 
Structural Optimization (ESO) method [14]. However, 
the second branch of TO methods uses the BDMs to dis-
play the structural topology, where a higher-dimensional 
function in an implicit or explicit form is constructed for 
the evolvement of topology in the design and structural 
boundaries are defined by the iso-contour/surface of the 
function. In this branch, the Level Set Method (LSM) 
[15–17], the phase field method [18, 19], the recently 
proposed Moving Morphable Components/Voids 
(MMC/V) method [20–23] and the Bubble method [24, 
25] have been obtained considerable discussions. These 
developed TO methods have been also applied to address 
several different numerical problems, like the dynamic 
optimization [26–28], compliant mechanisms [29, 30], 
stress problems [31–33], robust designs [34–36], mate-
rials design [37–41], concurrent topology optimization 
[42–48].

In the previously mentioned TO works, the clas-
sic Finite Element Method (FEM) [49] is applied to 
solve the unknown structural responses in numeri-
cal analysis. However, it is known that the FEM fea-
tures several deficiencies in numerical analysis, like (1) 
the finite element mesh is just an approximant of the 
structural geometry, rather than the exact representa-
tion; (2) The neighboring finite elements have the low-
order (C0) continuity of the structural responses, and 
the deficiency also exists in the higher-order finite ele-
ments; (3) The lower efficiency to gain a high quality of 

the finite element mesh. These drawbacks mainly stem 
from the use of different mathematical languages in 
geometric model and numerical analysis model: spline 
basis functions are used in the former whereas Lagran-
gian and Hermitian polynomials in the latter. Mean-
while, in TO, the optimized designs generally need the 
additional post-processing to meet the requirements of 
the practical engineering structures, so that the com-
munication with CAD systems is compulsory. On the 
other side, these three deficiencies might cause the 
high possibility of the occurrence of numerical issues in 
TO. Recently, a promising and powerful alternative of 
the FEM, termed by the IsoGeometric Analysis (IGA), 
is proposed by Hughes and his co -workers [50, 51] to 
perform the numerical analysis, which can completely 
remove the above limitations of FEM. In IGA, the core 
is that the same spline information including control 
points and spline basis functions is simultaneously 
applied into the representation of the structural geom-
etry and solve the numerical analysis. The geometrical 
model and numerical analysis model are kept consist-
ent in IGA. This such unification of the mathematical 
model in structural geometry and numerical analysis 
can offer benefits for the later optimization to resolve 
the above numerical issues occurred in TO.

Since the developments of IGA to eliminate the defects 
of the conventional FEM, several researchers have 
devoted to developing new TO methods and discuss-
ing their applications using IGA, rather the FEM. To the 
best knowledge of the authors, the first work introduc-
ing IGA into topology optimization might go back to 
Ref. [52], which discussed the shape optimization using 
IGA and its extension to the topological design. Later, an 
extensive work [53] used the trimmed spline surfaces to 
present structural boundaries and then proposed a novel 
Isogeometric Topology Optimization (ITO) framework 
based on TO and IGA, which opens up a new window 
for the development of TO in the future. After that, 
many research works have been performed to sufficiently 
consider the positive features of IGA into TO, which 
can develop more and more efficient and effective ITO 
methods for many numerical problems. Up to now, two 
publications present reviews for the IGA into structural 
optimization [54, 55]. However, these two papers mostly 
focus on the descriptions about the introducing of IGA 
into shape optimization and its developments, and the 
discussions about the IGA into topology optimization 
are limited in these papers. Moreover, the considerations 
of IGA to replace the classic FEM in TO have obtained 
more and more attentions among many researchers in 
recent years. It is compulsory to provide an overview for 
the developments of ITO methods and their applications, 
which can provide more better research orientations and 

Figure 1  Structural optimization
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suggestions for the newcomer in the field of TO or ITO, 
also other readers who have interests in this field.

The rest of this paper is organized as follows: a brief 
description about the ITO methods in different types is 
presented in Section  2, and Section  3 provides the dis-
cussions about the applications of the ITO methods in 
different numerical problems. In Section  4, some pros-
pects about the ITO in methods and applications are also 
presented. Finally, the paper ends with some concluded 
remarks in Section 5.

2 � Isogeometric Topology Optimization (ITO) 
Methods

As already discussed in Introduction, Seo et  al. [52, 53] 
firstly implemented the ITO using the trimmed spline 
surfaces and IGA, where the trimmed surface analysis 
treats topologically complex spline surfaces using trim-
ming information provided by CAD systems and it is 
also used for calculating structural response analysis 
and sensitivity calculation in TO. The spline surface and 
trimming curves are applied to represent the outer and 
inner boundaries of geometrical design models, in which 
the coordinates of control points of a spline surface and 
those of trimming curves work as design variables in TO. 
In the design, this ITO framework deal with the inner 
front creation and inner front merging. When consider-
ing the complex structures in the optimization, the num-
ber of the trimming curves will increase, and a highly 
prohibitive computational cost might be caused.

