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Abstract 

Space-deployable mechanisms can be used as supporting structures for large-diameter antennas in space engi-
neering. This study proposes a novel method for constructing the surface design of space reflector antennas based 
on polar scissor units. The concurrency and deployability equations of the space scissor unit with definite surface 
constraints are derived using the rod and vector methods. Constraint equations of the spatial transformation for space 
n-edge polar scissor units are summarized. A new closed-loop deployable structure, called the polar scissor deploy-
able antenna (PSDA), is designed by combining planar polar scissor units with spatial polar scissor units. The over-
constrained problem is solved by releasing the curve constraint that locates at the end-point of the planar scissor 
mechanism. Kinematics simulation and error analysis are performed. The results show that the PSDA can effectively fit 
the paraboloid of revolution. Finally, deployment experiments verify the validity and feasibility of the proposed design 
method, which provides a new idea for the construction of large space-reflector antennas.
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1  Introduction
Large-sized reflector antennas with high gain and narrow 
beam are widely used in space detection, radio astron-
omy, satellite communications, and other areas. Such an 
antenna often needs to be folded into a smaller volume 
before it is sent to space because of the size requirements 
of launch vehicles. After the spacecraft enters the orbit, 
the antenna is expanded to its working state. Therefore, 
using deployable structures to realize a parabolic profile 
is a key technology of the space reflector antenna [1–3]. 
The surface of the antenna is a wire mesh, and the geo-
metrical control of the reflecting surface is achieved 
by adjusting the tension of the cable net. The HALCA 
(Highly Advanced Laboratory for Communications and 
Astronomy) scientific satellite, launched by the Japan 
Institute of Space Science and the National Astronomical 

Observatory of Japan, uses a radial extension antenna 
with many small triangular planes under tension to 
approximate the parabolic shape [4]. Furthermore, 
many scientists have studied the shape finding and pre-
tightening force loading for cable membrane structures 
to achieve finer requirements for shape accuracy [5–8]. 
Although the scissor structure can also realize morpho-
logical adaptation in space, limited research has been 
conducted on its application in the field of large-scale 
space-deployable antennas.

The deployable scissor mesh enables fast and conveni-
ent wide-range transformation of shapes and volumes in 
response to environmental features with spatially variable 
requirements. Its basic components include two mutu-
ally intersecting rods, with the intersections connected 
by rotating joints [9]. The concept of the scissor structure 
was first introduced in 1961 by the Spanish architect Pin-
ero. Then, Escrig and Valcarcel derived the developable 
conditions of the scissor structure, and compiled a matrix 
calculation program to analyze the motion and force of 
the structure [10, 11]. Their study had a profound impact 
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on subsequent studies [12, 13]. At present, the scis-
sor unit is widely used in various fields of architecture, 
engineering and machinery with light weight and good 
mobility [14, 15]. The antenna of EGS (Experimental 
Geodetic Payload) sponsored by NASDA (The National 
Space Development Agency) is a scissor antenna con-
sisting of a scissor-shaped circular support truss and a 
rib with tensioned film radiating from a central hub [16]. 
Bettini et  al. [17] proposed a new lightweight structure 
based on the truss structure of a self-expanding scissor 
antenna with minimal mechanical connections. Gao et al. 
applied the scissor mechanism in robotics and designed a 
deployable manipulator for grasping objects with move-
ment bifurcation [18]. Many structural parameters of the 
scissor mechanism were evaluated by Mira et  al. [19]. 
Arnoutsa et al. [20] studied the geometric incompatibil-
ity in the development of bistable scissor structures. Li 
et  al. [21, 22] conducted studies on the buckling analy-
sis and deployment dynamics of a deployable structure 
based on the scissor unit. Akgüna et al. [23] proposed a 
structure with an adaptive scissor hinge that can be actu-
ated between multiple curves using an actuator. Com-
bining a scissor unit and a Hoekens linear link, Lu et al. 
[24] proposed a new deployable structure. Kwan [25] 
first introduced the scissor mechanism into the design of 
the parabolic deployable antenna and conducted a sim-
ple experiment. You and Pellegrino [26, 27] introduced 
a novel intermediate element in the middle of the scis-
sor structure to provide greater freedom to the shape 
design of the deployable structure while maintaining its 
structural integrity. Combined with the cable net struc-
ture, this innovative structure can be used in the mesh 
reflector antenna. Roovers et  al. [28, 29] pointed out 
that the scissor mechanism has considerable potential 
in profile design and proposed the aspherical geometric 
design method based on the generalized polar scissor 
unit. However, the scissor mechanism is applied mostly 
in-plane. Because of the limitation of geometric compat-
ibility conditions, space structures based on the scissor 
unit are mainly restricted to the spherical structure or 
the specific geometry, which also significantly limits the 
application of the scissor mechanism in the space reflec-
tor antenna. There are a few studies that apply spatial 
polar scissor units in engineering, especially in the aero-
space field.

In this study, polar scissor units is used in the space 
reflector antenna. A new method for the parametric 
design of the rotating surfaces is proposed by combin-
ing the space and the plane polar scissor units. The 
mathematical model of the spatial polar scissor unit is 
established in Section 2. The constraint equations of the 
scissor unit based on the rod length method are derived 
and vector method is proposed in Section  2. The two 

methods are compared, and the vector method is more 
suitable for solving the rod lengths of scissor units with 
definite surface constraints. In Section 3, a new method 
for the surface design of rotating paraboloids is proposed 
by using the derivations proposed in Section  2, which 
can realize a deployable structure that can form a target 
surface in the final state. The over-constrained problem 
is solved by releasing the curve constraint that locates at 
the end-point of the planar scissor mechanism. Kinemat-
ics and error analyses of the surface structure are per-
formed. In Section 4, the lengths of rods are designed by 
the above method and the unfolding tests are carried out, 
which verifies validates the design method and provides 
new ideas for the application of the scissor mechanism in 
the space reflector antenna.

