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Abstract 

Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new 
method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accu-
rately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate 
whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then 
demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order 
to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is 
proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals 
to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in high-
frequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of 
easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert enve-
lope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments 
of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new 
method.

Keywords:  Wind turbine bearing faults diagnosis, Multi-masking empirical mode decomposition (MMEMD), Fuzzy 
c-mean (FCM) clustering
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1  Introduction
Wind energy is one of the fast growing renewable energy 
resources, and is going to have remarkable share in the 
energy market [1]. However, as the reason of long term 
running in atrocious conditions such as bad weather, 
variable speeds, alternating and heavy loads, wind tur-
bine inevitably generates various faults [2], which include 
blades fault, bearing fault, gearbox fault, etc. [3–5]. Bear-
ings are essential components of wind turbine, but the 
faults are often failed to be alarmed promptly by moni-
toring systems, resulting in serious damages. Therefore, 

methods of bearing fault diagnosis timely and accurately 
are extremely valuable.

Fault feature analysis is the premise of fault diagno-
sis. The common fault analysis methods include domain 
analysis, frequency domain analysis and time frequency 
domain analysis [6]. Time domain analysis is the earli-
est method used in the mechanical fault diagnosis. The 
commonly used time-domain indicators include maxi-
mum, minimum, mean, mean square root and kurtosis 
value [7]. Frequency domain analysis such as spectrum 
and envelope analysis is the most involved method in the 
mechanical fault diagnosis [8]. However, analysis only 
relying on time domain or frequency domain cannot 
meet the needs of the current mechanical fault diagnosis, 
time-frequency analysis has become a hot research topic 
[9]. In the past years, time-frequency analysis focused on 
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short time Fourier transform (STFT), Wavelet transform 
(WT), and Wigner-Ville distribution (WVD) [10]. How-
ever, it is difficult to obtain high resolution by STFT and 
WT, and is limited in non-stationary signal analysis [11]. 
WVD is easy suffered from inevitable cross-term inter-
ferences, not suitable for many real applications [12]. 
EMD is a method of signal processing suitable to non-
linear, non-stationary signal, which can decompose the 
bearing vibration signal into a series of intrinsic mode 
functions (IMF) adaptively [13]. Each IMF is an approxi-
mate single frequency signal and different IMFs contain a 
large number of intrinsic features of different frequency 
bands. Combined with Hilbert transform, bearing fault 
characteristic frequency can be identified by enveloped 
normalized amplitude-frequency spectrum and fault type 
can be determined [14].

However, EMD has the disadvantages of mode mixing 
[15], and bearing vibration signal contains a large num-
ber of different frequency components and easily lead to 
mode mixing, which affect the accuracy of decomposi-
tion seriously. In order to solve the problem, the domes-
tic and foreign experts have done a lot of research and 
proposed a variety of methods, of which the most famous 
is ensemble empirical mode decomposition (EEMD) [16] 
proposed by Wu et  al. By adding white noise of finite 
amplitude to the original signal, EEMD changes the local 
extremum, making the signal continuous in scale and 
avoiding fitting error caused by the uneven distribution 
of the extreme in the cubic spline interpolation, and then 
mode mixing is restrained.

EEMD can suppress mode mixing, but the white noise 
added in original signal is difficult to be controlled [17]. 
Furthermore, multiple decompositions are needed to 
counteract the effect of noise, result in increasing com-
putational complexity seriously [18]. Masking empiri-
cal mode decomposition (MEMD) could overcome the 
shortcomings of EEMD [19]. However, it adds only one 
masking signal to the original signal and decomposes the 
signal by EMD. It does not has the theoretical basis and 
the determination of masking signal is complex.

This paper proposes an improved method to MEMD, 
named MMEMD, which can restrain low-frequency 
component from mixing in high-frequency component 
effectively in the sifting process, and then suppress the 
mode mixing by adding multi-masking signals to the sig-
nals to be decomposed in different levels. Compared with 
MEMD, MMEMD can restrain mode mixing better and 
the masking signal is easy to determine.

In fact, the vibration signals of wind turbine bearing 
(whether in fault or not) are collected by state monitoring 
system every day. However, it is a development process 
for the bearing from normal to fault, and the vibration 
dataset is large, it is difficult to discover whether fault is 

failed to be found and what is the fault type. So it is nec-
essary to classify the datasets to confirm whether there is 
a fault and how many fault types there are. If fault signals 
exist, the rapid and accurate method is required for fur-
ther analysis to determine the fault type.