After that, the development of ITO starts to focus 
on how to construct a more efficient and effective ITO 
method based on the previous TO methods and IGA. Up 
to now, many different ITO methods have been devel-
oped. According to the classifications of TO methods 
already discussed in Introduction, we still divide discus-
sions about ITO methods into two different branches, 
namely MDMs-based ITO methods and BDMs-based 
ITO methods. In the first branch using MDMs, the devel-
opment of ITO methods strongly depends on the “den-
sity”, namely the density-based ITO methods. As far as 
the second branch using the BDMs, the previous research 
works mostly develop ITO methods using the level set or 
MMC/V, namely the level set-based ITO methods and 
MMC/V-based ITO methods. Hence, we will provide the 
detailed discussions about the ITO methods in three dif-
ferent types, including the density-based, level set-based 
and MMC/V-based, respectively.

2.1 � Density‑Based
As we know, the homogenization approach is earlier 
used to realize the optimization of structural topol-
ogy, which will introduces several numerical difficulties 
in the design. After that, several improvements are also 

discussed. One of them, the Solid Isotropic Material with 
Penalization (SIMP) method, can be viewed as a powerful 
alternative, which has accepted more and more attentions 
owing to its conceptual clarity and easy numerical imple-
mentation [12, 13]. The basic intention of topology opti-
mization to search the continuous material distribution 
is fully converted into seeking for the reasonable spatial 
arrangement of densities of finite elements. It is well-
known that some numerical artifacts are also occurred in 
the optimized solutions, like the checkerboards, “zig-zag” 
or wavy structural boundaries and mesh-dependency 
[56–58], and several works reveal that these issues mainly 
stem from the strong dependency on finite elements in 
SIMP method [59–61]. Hence, some alternative variants 
of SIMP are also developed to eliminate the numerical 
difficulties and produce the distinct material interface, 
like introducing the densities at elementary nodes [62–
64]. A comprehensive review about the SIMP method 
can refer to [9, 65]. Here, we provide a general mathemat-
ical model of the SIMP as far as the classic compliance 
minimization problem, given as:

where c is the objective function, defined by the struc-
tural compliance, ρ is a vector containing a series of 
design variables, namely the element densities. ρe denotes 
the eth element density, and p is the penalty parameter 
to enforce element densities to be 0 or 1. U is the global 
displacement field and K is the global stiffness matrix. ue 
is the element displacement, and k0 is the element stiff-
ness matrix. υ0 is the elementary volume fraction, and V0 
is allowable material volume fraction. ρmin is the minimal 
value of design variables. N is the total number of ele-
ment densities. Hence, in the SIMP method, the design 
aims to find a reasonable layout of ρ in the design domain 
with the expected structural compliance c, subject to the 
material volume fraction V0.

In 2011, Kumar and Parthasarathy [66] constructed 
B-spline finite elements for the density representa-
tion function and the displacement field in the design 
domain to eliminate the numerical artifacts of tradi-
tional elements, who reveal B-spline basis functions fea-
ture a smoothing effect to remove the mesh dependency, 
similarly to the density filtering schemes. Later, Hassani 
et al. [67] firstly developed an ITO method for structural 

, (1)
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compliance problem, where densities are defined at con-
trol points and Non-Uniform Rational B-Spline (NURBS) 
basis functions are combined with the pre-defined densi-
ties at control points to develop the density distribution 
function for the representation of structural topology. As 
shown in Figure  2, we provide some numerical results. 
We can easily find that although several numerical arti-
facts of SIMP can be successfully removed using the cur-
rent ITO method, some new deficiencies are also shown 
in the optimized designs, like the blur and wavy structural 
boundaries. In the viewpoint of the authors, the current 
work opens up the combination of SIMP and IGA, which 
verify the feasibility of the introducing of IGA into SIMP. 
However, several new numerical artifacts are introduced. 
Meanwhile, the work directly employs the densities at 
control points to approximately represent the structural 
topology. It is suitable for the rectangular design domain, 
but it might introduce errors in the optimization for the 
curved structures. The main cause is that some parts of 
the control points are not at the curved design domain.