2 � Mathematical Model and Constraint Equations
2.1 � Types of Scissor Unit
At present, there are three types of scissor units: trans-
lational scissor, polar scissor and angulated scissor units 
[12, 30]. For the translational scissor unit, the unit lines 
that connect the upper and lower nodes must be paral-
lel; they must remain in this state during deployment. 
For the polar scissor unit, the unit lines of the upper and 
lower nodes are converged at one point that is called the 
concurrency point. The angulated scissor unit was first 
proposed by Hoberman [31], and it is made up of two 
identical angled rods. The unit lines of this type also con-
verge at the concurrency point. The three types of scissor 
units are shown in Figure 1.

The translational and polar scissor units must satisfy 
the application constraints given by Eq. (1), for them to 
be deployed and folded completely [13].

2.2 � Spatial Polar Scissor Unit
All the motion patterns of the three types of scissor units 
described in Section  2.1 are planar. If the hinge that 
connects the two scissor units is changed to a spheri-
cal hinge, the planar motion of the scissor unit can be 
changed into spatial motion. If the spatial polar scis-
sor structure is required to be mobile, it is necessary to 
ensure that the extensions of the unit lines also converge 

(1)a′i + b′i = aj + bj .

a b c

Figure 1.  Three types of scissor units
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at the concurrency point. This is similar to placing the 
end of the scissor units on the ridgeline of a pyramid as 
shown in Figure 2, wherein, the pyramid apex is the con-
currency point. The spatial polar scissor unit constructed 
by this method can realize spatial motion. If each group 
of adjacent scissor units satisfies (1), the scissor unit can 
be deployed and folded completely in space [29].

The spatial polar scissor unit significantly expands the 
range of application of the scissor mechanism. If the spa-
tial polar scissor units are designed into a network with 
the concurrency points of all scissor units transmitted 
to the same point, the network of units can be deployed 
and folded synchronously. If an appropriate rod design 
is used for the spatial polar scissor units, it is possible to 
obtain a space surface structure that satisfies the require-
ments of deployability and foldability. The rods design 
method of the spatial polar scissor unit is derived theo-
retically in Sections 2.3.

2.3 � Constraint Equation of Spatial Polar Scissor Unit
For the spatial polar scissor unit (1) achieve motion 
synchronization of the ends of each scissor unit and (2) 
be able to fold and deploy fully, a constraint relation-
ship must be established. Two methods, namely the rod 
method (RM) and the vector method (VM), are intro-
duced to establish the constraint equations of spatial 
polar scissor units. In VM, the rod lengths of all scissor 
units are considered variables, and the constraint rela-
tionships between the scissor elements are represented 
by a trigonometric function. In VM, the endpoint coor-
dinates of the scissor units are used as variables in the 
Cartesian coordinate system to represent the constraint 
relationships among the scissor elements. The two meth-
ods are essentially the same. The rod length method is 
more intuitive, whereas the vector method is more suit-
able when the spatial scissor mechanism has a certain 

requirement with the analytical shape. The derivation of 
the constraint equation for the spatial polar scissor units 
under the two methods are given below hereafter.

2.3.1 � Rod Method
The dimension design method of the spatial scissor unit 
using a triangular mesh is deduced here. The triangular 
mesh is the simplest mesh that can form a closed-loop 
link. In case of a triangular mesh, the number of bars is the 
least and the theoretical calculation is the most conveni-
ent. Furthermore, the method of determining the size of 
the scissor unit with a triangular mesh can be generalized 
to a polygon mesh. To facilitate the mathematical descrip-
tion of the spatial scissor unit and the visualization of the 
graph, the triangular pyramid composed of the triangle 
mesh, ∆ABC, and the concurrency point P are disassem-
bled into the same plane as shown in Figure 3. Note that 
the non-spherical surface is target surface and surface 
equations are known. Next, the triangle mesh from point C 
is decomposed and expanded into the same plane. Because 
C ′ and C represent the same point, PC ′ = PC . The method 
for determining the size of the scissor unit under a single 
triangular mesh is described in detail below.

Points A, B and C are set as the upper vertices of the tri-
angular scissor unit, and the planar expansion of the space 
triangle scissor unit is as shown in Figure  4. The figure 
shows that there are twelve unknown parameters for the 
three sets of spatial polar scissor units: a11, a12, a21, a22, a31, 
a32, b11, b12, b21, b22, b31, and b32. Because the spatial posi-
tional relationship of points A, B, and C, and the concur-
rency point P are determined in the state shown in Figure 4, 
the line passing through the endpoints of triangle mesh AB, 
BC, and C ′A , scissor angle ϕ , and deployed angle of surface 
γ are known. The line connecting the endpoint of the scis-
sor unit to P is called a concurrency line, and is denoted as 
l (shown by the dotted line in Figure 4). Clearly, the values 
of l are known. These parameters determine the deployed 
state of the triangular scissor unit.

Scissor angle ϕ is represented by existing parameters 
based on the cosine law [29]:

Figure 2.  Pyramid structure of generalized spatial polar scissor unit. 
a, b is the construction process of spatial polar scissor units.