Commonly, fault classification can be realized by con-
ventional time-domain features, such as mean, mean 
square root. Kurtosis value as input features of Fuzzy 
c-means (FCM). FCM clustering is an unsupervised 
learning algorithm, which partition data into a certain 
number of groups according to certain rules and require-
ments but does not need a priori knowledge [20]. Owing 
to the simple, raped, accurate advantages of FCM cluster-
ing, it is widely used in mechanical fault diagnosis [21].

In the light of the problem above, a new method named 
FCM-MMEMD is proposed in this paper. FCM is for 
classifying the dataset to confirm whether abnormal sig-
nals exist. If there are abnormal signals, the improved 
method MMDMD proposed in this paper is performed 
to decompose the abnormal signals into different fre-
quency band, and Hilbert envelope is used finally to con-
firm the fault type. The results of simulation, experiments 
and application show that the method has the advantages 
of rapid and accurate diagnosis.

2 � Multi‑Masking Empirical Mode Decomposition
MMEMD is an improved method of MEMD, both of 
them are based on EMD. In order to explain the per-
formance and the advantages of MMEMD method, the 
principle of EMD and MEMD, MMEMD are given first.

2.1 � IMF and EMD
Signals are composed of a series of IMF with orthogonal-
ity and completeness [22]. Each IMF represents a differ-
ent vibration, whose instantaneous frequency contains 
the local characteristics of the signal, and the original sig-
nal can be recovered by reconstructing all IMFs [23].

The essence of EMD decomposition is to obtain the 
IMFs by means of sifting, whose goal is to subtract away 
the large-scale features of the signal repeatedly until 
only the fine-scale features remain [24]. For a signal x(t) , 
according the IMF definition, the EMD decomposition 
can use the envelopes defined by the local maxima and 
minima. Once the extrema are identified, the upper enve-
lope is obtained by connecting all the local maxima via 
a cubic spline line. Repeating the procedure for the local 
minima can obtain the lower envelope. The upper and 
lower envelopes cover all the data among them and their 
mean value is designated as m1(t) . Then the first sifting is 
employed to get the first order mode function of first sift-
ing, h1(t) , as follows [25]: 

(1)h1(t) = x(t)−m1(t).
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Ideally, h1(t) satisfies the IMF requirements. How-
ever any small knee point in the process of sifting may 
become a new extremum, which also contains the scale 
feature and may be omitted in the process of obtaining 
the upper and lower envelopes. So it does not meet the 
requirements in fact, and repetition of sifting is needed. 
The upper and lower envelopes of h1(t) is constructed 
and their mean is designated as m12(t) . Then the second 
sifting is employed to get the first order mode function 
of second sifting, h12(t) , as follows: 

Repeating the above sifting process until the first 
order mode function of the kth sifting, h1k(t) , satisfies 
the two conditions of IMF: 

As a result, h1k(t) is the first order IMF of x(t) and 
designated as c1(t) : 

The first order residual component can be obtained 
by subtracting c1(t) from x(t) as follows: 

Since r1(t) still contains information and should 
be treated as a new signal and repeat the same sift-
ing process until the residual component becomes a 
monotonic function from which no more IMFs can be 
extracted. As a result, the signal x(t) is decomposed 
into a series of IMFs and a residual component (RES) 
as follows: 

2.2 � MEMD Algorithm
Although EMD can decomposes the signal into a series 
of IMFs. There are mode mixing in the IMFs. MEMD is 
proposed to overcome the disadvantage of mode mix-
ing. The basic idea is to insert a masking signal in to the 
original signal to prevent the lower frequency component 
from being into the IMFs. The algorithm of MEMD can 
be described as follows.

(1)	 The original signal x(t) is decomposed by EMD 
and the first IMF is obtained. The IMF contains the 
highest frequency component.

(2)	 The Hilbert transform is performed on the first IMF 
and the instantaneous frequency is obtained. The 
frequency of the masking signal is calculated as fol-
lows: 

(2)h12(t) = h1(t)−m12(t).

(3)h1k(t) = h1(k−1)(t)−m1k(t).

(4)c1(t) = h1k(t).

(5)r1(t) = x(t)− c1(t).

(6)x(t) =

n
∑

i=1

ci(t)+ rn(t).

where fsam is the sample rate, n is the number of 
sample point, a(i) and fins(i) is the amplitude and 
instantaneous frequency of the ith sample point.