After that, Qian [68] developed a B-spline space for the 
topology optimization. In this work, an arbitrarily shaped 
design domain is embedded into a rectangular domain, 
which can sufficiently employ the tensor-product feature 
of B-splines to develop the density field for the represen-
tation of the structural topology in the design domain. 
The author reveals that the B-spline representation of 
the topology can offer an intrinsic filter for the topology 
optimization, which can effectively remove numerical 
artifacts and control minimal feature length in the opti-
mized designs. Moreover, the B-spline space can decou-
ple the representation of the density distribution from 
the finite element analysis, which avoids the re-meshing 
of the design domain in the multi-resolution. We also 
provide some numerical results in Ref. [68], as shown in 
Figure 3. As we can easily see, the structural features are 
similar to numerical results of SIMP, like the “zig-zag” or 
wavy boundaries. The main reason is that the final repre-
sentation of the structural topology is still based on ele-
ment densities which are defined by the B-spline density 

representation using control densities. The spatial dis-
tribution of element densities in the design domain has 
the intrinsic feature, namely “zig-zag”. Meanwhile, the 
mapping from the densities at control points to element 
densities will increase the existence of intermediate den-
sities. Hence, the structural boundaries of the optimized 
topology are still featured with a “zig-zag” or wavy shape, 
which still need the additional post-processing to smooth 
structural boundaries for the latter manufacturing.

Later, Gao et al. [69] constructed an enhanced density 
distribution function to develop a new ITO method. In 
the construction of the density distribution function, two 
steps are involved: (1) Smoothness: the Shepard function 
is firstly employed to improve the overall smoothness of 
the densities pre-defined at control points. (2) Continu-
ity: the NURBS basis functions are linearly combined 
with the smoothed control densities to construct the 
density distribution function. In each optimization itera-
tion, the density distribution function to represent the 
structural topology will be advanced. As shown in Fig-
ure 4, some numerical results are also given. As we can 
see, an enhanced density distribution function can offer 
more benefits for the optimization and the representa-
tion of the structural topology. However, it should be 
noted that the structural boundaries are represented by 
the iso-contour of the density distribution function with 
the iso-value (0.5) of the density. It originates from the 

Figure 2  Some numerical results in Ref. [67] Figure 3  Some numerical results in Ref. [68]

Figure 4  Some numerical results in Ref. [69]
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level set method, and the reasonability of the definition 
of the structural boundaries at the iso-contour/surface 
of the density distribution function is also discussed. We 
can easily find that the post-processing scheme is very 
simple, heuristic but efficient. However, it also introduces 
some errors in the evaluation of structural performance 
of the optimized designs.

Lieu and Lee [70] developed a multiresolution scheme 
to topology optimization using the framework of IGA, 
where a variable parameter space is defined for the imple-
mentation of multiresolution TO using SIMP method. 
Then, they inherited the multiresolution ITO framework 
[70], and applied it to discuss the multi-material topol-
ogy optimization problem [71], in which the alternating 
active-phase algorithm [72] for the multi-material topol-
ogy optimization is directly used in the multiresolution 
ITO framework. Wang et al. [73] discussed the multiscale 
ITO for periodic lattice materials, in which the asymp-
totic homogenization is applied for the calculation of 
mechanical properties for lattice materials with uniform 
and graded relative density respectively. Taheri et  al. 
[74] also studied the application of the ITO to the multi-
material topology optimization problem and the design 
of functionally graded structures, where the multi-mate-
rial interpolation scheme proposed by Stegmann and 
Lund [75] to realize the discrete material optimization 
is directly used. Liu et al. [76] also addressed the stress-
constrained topology optimization problem of plane 
stress and bending of thin plates using the ITO frame-
work, where two stability transformation methods are 
developed to stabilize the optimization using the P-norm 
function for global stress constraint. Later, Gao et al. [77] 
proposed a NURBS-based Multi-Material Interpola-
tion (N-MMI) model in the ITO method [69] to develop 
a Multi-material ITO (M-ITO) method. Then Gao et al. 
[78] employed the ITO method to study the design of 
auxetic metamaterials and the M-ITO method to discuss 
the optimization of auxetic composites, where a series of 
novel and interesting material microstructures with the 
auxetic property can be found. Xu et al. [79] also applied 
the ITO method to study the rational design of ultra-
lightweight architected materials. The topology optimiza-
tion of the spatially graded hierarchical structures is also 
discussed in the framework of ITO [80]. Xie et  al. [81] 
also proposed a truncated hierarchical B-spline–based 
topology optimization to address topology optimization 
for both minimum compliance and compliant mecha-
nism. Wang et al. [82] discussed the numerical efficiency 
of the ITO method and employed the multilevel mesh, 
MGCG and local-update strategy to improve the com-
putational efficiency by mesh scale reduction, solving 
acceleration and design variables reduction. Zhao et  al. 
[83] also addressed the T-Splines Based ITO method 

for the design domains with arbitrarily shape, where the 
arbitrarily shaped design domains is directly obtained 
from CAD and defined by a single T-spline surface. The 
T-spline can overcome the topological limitations of 
NURBS. However, it also introduces an important prob-
lem that how many control points should be arranged in 
the local structural features. The basic feature of TO is 
that we do not known the final optimized design with-
out the prior knowledge. Hence, a uniform initial design 
is much better for the latter optimization, which can offer 
the equal opportunity for the advancement of each point 
in the design domain and avoid the occurrence of the 
local optimum design. However, when using T-splines 
to model the geometry and analysis, a non-uniform IGA 
mesh will occur and also a control lattice with nonuni-
form features will be utilized, which will introduce some 
numerical issues in the latter optimization.