Figure 3.  Plane expansion of single triangle mesh
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A derivation process similar to Eq. (2) can solve for 
cosϕ2 and cosϕ3 . The deployability constraint needs to be 
satisfied to ensure that the spatial polar scissor unit can 
reach the minimum deployed state. Therefore, a set of 
deployability constraint equations is obtained:

Three sets of closed-loop equations are established to 
ensure that the end positions of adjacent scissor units are 
the same:

The deployed angles of the surface γ1 , γ2 , γ3 , are known 
parameters and can be expressed by the lengths of 
the rods and cosine of the scissor angles. Three sets of 
deployed angle formulas are obtained:

Note that the expressions for the deployed angles are 
not unique; each expression does not affect the final con-
straint relationship. Scissor unit endpoints must be on 
concurrency lines, and l are known parameters. Three 
sets of concurrency equations are obtained based on the 
relationships between edges and angles of triangles:

The sinusoidal relationship in Eq. (6) is expressed by 
the unknown parameters of the rod length:

(2)
C ′A2 = a211 + a212 − 2a11a12 cos (π− ϕ1),

cosϕ1 =
l2
1
− a2

11
− a2

12

2a11a12
.

(3)







a12 + b12 = a21 + b21,
a22 + b22 = a31 + b31,
a32 + b32 = a11 + b11.

(4)







t2
1
= t2

4
⇒ a2

11
+ b2

11
− 2a11b11 cosϕ1 = a2

32
+ b2

32
− 2a32b32 cosϕ3,

t2
2
= a2

12
+ b2

12
− 2a12b12 cosϕ1 = a2

21
+ b2

21
− 2a21b21 cosϕ2,

t2
3
= a2

22
+ b2

22
− 2a22b22 cosϕ2 = a2

31
+ b2

31
− 2a31b31 cosϕ3.

(5)































cos γ1 = cos(δ12 − ρ11) =
a11b12 + a12b11 − (a11a12 + b11b12) cosϕ1

t1t2
,

cos γ2 = cos(δ22 − ρ21) =
a21b22 + a22b21 − (a21a22 + b21b22) cosϕ2

t2t3
,

cos γ3 = cos(δ32 − ρ31) =
a31b32 + a32b31 − (a31a32 + b31b32) cosϕ3

t3t4
.

(6)































l1 = s1 + t1 = s4 + t4=(a12 + b11)
sin ρ12

sin γ1
+ t1 = (a31 + b32)

sin ρ31

sin γ3
+ t4,

l2 = s2 + t2 = (a11 + b12)
sin ρ11

sin γ1
+ t2 = (a22 + b21)

sin ρ22

sin γ2
+ t2,

l3 = s3 + t3 = (a21 + b22)
sin ρ21

sin γ2
+ t3 = (a32 + b31)

sin ρ32

sin γ3
+ t3.

The above process completes the derivation of the con-
straints of the spatial triangle scissor unit. If the rod length 
parameter satisfies Eqs. (3) and (7), the scissor unit can achieve 
mobility and complete deployment. When the scissor angles 
are ϕ1 , ϕ2 , and ϕ3 , as shown in Figure 4, the endpoints of the 
scissor unit are on the aspherical surface that we designed. If 
the spatial scissor unit only needs to satisfy only mobility and 
complete deployment, i.e., it has no deployed surface shape 
requirement, the constraints must be independent of ϕ , γ and 
l. Therefore, Eq. (7) is simplified to:

(7)



































l1 =

�

(a12 + b11)b12

a11a12 − b11b12
+ 1

�

t1 =

�

(a32 + b31)b32

a31a32 − b31b32
+ 1

�

t4,

l2 =

�

(a11 + b12)b11

a11a12 − b11b12
+ 1

�

t2 =

�

(a22 + b21)b22

a21a22 − b21b22
+ 1

�

t2,

l3 =

�

(a21 + b22)b21

a21a22 − b21b22
+ 1

�

t3 =

�

(a32 + b31)b32

a31a32 − b31b32
+ 1

�

t3.

The spatial polar scissor unit can be made movable and 
fully deployable by satisfying only Eqs. (3) and (8) if there 
is no shape constraint for the scissor mechanism. The 
above derivation process is also applicable to the spatial 
polygon scissor unit. Now, the formula for concurrency 

(8)











(a12+b11)b12
a11a12−b11b12

=
(a32+b31)b32
a31a32−b31b32

,

(a11+b12)b11
a11a12−b11b12

=
(a22+b21)b22
a21a22−b21b22

,

(a21+b22)b21
a21a22−b21b22

=
(a32+b31)b32
a31a32−b31b32

.

and deployability of the spatial n-edge scissor unit will be 
obtained by the recursive method.
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Figure 5 shows the planar decomposition of the spatial 
n-edge scissor unit. The circled part of the red frame is 
the n sets of scissor units that form the closed loop. The 
hinges are disassembled sequentially from junctions x1 
and x2n, x2n+1 and x4n. The black dotted line in the figure 
shows the original connection of the spatial closed loop 
by scissor units. The derivation of the concurrency and 
deployability equations for the spatial n-edge scissor unit 
are given below.

In Figure  5, n ≥  3 represents the number of sides of 
the polygon and the number of scissor unit groups. The 
deployability constraint is satisfied between adjacent scis-
sor units, and the resulting deployability constraint equa-
tions are

where n is the number of deployability constraint equa-
tions, and i is the ith set of scissor unit ( 1 < i < n, i ∈ Z ). 
The motion synchronization of the adjacent scissor unit 
must be ensured, and the concurrency constraint equa-
tions are

where n is the number of concurrency constraint equa-
tions, and i is the ith set of scissor unit ( 1 < i < n, i ∈ Z ). 
The first set of Eqs. (9) and (10) together form the closed-
loop equations of the spatial polar scissor unit

Eq. (11) makes the scissor unit form a spatial closed 
loop and satisfies the constraints of concurrency and 
deployability. This general formula can be used to 
design the rod lengths of the polygon scissor unit that 

(9)



































x1 + x2n+1 = x2n + x4n,
x2 + x2n+2 = x3 + x2n+3,

.