(3)	 Construct the masking signal s(t) : 

 where ak = 1.6 obtained by the rule of thumb.
(4)	 Insert the s(t) into x(t) as follows: 

(5)	 Perform EMD on x+m(t) and x−m(t) . Take the 
average of IMFs obtained by x+m(t) and x−m(t) as 
the final IMFs.

From the algorithm we can see that it performs 3 times 
EMD on the signal and the essence of MEMD is EMD in 
fact. Even more the frequency of masking signal is depend 
on the Hilbert transform and the amplitude is depend on 
experience. So, the performance of decomposition cannot 
be guaranteed.

2.3 � Principle of MMEMD
To yield a better decomposition result, MMEMD is pro-
posed in this paper. MMEMD changes the accuracy of 
extreme sampling by adding masking signals of different 
frequency to the signals to be decomposed in different 
decomposition levels, which can prevent lower frequency 
components effectively from being included in high fre-
quency components in the process of sifting, and achieve 
the suppression of mode mixing as a result. The mathemat-
ical principle of MMEMD is as follows.

Take the first level decomposition as an example. The 
masking signal is constructed according to the frequency 
and amplitude of original signal:

where am is the amplitude and fm is the frequency of the 
masking signal, both of them are not less than original 
signal. x+(t) is obtained by adding sm(t) to the original 
signal x(t) as follows:

According to the Shannon’s sampling theorem [26], a 
signal can be perfectly recovered when its frequency is not 
greater than half of the sampling frequency. So x(t) can be 
divided into two parts, xl(t) whose frequency is less than or 
equal to fm

/

2 and xh(t) whose frequency is greater than 
fm
/

2 . Eq. (8) can be re-expressed: 

(7)fk =

∑n
i=1 a(i)f

2
ins(i)

fsam
∑n

i=1 a(i)fins(i)
,

(8)s(t) = ak sin(2πfk),

(9)x+m(t) = x(t)+ s(t),

(10)x−m(t) = x(t)− s(t).

(11)sm(t) = am sin(2πfmt),

(12)x+(t) = x(t)+ sm(t).
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Suppose that the first maximum of x+(t) lies at t1 , the 
sampling point of upper envelope of x+(t) can be expressed 
as eup(t):

where cosc(t) = cosc(πt)/(πt),xl(t) does not lose infor-
mation after extreme sampling but aliasing is unavoid-
able. Therefore, Eq. (14) can be re-expressed as follows:

Similarly, if the first minimum of x+(t) locates at t2 , the 
lower envelope can be written as:

where xup(t) and xdn(t) are the high frequency mix-
ing components. The median envelope can be obtained 
according to Eqs. (15)‒(18):

It is obvious that the masking signal is only a constant 
in median envelope. Suppose Fourier transform sampling 
frequency is fs , xud(t) can be represented in frequency 
domain as follows:

where D =
[

fs
/

fm
]

, Dup = [fst1], Ddn = [fst2], 
ω = DΩ

/

fs, the symbol [·] indicates integer part, t1 and t2 
has the following relationship:

(13)x+(t) = xl(t)+ xh(t)+ sm(t).

(14)

eup(t) =

∞
∑

k=−∞

[

x

(

k

fm
+ t1

)

+ am sin(2πfmt1)

]

× cosc[fm(t − t1)− k],

(15)eup(t) = xl(t)+ xup(t)+ am sin(2πfmt1),

(16)

xup(t) =

∞
∑

k=−∞

[

xh

(

k

fm
+ t1

)]

cosc[fm(t − t1)− k].

(17)edn(t) = xl(t)+ xdn(t)+ am sin(2πfmt2),

(18)

xdn(t) =

∞
∑

k=−∞

[

xh

(

k

fm
+ t2

)]

cosc[fm(t − t2)− k],

(19)emid(t) =
eup(t)+edn(t)

2
= xl(t)+ xud(t)

+ 1
2
[am sin(2πfmt1)+ am sin(2πfmt2)],

(20)xud(t) =
1

2
[xup(t)+ xdn(t)].

(21)

Xud(jΩ) =

D−1
∑

i=0

xh

(

j
ω − 2πi

D

)

× sin

[

(Ddn − Dup)πi

D

]

e−j
Ddn+Dup

D πi,

Ignoring the error generated by the integer operation, 
Eqs. (23) and (24) can be get:

Therefore, Xud(jΩ) can be rewritten as follows: 

Because sin( 1
2
πi) = 0 when i is even and 

e−jfmπi(t1+t2) ≈ 0 when i is odd, there is Xud(jΩ) ≈ 0 . 
Thus, high frequency mixing components is effectively 
suppressed and emid(t) can be re-expressed as follows:

where C = 1
2
[am sin(2πfmt1)+ am sin(2πfmt2)] , is a con-

stant. According to the EMD method, c1+(t) is obtained 
by many times sifting of x+(t):

c1+(t) is the first IMF of x+(t) , in which low frequency 
component in original signal is completely eliminated 
and only high frequency components remained.