2.2 � Level Set‑Based
It is known that Level Set Method (LSM) is numerical 
technique to track the interface and shape, which has 
been extensively used in many disciplines. The core of the 
LSM is to define a level set function with a higher-dimen-
sion to represent the structure, where the zero-level set 
is employed to represent the structural boundaries. The 
level set function with the negative values are applied 
to display the voids, and the solids in the design domain 
are represented by the level set function with the posi-
tive values, namely the implicit boundary representation 
model. Hence, the evolvement of the level set function 
can describe the advancing of the structural topology in 
the design domain.

As already discussed in Section  1, Sethian and Wieg-
mann [15] firstly employed the level set function to rep-
resent the structure topology and used structural stress 
to develop the evolving mechanism. After that, Wang 
et  al. [16] innovatively developed the level-set topology 
optimization framework, where the upwind scheme and 
the finite difference method are utilized to solve the H-J 
PDEs to advance the structural topology. Allaire et  al. 
[17] developed a level-set topology optimization method 
based on the classical shape derivatives in the level-set 
method for front propagation. Compared to MDMs, we 
can easily find that the level-set topology optimization is 
actually a shape optimization method but with a superior 
capability to implement the shape and topology optimi-
zation. The optimized topologies will have the smooth 
structural boundaries and distinct interfaces, and the 
LSM will feature several inherent physical merits: (1) a 
smooth and distinct boundary description for the opti-
mized design, (2) the shape fidelity and higher topologi-
cal flexibility during the optimization, (3) the shape and 
topology optimization are performed simultaneously 
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and (4) a physical meaning solution of the H-J PDEs. The 
mathematical model of the level-set based TO method 
for the structural compliance problem can read as:

where J is the objective function, defined by the structural 
compliance problem. u denotes the global displacement 
field in design domain, and Φ is the level set function 
with a higher dimension to represent the structural 
topology. D is the reference domain, and Ω is the design 
domain containing all admissible shapes. H is the Heavi-
side function which serves as a characteristic function. 
G is the volume constraint function. V0 is the allowable 
material consumption. The elastic equilibrium equation 
is stated in the weak variational form, in which a is the 
bilinear energy function and l is the linear load func-
tion. υ is the virtual displacement field, which belongs to 
the kinematically admissible displacement space U. As 
shown in Figure 5, a 3D level set function with the cor-
responding 2D structural design domain is given.

In 2012, Shojaee et  al. [84] discussed the composi-
tion of IGA with LSM to develop a level set-based 
ITO framework for the structural topology optimiza-
tion, where the Radial Basis Function (RBF) is applied 
to parametrize the level set function. The correspond-
ing numerical results are shown in Figure 6(a). In Ref. 
[84], the level set function is constructed by the RBF 
to show the topology, and IGA uses the NURBS basis 
functions to develop the analysis model. In actual, we 
can easily obtain that the geometric model and analysis 
model are not in an integrated mathematical language. 

, 

(2)

Later, Wang et  al. [85] also proposed a parametrized 
level set-based ITO method using parametric level set 
method and IGA, where the same NURBS basis func-
tions are used to parameterize the level set function 
and construct the solution space of numerical analy-
sis. The geometric model and the analysis model of the 
structural topology can be unified, which coincides 
with the core of IGA. The numerical results of [85] are 
also presented in Figure  6(b). Then, Wang et  al. [86] 
discussed the topology optimization for geometrically 
constrained design domains using the proposed level 
set-based ITO method, where the fast point-in-polygon 
algorithm and trimmed elements are utilized for ITO 
with the arbitrary geometric constraints. As shown in 
Figure  6(c), the corresponding numerical results are 
also given. Xia et  al. [87] implemented Graphics Pro-
cessing Units (GPU) parallel strategy for the level set-
based ITO method to improve numerical efficiency. 
After that, Ghasemi et  al. [88] also developed a level 
set-based ITO method but for the optimization of 
flexoelectric materials, where the NURBS-based IGA 
elements are successfully employed to model the flexo-
electric effect in dielectrics and the energy conversion 
efficiency of flexoelectric micro and nanostructures is 
improved. Moreover, the point wise density mapping is 
directly used in the weak form of the governing equa-
tions and the adjoint sensitivity technique is applied to 
compute the derivative. Jahangiry et  al. [89] also dis-
cussed the application of IGA in the structural level set 
topology optimization to develop a new level set-based 
ITO framework, where the control mesh is gradually 
updated in the optimization iterations, and then the 
authors also discussed the application of the new level 
set-based ITO framework in the topology optimization 
of the concentrated heat flow and uniformly distrib-
uted heat generation systems [90]. Lee et  al. [91] also 
implemented the isogeometric topological shape opti-
mization using dual evolution with boundary integral 
equation and level sets, where the implicit geometry 