.

.

x2(i−1) + x2n+2i−2 = x2i−1 + x2n+2i−1,

.

.

.

x2n−2 + x4n−2 = x2n−1 + x4n−1,

(10)































































(x1 + x2n+2)x2n+1

x1x2 − x2n+1x2n+2

=
(x4 + x2n+3)x2n+4

x3x4 − x2n+3x2n+4

,

.

.

.

(x2i−1 + x2(n+i))x2n+2i−1

x2i−1x2i − x2n+2i−1x2(n+i)
=

(x2i+2 + x2n+2i+1)x2(n+i+1)

x2i+1x2i+2 − x2n+2i+1x2n+2i+2

,

.

.

.

(x2n−1 + x4n)x4n−1

x2n−1x2n − x4n−1x4n
=

(x2 + x2n+1)x2n+2

x1x2 − x2n+1x2n+2

,

(11)

{

x1 + x2n+1 = x2n + x4n,
(x1+x2n+2)x2n+1

x1x2−x2n+1x2n+2
=

(x4+x2n+3)x2n+4

x3x4−x2n+3x2n+4
.

constitutes spatial closed loop, and has superior versa-
tility. The validity of the formula will be experimentally 
verified by designing the rod length in Section 4.1.

2.3.2 � Vector Method
Different from the derivations in Section 2.3.1, constraint 
equations for the spatial polar scissor unit in the Cartesian 

Figure 4.  Mathematical description of space triangle scissor unit

Figure 5.  Planar decomposition of spatial n-edge polar scissor unit



Page 6 of 15Zhao et al. Chin. J. Mech. Eng.           (2020) 33:68 

coordinate system are derived in this section. In the space 
coordinate system, the length of the rod cannot be directly 
represented and the endpoint coordinates of the scissor 
unit can be used as variables. The norm of the vector is 
used to represent the length of the rod after obtaining the 
coordinates of the endpoint. Considering the triangular 
scissor unit as an example, six coordinate points includ-
ing eighteen parameters need to be expressed in the spa-
tial coordinate system, as shown in Figure 6. The number 
of variables and the number of equations in the vector 
method are more than that in RM, and the solution process 
is more complex. However, the advantage of VM is that it 
can control the shape of the surface in the deployed state in 
a better manner.

The coordinates of the endpoints of the spatial triangle 
scissor unit are shown in Figure 6. In this state, the concur-
rency point is P, and concurrency constraint equations can 
be expressed as

To represent the deployability constraint equations, 
we first need to express the coordinates of scissor 
points D, E, and F. Considering the coordinates of D as 
an example, D(xD, yD, zD) is the intersection of vectors 

⇀

A1B2 and 
⇀

A2B1 , therefore,

Solving the coordinates of the scissor point D by Eq. 
(13):

Similarly, the coordinates of the scissor points E and 
F can be obtained. The three sets of deployability con-
straint equations can be represented by the norms of 
the vector as

(12)























⇀

A1P//
⇀

A2P

⇀

B1P//
⇀

B2P

⇀

C1P//
⇀

C2P

⇒



































xa1 − xp

xa2 − xp
=
ya1 − yp

ya2 − yp
=

za1 − zp

za2 − zp
,

xb1 − xp

xb2 − xp
=
yb1 − yp

yb2 − yp
=

zb1 − zp

zb2 − zp
,

xc1 − xp

xc2 − xp
=
yc1 − yp

yc2 − yp
=

zc1 − zp

zc2 − zp
.

(13)







⇀

DA1//
⇀

DB2

⇀

DA2//
⇀

DB1

⇒

�

xD−xa1
xD−xb2

=
yD−ya1
yD−yb2

=
zD−za1
zD−zb2

,

xD−xa2
xD−xb1

=
yD−ya2
yD−yb1

=
zD−za2
zD−zb1

.

(14)



































xD =
(xb2ya1 − xa1yb2)(xb1 − xa2)− (xb1ya2 − xa2yb1)(xb2 − xa1)

(ya1 − yb2)(xb1 − xa2)− (ya2 − yb1)(xb2 − xa1)
,

yD =
(xb2ya1 − xa1yb2)(ya2 − yb1)− (xb1ya2 − xa2yb1)(ya1 − yb2)

(xb2 − xa1)(ya2 − yb1)− (xb1 − xa2)(ya1 − yb1)
,

zD =
(xb2za1 − xa1zb2)(za2 − zb1)− (xb1za2 − xa2zb1)(za1 − zb2)

(xb2 − xa1)(za2 − zb1)− (xb1 − xa2)(za1 − zb1)
.

If the spatial polar scissor unit satisfies Eqs. (12) 
and (15), mobility and complete deployment can be 
achieved in the Cartesian coordinate system. Because 
of the deployed state of the spatial scissor unit being 
independent of the position in the coordinate sys-
tem, concurrency point P can be moved to the origin 
of coordinates in practical applications to simplify the 
calculation.