Figure 5  A 3D level set function and 2D design domain

Figure 6  Some numerical results
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using the level sets is transformed into the parametric 
NURBS curves by minimizing the difference of velocity 
fields in both representations. Xu et  al. [92] employed 
the level set-based ITO method in Ref. [85] to discuss 
the design of vibrating structures to maximize the fun-
damental eigenfrequency and avoid resonance, and 
the related numerical results are shown in Figure 7(a). 
Yu et  al. [93] also employed the level set-based ITO 
method in Ref. [85] to implement the multiscale topol-
ogy optimization using the unified microstructural 
skeleton, where a prototype microstructure is defined 
to obtain a series of graded microstructures. Figure 7(b) 
shows the related numerical results. In Ref. [94], a level 
set-based ITO method was proposed for topology opti-
mization to control the high-frequency electromagnetic 
wave propagation in a domain with periodic micro-
structures, where the high-frequency homogenization 
method is used to characterize the macroscopic high-
frequency waves in periodic heterogeneous media. 
The corresponding numerical results are also given in 
Figure 7(c).

2.3 � MMC/V‑Based
Compared to the density-based and level set-based TO 
methods, MMC/V has implemented the topology opti-
mization in an explicit and geometrical way. MMC/V can 
incorporate more geometry and mechanical informa-
tion into topology optimization directly. Since the semi-
nar work of MMC proposed by Guo et  al. [20], it have 
been accepted more and more attentions in not only 
theoretical research but also engineering applications. 
Zhang et al. [95] developed a new MMC-based topology 
optimization method, where the ersatz material model 
is utilized through projecting the topological descrip-
tion functions of the components. Later, Guo et al. [21] 

studied the explicit structural topology optimization 
based on moving morphable components (MMC) with 
curved skeletons. In Refs. [22, 23], the B-spline curves 
are used to describe the boundaries of moving morpha-
ble voids (MMVs) to develop the MMV-based topology 
optimization method.

In 2017, Hou et al. [96] firstly proposed an MMC-based 
ITO method, where NURBS basis functions are applied 
to construct the NURBS patch to represent the geom-
etries of structural components using explicit design 
parameters and the same functions are also applied into 
the latter IGA. As already indicated in Ref. [96], the pro-
posed MMC-based ITO method can naturally inherit 
the explicitness of the MMC-based TO method, and also 
embraces the merits of IGA, such as a tighter link with 
Computer-Aided Design (CAD) and higher-order con-
tinuity of the basis functions. The numerical results are 
displayed in Figure 8(a). Xie et al. [97] also developed a 
new MMC-based ITO method based on R-functions and 
collocation schemes, in which the R-functions are used 
to construct the topology description functions to over-
come the C1 discontinuity problem of the overlapping 
regions of components. As given in Ref. [97] to discuss 
the efficiency of the proposed method, the numerical 
results show that the current method can improve the 
convergence rate in a range of 17%–60% for different 
cases in both FEM and IGA frameworks. This proposed 
MMC-based ITO method was applied to the topology 
optimization for the symmetric structures using energy 
penalization method [98]. After that, Xie et al. [99] pro-
posed a new MMC-based ITO method using a hierar-
chical B-spline which can implement the adaptive IGA 
to efficiently and accurately assess the structural perfor-
mance. As far as the MMV-based ITO method, Zhang 

Figure 7  Some numerical results

Figure 8  Some numerical results of the MMC/V-based ITO works
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et  al. [100] proposed a new MMV-based ITO method, 
in which the MMV-based topology optimization frame-
work is seamlessly integrated into IGA by using TSA 
(trimming surface analysis) technique. Comparatively 
speaking, the current MMV-based ITO method can flexi-
bly control the structural geometry/topology. Meanwhile, 
it can also prevent the occurrence of self-intersection and 
jagged boundaries. The related numerical results are also 
shown in Figure 8(c). Later, Gai et al. [101] also studied 
the development of the MMV-based ITO method, where 
the closed B-spline boundary curves are utilized to model 
the MMVs to represent the structural topology. Du et al. 
[102] discussed the application of the MMC-based ITO 
method in the multiresolution topology optimization 
problem.

2.4 � Other Types
Besides the previously mentioned works, the ITO meth-
ods are also developed based on other TO methods. Dedè 
et  al. [103] proposed a phase field-based ITO method, 
where the optimal design can be obtained by the steady 
state of the phase transition described by the general-
ized Cahn–Hilliard equation. The numerical solutions 
are presented in Figure  9(a). Yin et  al. [104] developed 
an ITO method based on the scheme of Bi-directional 
Evolutionary Structural Optimization (BESO), namely 
the BESO-based ITO method. Sahithi et al. [105] studied 
the evolutionary algorithms to realize the ITO of contin-
uum Structures using the parallel computing, where the 
evolutionary optimization process and metaheuristics 
are used to optimize the layout of material in the design 
domain, and the related numerical results are shown in 
Figure 9(b).

3 � Applications of ITO
In Section 2, we give a comprehensive review about the 
development of the ITO methods considering three 
components: the density-based ITO, level set-based ITO 
and MMC/V-based ITO. In the development of the ITO 
methods, the applications of the ITO methods are also 
involved into many numerical optimization problems, 
like the classic structural compliance problem with the 
single-material [67–69, 85, 89, 96, 97], the multi-material 

topology optimization problem [71, 74, 77, 106], the 
trimmed spline surfaces [53, 86, 107], the functional 
graded structures [74, 80].

In this section, we review the applications of the ITO 
in three important numerical optimization problems, 
including mechanical metamaterials, the splines used in 
IGA and the computational efficiency.

3.1 � Mechanical Metamaterials
Mechanical metamaterials are a kind of artificial materi-
als with counterintuitive mechanical properties that are 
obtained by the topology of their unit cell instead of the 
properties of each component [108]. Generally speak-
ing, mechanical metamaterials are always associated with 
four elastic constants: Young’s modulus, shear modulus, 
bulk modulus and Poisson’s ratio. The corresponding 
subtypes of mechanical metamaterials mainly contains 
acoustic metamaterials, auxetic metamaterials, etc.

As already discussed in the definition of mechanical 
metamaterials, the effective macroscopic properties of 
materials strongly depend on the micro-architecture that 
are homogeneously arranged in the bulk material, rather 
than constituent properties of the base material. This 
feature of mechanical metamaterials can offer the high 
possibility for the applications of topology optimization 
to seek for a series of novel metamaterial microstruc-
tures with the promising macroscopic properties. Since 
the homogenization theory is developed to predict mac-
roscopic effective properties [109], an inverse homog-
enization procedure is proposed for the optimization 
of a base unit cell with the negative Poisson ratio using 
topology optimization [110]. Later, this work is inspired 
and extended to the topology optimization of the ration-
ally artificial materials with the extreme or novel proper-
ties [111], particularly for auxetic metamaterials with the 
Negative Possion’s Ratio (NPRs) behavior.

The earlier work introducing the IGA into the design 
of mechanical metamaterials can go back to Ref. [112], 
in which the IGA-based shape optimization is devel-
oped for the design of smoothed petal auxetic struc-
tures via computational periodic homogenization. 
The authors also discussed the optimal form and size 
feature of planar isotropic petal-shaped auxetic struc-
tures with the tunable effective properties using the 
IGA-based shape optimization [113]. The IGA-based 
shape optimization for periodic material microstruc-
tures using the inverse homogenization was also stud-
ied in Ref. [114]. The introducing of IGA into topology 
optimization for the rational design of auxetic meta-
materials can track to Ref. [78], which used the SIMP-
based ITO method proposed in Ref. [69] and also 
numerically implemented the energy-based homogeni-
zation method to evaluate the effective macroscopic Figure 9  some numerical results
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properties using IGA with the imposing of the periodic 
boundary formulation on the base material unit cell. A 
reasonable ITO formulation for auxetic metamateri-
als with the re-entrant and chiral deformation mecha-
nisms is developed, and several optimized design are 
shown in Figure 10(a). Later, the authors also discussed 
the computational design of auxetic composites via 
an IGA-based M-ITO method developed in Ref. [77], 
where an appropriate objective function with a weight 
parameter is also defined for the controlling of the 
generation of different deformation mechanisms with 
the re-entrant and chiral in auxetic composite micro-
structures [115]. The related numerical optimized 
microstructures with the auxetic are also shown in 
Figure 10(b). Later, Nguyen et al. [116] also discussed 
the design of auxetic metamaterials using the level set-
based ITO method, where the reduced order model 
is utilized to reduce the computational degree of the 
linearly elastic equilibrium equation to improve the 
computational efficiency. Similarly, a series of novel 
and interesting auxetic microstructures in 2D and 
3D, shown in Figure  10(c). Xu et  al. [79] also utilized 
the density-based ITO method to discuss the rational 
design of ultra-lightweight architected materials with 
the extreme bulk modulus and extreme shear modulus, 
and a series of novel 3D ultra-lightweight architected 
material microstructures can be found. Nishi et  al. 
[94] utilized the LSM-based ITO method to discuss 
the design of periodic microstructures in anisotropic 
metamaterials to control high-frequency electromag-
netic wave, in which anisotropic metamaterials with 
the hyperbolic and bidirectional dispersion properties 
at the macroscale can be obtained.