3 � Surface Design Method
The reflector system is perhaps the most widely used 
high-gain antenna, and its gain is considerably greater 
than 30 dB under normal conditions in the microwave 
band. The simplest reflector antenna consists of two 
parts: a reflective surface and a tiny fed antenna. The 

most popular form is a parabolic deployable reflector 
antenna (PDA) in space-oriented applications, which 
is a rotating paraboloid. Based on the scissor unit, the 
surface geometry design of the PDA is presented in this 
section.

(15)











|
−−→
DA1| + |

−−→
DA2| = |

−→
FA1| + |

−→
FA2|,

|
−−→
DB1| + |

−−→
DB2| = |

−→
EB1| + |

−→
EB2|,

|
−−→
EC1| + |

−−→
EC2| = |

−→
FC1| + |

−→
FC2|.

Figure 6.  Mathematical description of vector method (A1–A3, B1–B3, 
is the endpoints of the polar scissor unit and D-F is scissor points)
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3.1 � Design Method
PDA is a paraboloid of revolution formed by a parabola 
rotating along a central axis. It has a characteristic in that 
it is completely symmetrical, i.e., the all curves that the 
paraboloid is divided along any plane passing through the 
central axis to get the same parabola. Using this feature, 
we propose a new method for the parabolic design using 
a combination of planar and spatial polar scissor units. 
First, the planar polar scissor unit is used for the curve 
design so that the end-points of all scissor units on the 
same side coincide with the parabola in a certain state 
when the plane scissor mechanism is deployed. Second, 
the scissor units that are at both ends of the planar scis-
sor mechanism are connected to two spatial polar scis-
sor units (referred to as top and bottom rings), which 
together form a spatial closed-loop structure with a 
single degree of freedom as shown in Figure  7. The top 
ring, bottom ring and planar scissor mechanism are 
based on the polar scissor unit, and the two ends of the 

planar scissor mechanism are connected to the top and 
bottom rings. Therefore, the extension lines of the end-
point connection between all the scissor units intersect 
the same concurrency point to meet the condition of syn-
chronous motion. If the mechanism meet the conditions 
of the deployability constraint on this basis, full deploy-
ment can be achieved.

3.1.1 � Bottom Ring (Top Ring) Design
The structure of the rotating paraboloid consists of a pla-
nar scissor curve and the bottom and top rings that con-
nect both its ends. As discussed in Section 2.2, there are 
concurrency and deployability constraints between the 
bottom ring, top ring, and planar scissor curve to ensure 
the validity of the designed structure. First, the dimen-
sional design of the bottom ring is presented in this sec-
tion. The design result will affect the size solution of the 
plane scissor curve, and the dimensions of the planar 
scissor curve will then be designed by the constraint rela-
tionship (see Section 3.1.2).

Depending on design requirements, the bottom and 
top rings will be designed as the spatial polar scissor 
unit mentioned in Section 2.2. More simply, in view of 
the complete symmetry of the rotating paraboloid, the 
bottom and top rings are regular polygonal structures, 
i.e., the structure of the rings can be determined by only 
a set of scissor units. Figure 7(a) shows the connection 
diagram of a set of planar scissor mechanisms and the 
bottom ring, where the blue color represents the pla-
nar scissor mechanism and the red color represents 
the bottom ring. For ease of description, the plane to 
which the planar scissor mechanism belongs is defined 
coincident with the xoz plane. In this case, the y-coor-
dinate of all the scissor units is 0 in the planar scissor 
mechanism. S1 and S6 are the two connection points of 
the planar scissor mechanism and bottom ring; S6 is the 
point on the circular diameter of the rotating parabo-
loid. Because the aperture size of the antenna and the 
parabolic equation are known (r =  300 mm is chosen 
as the aperture value), the coordinates of S6 are deter-
mined. To ensure that the concurrency constraint is 
satisfied, S1 satisfies

The rod length of the bottom ring is related to the 
number of equal divisions of the round circumference of 
the antenna. The higher number of divisions of the round 
aperture, the shorter the length of the rod. The top ring 
is similar to the bottom ring. However, considering the 
size limitation, if the top ring has too many aliquots, its 
rod length will be significantly short, which will affect the 
deployment process. In this paper, we divide the bottom 

(16)
x1

z1
=

x6

z6
.

Figure 7.  Design principle of parabolic deployable scissor 
mechanism
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ring into eighteen equal parts, and the top ring is divided 
into nine equal parts. That is, the bottom ring is made up 
of a spatial 18-edge polar scissor unit, and the top ring 
is made up of a spatial 9-edge polar scissor unit. Corre-
spondingly, nine sets of planar scissor mechanisms are 
placed on the side of the PDA to form a rotating parabo-
loid, as shown in Figure 7(b). For the ease of description, 
the two sets of scissor units that connect the planar scis-
sor mechanism and bottom ring are decomposed into the 
same plane, as shown in Figure 8. Because the scissor unit 
constituting the bottom ring is symmetrical, rods D1S6 
and D2S1 are identical. Concurrency point P is selected at 
the origin of coordinates. Then can be uniquely expressed 
as

If the coordinate position of S1 is determined, the rod 
length of the bottom ring can be uniquely determined by 
the similarity of triangles formula:

(17)

cos (γ2) =
2PS2

6
− D2S

2
6

2PS6 · D2S6
=

(

x2
6
+ z2

6

)

− 2r2 sin2(π/18)

2r

√

x2
6
+ z2

6
· sin(π/18)

.

(18)
D1S1

D2S6
=

PS1

PS6
=

d1

d2
.

Similarly, the size of the top ring can be obtained in the 
same way. After obtaining the size of the bottom ring, the 
deployability constraint needs to be satisfied to ensure 
complete deployment of the mechanism:

In the same way, a similar deployability constraint is 
satisfied between the top ring and the planar scissor 
mechanism:

where ld is the length of the scissor bar located on the top 
ring.

3.1.2 � Planar Scissor Mechanism
The rod length design of the plane scissor mechanism of 
the PAD is described below. The parabolic equation is 
determined in the Cartesian coordinate system. To more 
easily fit the shape of the planar scissor mechanism in the 
specific deployed state, the VM is used to derive the con-
straint equation of the curve formed by the polar scissor 
unit. The planar scissor mechanism needs to satisfy the 
following three conditions in the specific deployed state: 
(1) concurrency and deployability constraints are met 

(19)DS1 + DS6 = d1 + d2.

(20)AS5 + AS10 = ld ,

a

b
Figure 8.  Connection between bottom ring and plane scissor 
mechanism: a connection of a planar scissor mechanism and a scissor 
unit of the bottom ring, b planar decomposition of the connection
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Figure 9.  Planar scissor curve: a original planar scissor curve, b 
planar scissor curve that is released a curve constraint
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between all scissor units; (2) the end-points of all scissor 
units on the same side coincide with the parabola, which 
is called curve constraints, as S6‒S10 in Figure  9(a); and 
(3) the two sets of scissor units at both ends of the planar 
scissor mechanism form a closed loop with the top and 
bottom rings, which needs to satisfy the deployability 
constraints of Eqs. (19) and (20).

The number of scissor units in top ring is assumed to 
be n and the number of scissor units in planar scissor 
mechanism is assumed to be m. Therefore, the number 
of scissor units in bottom ring is 2n. We only study the 
number of constraints of a set of planar scissor mecha-
nisms and its connections with the top and bottom rings. 
(1) Concurrency constraints Cc: the planar scissor mech-
anism contains m −  1 concurrency constraints and the 
connections with the top and bottom rings contains 2 
concurrency constraints, so the number of Cc is m + 1. 
(2) Deployability constraints Cd: the number of deploya-
bility constraints is same as the concurrency constraints, 
is m  +  1. (3) Curve constraints Cq: because the lower 
endpoints of planar scissor mechanism coincide with the 
known parabola, the number of curve constraints is the 
same as the number of lower endpoints, which is m + 1, 
so the number of constraints Cs can be expressed:

If the planar scissor mechanism satisfies the above 
three conditions at the same time, there will be too many 
constraints and no solution. However, concurrency and 
deployability constraints must be satisfied. To solve 
this problem, we release endpoints of the planar scissor 
mechanism that connects with the top ring. That is, point 
S10 does not coincide with the parabola, but the extension 
of the line connecting S5 and S10 intersects at P, as shown 
in Figure 9(b). For a large-diameter antenna, whether or 
not S10 is coincident with the parabola has little effect if 
the rod lengths of scissor units connected to the top ring 
are sufficiently small and the distance from S9 to the rota-
tion axis of z is sufficiently short. The derivation of the 
constraint equation for the planar scissor mechanism 
shown in Figure 9(b) given below.
S6‒S9 are the points that coincide with the parabola and 

the appropriate coordinates can be determined according 
to design requirements. The remaining coordinate values 

(21)Cs = Cc + Cd + Cq = 3m+ 3.

are unknown. Take scissor unit C and scissor unit D as 
examples. Point C is the intersection of vectors S2S8 and 
vector S1S7 , so CS2//CS8 and CS3//CS7 . Point D is the 
intersection of vector S2S6 and S1S7 , therefore, DS1//DS7 
and DS2//DS6 . The coordinates of points C and D can be 
obtained by the method presented in Section 2.3.2:

If scissor units C and D satisfy the deployability con-
straint, then

If scissor units C and D satisfy the concurrency con-
straint, then

There are also constraints between other sets of scissor 
elements as shown in Eqs. (23) and (24). Moreover, the 
two sets of scissor units at both ends of the planar scissor 
mechanism also need to satisfy the constraint Eqs. (19) 
and (20). The PDA composed of the planar scissor mech-
anism, top ring, and bottom ring can realize mobility and 
complete deployment under the above conditions.

3.2 � Motion and Error Analyses
In this section, the motion path simulation and error 
analysis of PSDA will be carried out. First, a satellite 
often needs to carry loads to complete multiple on-orbit 
services in space. A kinematics analysis can effectively 
determine the working space of PSDA during the deploy-
ment to avoid interference with other loads on the sat-
ellite. Second, PSDA can ideally achieve the coincidence 

(22)



















































xC =
(x2z8 − x8z2)(x3 − x7)− (x3z7 − x7z3)(x2 − x8)

(z8 − z2)(x3 − x7)− (z7 − z3)(x2 − x8)
,

zC =
(x2z8 − x8z2)(z7 − z3)− (x3z7 − x7z3)(z8 − z2)

(x2 − x8)(z7 − z3)− (x3 − x7)(z8 − z2)
,

xD =
(x1z7 − x7z1)(x6 − x2)− (x2z6 − x6z2)(x1 − x7)

(z7 − z1)(x2 − x6)− (z6 − z2)(x1 − x7)
,

zD =
(x1z7 − x7z1)(z6 − z2)− (x2z6 − x6z2)(z7 − z1)

(x1 − x7)(z6 − z2)− (x2 − x6)(z7 − z1)
.

(23)

√

(xC − x2)
2 + (zC − z2)

2 +

√

(xC − x7)
2 + (zC − z7)

2

=

√

(xD − x2)
2 + (zD − z2)

2 +

√

(xD − x7)
2 + (zD − z7)

2.