3.2 � Splines
In the development of the ITO method, a key in IGA is to 
the spline. In the earlier ITO works, the trimmed spline 
surfaces are employed to represent the structural topol-
ogy. The outer and inner structural boundaries of the 
geometry are represented by a spline surface and trim-
ming curves, in which design variables are the coordi-
nates of control points of a spline surface and those of 
trimming curves [52]. This basic numerical technique 
is inherited in the later work [53, 100, 107], where the 
trimmed surface analysis is employed for the structural 
response analysis and sensitivity calculation in the opti-
mization. A basic numerical scheme for the merging of 
the inner is shown in Figure 11(a).

Later, the B-spline is employed in the construction 
of the geometrical model and B-spline basis functions 
are applied to develop the solution space in the IGA. 
Meanwhile, the B-spline-based IGA is introduced in the 
topology optimization. Qian [68] constructed a B-spline 
space for the topology optimization, where an arbitrar-
ily shaped domain can be embedded into a rectangular 
domain modelled by the tensor-product B-splines. Some 
researchers studied the role of the B-spline in the topol-
ogy optimization without using the IGA to solve the 
structural responses [117], where the free-form curve 
of closed B-splines is introduced as basic design primi-
tives to realize topology optimization with small number 
of design variables. Then, the B-spline multi-parameter-
ization method is proposed for topology optimization 
of thermoelastic structures [106]. After that, the hier-
archical spline is applied into the development of the 
MMC-based ITO method, in which the adaptive IGA is 
implemented by the hierarchical B-spline to efficiently 
and accurately assess the structural performance [99]. Xie 

Figure 10  Some optimized design of auxetic microstructures

Figure 11  Illustrations of different spline schemes
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et  al. [81] developed a truncated hierarchical B-spline–
based topology optimization. It should be indicated that 
sensitivity and density filters with a lower bound can be 
adaptively consistent with the hierarchical levels of active 
elements to remove the checkboard pattern and reduce 
the gray transition area. A basic illustration of the hierar-
chical B-spline is given in Figure 11(b).

Comparatively speaking, NURBS, working as a math-
ematical model commonly used in computer graphics for 
generating and representing curves and surfaces, is also 
mostly employed in the development of the ITO method 
in three types. Wang et  al. [85] developed the level set-
based ITO method using NURBS, in which NURBS is 
firstly applied to parametrize the level set function to 
represent the structural topology and then construct 
the solution space in IGA to solve the unknown struc-
tural responses. Gao et al. [69] also employed NURBS to 
develop an enhanced density distribution function with 
the sufficient smoothness and continuity to represent the 
structural topology, and the same NURBS basis func-
tions are also used in IGA. Hou et al. [96] used NURBS to 
construct the MMCs for the representation of the geom-
etries of structural components (a subset of the design 
domain) with use of explicit design parameters, and the 
NURBS-based IGA is also applied to solve the structural 
responses. A basis description about the NURBS for 
the representation of the structural geometry is shown 
in Figure 11(c). Besides the above discussed splines, the 
T-spline is also used in the ITO method for the topol-
ogy optimization, and the T-spline-based ITO method is 
developed to realize the optimization of design domain 
with arbitrary shapes [83] to eliminate the complexity of 
the multi-patch NURBS for the structural geometry. In 
actual, it will introduce an important problem that how 
many control points should be arranged in the represen-
tation of structural local features, which will have a sig-
nificant effect on the latter topology optimization.

3.3 � Computational Cost
Although computer has gained a great number of devel-
opments in recent years, the computational cost of topol-
ogy optimization is still a prohibitive problem, especially 
for the common laptop. In order to improve the compu-
tational efficiency of the ITO in numerical implementa-
tions, several research works have been implemented in 
recent years. The most method is the use of multireso-
lution scheme in numerical calculation of the topol-
ogy optimization [118]. In the multiresolution topology 
optimization, three distinct meshes are defined for the 
optimization: (1) a displacement mesh for the finite ele-
ment analysis; (2) a design variable mesh for the opti-
mization; and (3) a density or level set mesh to display 
the material distribution. The basic idea is that topology 