(24)
x1

x6
=

z1

z6
,
x2

x7
=

z2

z7
,
x3

x8
=

z3

z8
.

Table 1.  Rod length of planar scissor mechanism (mm)

Rod number 1‒7 2‒6 2‒8 3‒7 3‒9 4‒8 4‒10 5‒9

Part 1 58.33 67.06 72.47 64.58 65.87 34.16 30.19 18.08

Part 2 70.73 49.48 63.50 65.31 33.11 62.20 14.11 36.95

Total length 129.06 116.54 135.97 129.89 98.98 96.36 44.30 55.03
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of the lower ends of the planar scissor mechanisms with 
the paraboloid in a certain state, as shown in Figure 9(b). 
However, in practice, the machining accuracy and defor-
mation caused by the induced stress during the deploy-
ment cause a shape error in the PSDA. Therefore, it is 
necessary to carry out an error analysis on the PSDA.

The smaller design aperture (r  =  300 mm) chosen 
in this study is for the ease of manufacturing and the 
parabolic expression to be satisfied after deployment is 
Eq. (25). It can be seen from the design process in Sec-
tion  3.1 that the design method is applicable to any 
rotating paraboloid. If the verification experiment of 
this prototype can meet the requirements, this surface 
design method can be applied to larger aperture para-
bolic expressions. Considering the machining error of 
0.01  mm as an example, we carried out the dimension 
design of the rods for PSDA. Because the lower end of 
the planar scissor mechanism contains all the points that 
are coincident with the paraboloid of rotation, it is not 

necessary to target the overall structure for kinematic 
analysis and error analysis; instead one needs to target 
only for the planar scissor mechanism. In the deployed 
state selected in this paper, the ideal coordinate positions 
of S6, S7, S8, and S9 are (300, 20), (222, 110.48), (120, 188), 
(30, 218), respectively.

Through MATLAB program calculation, the dimen-
sional data of the planar scissor mechanism is presented 
in Table  1. The connection between S1 and S7 in Fig-
ure  9(b) is recorded as rod 1‒7 and the remaining part 
numbers are named in the same way. The portion of the 
upper-end of the scissor bar to the scissor point is desig-
nated Part 1, and the part of the lower-end point to the 
scissor point is designated Part 2.

When the trajectory fitting of the end of the scis-
sor mechanism is performed, rod 5‒9 is selected to be 
fixed, and the position of S9 in the coordinate system is 
the same as that in which S9 is located when the PSDA is 
deployed into a paraboloid. The hinge that connects rods 
5‒9 and 4‒10 is set as driving, as shown in Figure 10(a). 
In practice, the PSDA cannot be completely deployed 
because of the thickness and shape of rods and the space 
occupied by hinges. Therefore, to fit the real situation, the 
angle between rods 5‒9 and 4‒10 does not start from 0° 
during the simulation, rather it starts from a small angle. 
The initial scissor angle between 5‒9 and 4‒10 is set as 
10° in this paper, as shown in Figure 10(a). It is calculated 
that rod 4‒10 is rotated by 166.62° in the clockwise direc-
tion and the planar scissor mechanism is deployed to the 
target state. Figure 10 shows the deployment process.

(25)z = −
x2 + y2

450
+ 220.

Figure 10.  Two state of planar scissor mechanism (the fixed rod and 
drive is indicated in a)

Figure 11.  Motion trajectories of upper endpoints



Page 11 of 15Zhao et al. Chin. J. Mech. Eng.           (2020) 33:68 	

Figures  11, 12, and 13 show the movement trajecto-
ries of the upper end-point, scissor point, and lower 
end-point of the planar scissor mechanism during the 
deployment, respectively. Because rod 5‒9 is set to be 
fixed, end-points S5 and S9 and scissor point D show 
no change in their positions, which appear as a straight 
line in the three figures. It can be seen that the motion 
path of the planar scissor mechanism is continuous and 
smooth from the folded state to the deployed state, and 
the deployment process is feasible and controllable.

The final deployed state of PSDA cannot ensure that 
all the lower ends of the planar scissor mechanism 
are coincident with the paraboloid, and will be uncer-
tain deviation because of the errors in the rotation 
angle and machining. The calculated coordinate value 
in the deployed state is compared with the theoretical 

coordinate value. The following data is calculated sepa-
rately: (1) The difference between theoretical and calcu-
lated values of the x coordinate is represented as �u . It 

Figure 12.  Motion trajectories of scissor points

Figure 13.  Motion trajectories of scissor points
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is positive when the value of the former is greater than 
that of the latter. (2) The difference between theoretical 
and calculated values of the y coordinate is represented 
as �w . It is positive when the value of the former is 
greater than that of the latter. (3) The distance between 
theoretical coordinate and calculated coordinate val-
ues is represented as �l . There is no motion error to 
rod 5‒9 because of the fixed location during the move-
ment. Therefore, the error relationship between calcu-
lated coordinates and theoretical coordinates can be 
measured based on rod 5‒9. Express the ideal coordi-
nate positions as 

(

xT (i)yT (i)
)

 , the calculated coordinate 
positions as 

(

xc(i)yc(i)
)

 , the difference formulas are as 
follows:

The calculated coordinate values of S6, S7, S8, and 
S9 obtained by simulations are (299.789, 19.7351), 
(221.9122, 110.3274), (119.9839, 187.939) and (30, 218) 
respectively. Figure 14 shows the offset between calcu-
lated coordinates and theoretical coordinates for S6, S7, 
and S8.