optimization can achieve the higher-resolution designs 
but with a lower computation cost as well. Lieu et al. [70] 
developed a multiresolution ITO method using SIMP to 
improve computational efficiency, and then applied it to 
address the multi-material topology optimization prob-
lem [71]. Du et al. [102] also utilized the multiresolution 
scheme in the MMV-based ITO method to reduce the 
computational cost. A simple illustration of multiresolu-
tion scheme is shown in Figure 12. Wang et al. [82] also 
improved the computational efficiency in three aspects: 
namely the mesh scale reduction, solving acceleration 
and design variables reduction, and the ITO method is 
developed using multilevel mesh, multigrid conjugate 
gradient method and local-update strategy. As already 
given in numerical results, the current proposed method 
can successfully reduce 37%–93% computational time 
compared to previous works. The GPU parallel strategy 
is also employed in the parameterized LSM-based ITO 
method to reduce the computational cost [87], where the 
parallel implementations are utilized in the initial design 
domain, IGA, sensitivity analysis and design variable 
update.

4 � Prospects
In this Section, we will provide three main directions 
for the development of ITO in the future, including the 
Data-driven ITO, ITO for additive manufacturing and 
ITO considering the advantages of IGA in several prob-
lems. The details are given as follows.

(1) Data-driven ITO: It is known that the application 
of topology optimization for the complex engineer-
ing materials is very difficult due to the complexity. In 
recent years, the big data and machine learning have 
been becoming popularly in the field of computational 
mechanics, which can provide new windows for the 
topology optimization for complex problems. For exam-
ple, the deep neural network is employed to approximate 
the field of variables to solve the boundary value equa-
tions in strong or weak forms [119]. In the work, the 
developed data-driven neural networks can efficiently 

Figure 12  A simple illustration of multiresolution scheme in TO [70]
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reduce the computational costs. Meanwhile, the data-
driven isogeometric shape optimization for auxetic 
microstructures is also studied [120]. Hence, in the future 
work of the ITO, the data-driven ITO method and its 
applications in several numerical problems will be the 
promising research topic.

(2) ITO for additively manufacturing: In recent years, 
additive manufacturing technique, a layer-by-layer man-
ner to fabricate structures, has accepted great attentions 
and been becoming a powerful alternative to the conven-
tional fabrication methods, like the machining and cast-
ing, due to its merits to manufacture the structures with 
specific features, like the cavity. Hence, additive manu-
facturing can offer the higher flexibility and efficiency for 
the fabrication of structures. The topology optimization 
design for additive manufacturing has proposed in recent 
years, and the comprehensive reviews for this topic can 
refer to Refs. [121, 122]. IGA has the positive feature to 
unify Computer-Aided Design (CAD) model and Com-
puter-Aided Engineering (CAE) into a same mathemati-
cal language, so that the ITO can offer more possibility 
for engineering structures from the conceptual design 
phase to the last manufacturing into an integrated pro-
cess, if the development of the ITO can consider the 
additive manufacturing. This unification will significantly 
reduce the financial cost of the product design. Hence, 
in the future, the ITO for additive manufacturing will be 
also a hot research topic.

(3) The advantages of IGA in several problems: IGA 
has the compelling benefits in the field of shell and plate 
overall conventional approaches [123, 124], because 
the smoothness of NURBS basis functions can offer a 
straightforward manner to construct the plate/shell ele-
ments, particularly for the thin shells and rotation-free. 
Meanwhile, the smoothness of NURBS basis functions 
can also offer more benefits for the analysis of fluids [125] 
and the fluid-structure interaction problems [126]. In 
addition, due to the ease of construction of the higher-
order basis functions, IGA with more success can be 
utilized to solve PDEs with the forth-order (or higher) 
derivatives, for example the Hill–Cahnard equation 
[127]. Hence, in the future, the considerations of the ITO 
in the mentioned above numerical problems might be 
more meaningful for the development of this field.

5 � Conclusions
In the current paper, we offer a comprehensive review 
for the Isogeometric Topology Optimization (ITO) in 
methods and applications. Firstly, we mainly divide the 
descriptions of ITO methods into three aspects, includ-
ing the density-based ITO methods, level set-based ITO 
methods and MMC/V-based ITO methods. The cor-
responding discussion for each classification is clearly 

provided, and the development trajectory in each clas-
sification is also given. Secondly, the descriptions of the 
applications of ITO mainly focus on three components, 
namely the ITO for mechanical metamaterials, the 
splines in ITO and the computational cost of ITO. Finally, 
we also provide some prospects for the developments of 
the ITO methods and applications in the future, which 
contains the data-driven ITO to considerably reduce the 
computation cost, the ITO for additive manufacturing to 
consider the manufacturing problems into the initial con-
ceptual design phase and the ITO considering the advan-
tages of IGA in several problems.
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