4 � Example and Prototype
4.1 � Spatial Triangle Polar Scissor Unit
The length of the spatial triangle scissor unit is designed 
to verify the correctness of (9) and (10). The set of rod 
lengths based on the Monte Carlo method is presented 
in Table 2. The portion form the upper-end of the scissor 

(26)















�u = xT (i)− xC(i),

�w = yT (i)− yC(i),

�l =

�

(xT (i)− xC(i))2 + (yT (i)− yC(i))2,

i = 6, 7, 8.

bar to the scissor point is called Part 1, and the por-
tion from the lower-end point to the scissor point is 
called Part 2. The spatial polar scissor unit realizes the 
space movement, and connections with circular rings 
are used between the scissor units instead of spheri-
cal hinges to reduce the processing difficulty. Figure  15 
shows the motion sequence of deployment for a spatial 
triangular scissor unit. The experimental result shows 
that the spatial triangle scissor unit can achieve complete 

Table 2.  Rod lengths of spatial triangular polar scissor unit (mm)

Rod number No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

Part 1 53.6269 54.663 55.4085 45.6324 52.5127 53.0045

Part 2 44.3646 54.6929 48.7305 43.6191 55.3153 41.8502

Total length 97.9915 109.3559 104.139 89.2515 107.828 94.8547

Figure 15.  Motion sequence of spatial triangular polar scissor unit

Figure 16.  Planar polar scissor mechanism: a folded state, b 
deployment state

Table 3.  Rod sizes of top and bottom rings (mm)

Rod sizes Top ring Bottom ring

Part 1 16.22 47.34

Part 2 15.98 60.47

Total length 32.2 107.82

Number 18 36
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deployment, and the deployment process can be smooth, 
which verifies the correctness of the RM.

4.2 � Planar Polar Scissor Curve
The planar scissor mechanism has been designed on the 
basis of motion simulation and error analysis in Sec-
tion 3.2. The data on rod lengths are presented in Table 1. 
Figure 16 shows the folded and deployed states of the pla-
nar scissor mechanism. The deployment process is con-
sistent with the simulation analysis in Section 3.2.

4.3 � Polar Scissor Deployable Antenna
PSDA is a spatial closed-loop structure consisting of a 
top ring, a bottom ring and planar scissor mechanisms. 
Because the diameter of the bottom ring is consider-
ably larger than that of the top ring, the rod lengths of 
the bottom ring are bound to be significantly larger than 
that of the top ring. To reduce the difference between 
the lengths of the top and bottom rings and the design 
of the overall structure, the bottom ring is designed as a 

regular octadecagon polar scissor unit, and the top ring 
is designed as a nonagon polar scissor unit. Therefore, 
nine sets of planar scissor mechanisms are machined to 
connect the top and bottom rings. The dimensions of 
the top and bottom rings are designed using the method 
described in Section  3.1.1. The design results are pre-
sented in Table 3. The method that increases the number 
of planar scissor mechanisms can be chosen to achieve 
better surface fitting. Accordingly, the number of polygon 
sides for top and bottom rings will increase.

In the PSDA model, the connecting parts between the 
rods are represented by dots. These dots need to be con-
verted into objects that can be fabricated with shapes 
and thicknesses. At the end of the scissor device, the 
joint connects a plurality of scissor devices in a three-
dimensional configuration, and each scissor device typi-
cally rotates about a different axis during deployment. 
Fabricating such a structure requires high-tech ball joints 
that considerably increase the cost of the structure. On 
the contrary, based on the movement characteristics of 
PSDA, the hinge structures connecting the planar scissor 
mechanism and top/bottom ring will significantly reduce 
the manufacturing cost as shown in Figure  17. The 
assembly of all the parts ultimately constitutes the PSDA. 
Figure 18 shows the motion sequence of the deployment 
process for PSDA. Experiments show that the final state 
of deployment can achieve the desired effect.

5 � Conclusions
In this study, spatial and planar polar scissor units were 
combined on the basis of relevant properties of the 
polar scissor unit. A novel method for designing the 
aspherical geometry of a space reflector antenna by the 
polar scissor unit was proposed. The main conclusions 
are as presented below:

1.	 The concurrency and deployability equations for spa-
tial polar scissor units were derived by two methods: 
the RM and VM. The constraint equations of the spa-
tial n-sided polar scissor unit were summarized, and 
their validities were experimentally.

2.	 A new design method of PDA that combined planar 
and spatial polar scissor units was proposed, and a 
new mechanism, called PSDA was designed on the 
basis of the above equations. The method of releasing 
the curve constraint that locates at the end-point of 
the plane scissor mechanism solved the problem that 
there may be no reasonable rod length.

3.	 The rod lengths of the planar scissor mechanism 
were designed, and the kinematic simulation and 
error analysis were carried out. The analysis results 
showed that the deployed PSDA can achieve a better 
fit with a rotating paraboloid.

Figure 17.  Structures of the connectors in the PSDA

Figure 18.  Motion sequence of deployment for PSDA
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4.	 A prototype of PSDA was fabricated, and a deploy-
ment experiment was realized to verify the feasibility 
of the design method.

It is worth noting that the selection of concurrency 
point P was arbitrary in this paper. P was selected at 
the origin of the coordinate system for ease of calcula-
tion. In fact, the selection of P plays a crucial role in the 
design of rod lengths. The rod length can be optimized 
by P. We will focus on the optimization of rod lengths 
for this new spatial surface design method in our next 
study. Furthermore, by considering the operating char-
acteristics of the space reflector antenna, improving 
the profile accuracy of this antenna will be one of the 
research objectives in the future.
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