Similarly, x−(t) is obtained by subtracting sm(t) from 
the original signal as follows: 

And the first IMF of x−(t) , c1−(t) , is obtained by many 
times sifting of x−(t) : 

Take the mean of c1+(t) and c1−(t) , the first IMF of 
x(t) is obtained as follows: 

As discussed above, the effect of masking signal is 
to suppress the low-frequency components sneak into 
high-frequency components. And high frequency com-
ponents are extracted at each decomposition. It means 
that the frequency is just required to be between the 
highest frequency and the sub highest frequency. And 
the amplitude should be the maximum amplitude of the 
signal to be decomposed. Both of them are easily deter-
mined by examining the peaks of the DFT spectrum.

(22)t2 − t1 =
1

2fm
.

(23)
(Ddn − Dup)

D
=

1

2
,

(24)
(Ddn + Dup)

D
= (t2 + t1)fm.

(25)

Xud(jΩ) =

D−1
∑

i=0

xh

(

j
ω − 2πi

D

)

sin(
1

2
πi)e−jfmπi(t1+t2).

(26)emid(t) = xl(t)+ C ,

(27)c1+(t) = xh(t)+ sm(t)− C .

(28)x−(t) = x(t)− sm(t).

(29)c1−(t) = xh(t)− sm(t)− C .

(30)c1(t) = xh(t)− C .
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2.4 � MMEMD Algorithm
According to the MMEMD principle, MMEMD decom-
position algorithm is as follows.

(1)	 The DFT spectrum of the original signal x(t) is 
analyzed, and the decomposition level j and the 
approximate frequency of each frequency band are 
determined.

(2)	 Let i = 1 , xi(t) = x(t).
(3)	 According to the step (1), the frequency of the 

adjacent two frequency bands fi1 and fi2 are deter-
mined. The average values are taken as the fre-
quency of the masking signal. The amplitude of the 
higher frequency component is taken as the ampli-
tude aim . The masking signal, sim(t) , is obtained as 
follows: 

(4)	 Construct xi+(t) and xi−(t) according to Eqs. (12) 
and (28).

(5)	 Obtain ci+(t) and ci−(t) by means of sifting use 
cubic spline interpolation method. Take average of 
them and get the ci(t) , which is IMFi.

(6)	 Subtract ci(t) from xi(t) to obtain the r(t) , and let 

(7)	 Let xi(t) = r(t) and i = i + 1 , repeat above steps 
from (3) until i = j and the j IMFs are obtained.

3 � FCM‑MMEMD Method
FCM clustering is one of the most commonly discussed 
and used fuzzy clustering algorithm [27].

Let X = {x1, x2, . . . , xn} donates the fault features, 
which can be partitioned into c clusters. n represents the 
mount of the features. Suppose that the cluster center is 
vi(i = 1, 2, . . . , c) and the samples membership function 
belongs to the cluster i is uik(i = 1, 2, . . . , c, k = 1, 2, . . . , n) . 
Then the objection function of FCM can be defined [28]:

where d2ik = �xk − vi�
2, U = {uik}, v = (v1, v2, · · · , vc), 

m > 1 is a constant. And uik satisfies the following 
requirements [29]:

(31)sim(t) = aim sin(2πfimt).

(32)r(t) = xi(t)− ci(t).

(33)Jm(U , v) =

c
∑

i=1

n
∑

k=1

umikd
2
ik ,

(34)
c

∑

i=1

uik = 1, ∀k = 1, 2, . . . , n,

(35)0 <

n
∑

k=1

uik < n, ∀i = 1, 2, . . . , c.

According to the Lagrange multiplier optimization 
method, when the object function reaches its mini-
mum, the requirements are:

The commonly used clustering performance index is 
the partition coefficient (PC), the larger the value is, the 
better the clustering result is [30]. 

For the simple principle of FCM clustering, it is 
applied in bearing fault diagnosis in this paper. Figure 1 
is the flowchart of FCM-MMEMD and the process can 
be detailed as follows.

(1)	 Sample N points from the bearing signal x . FCM is 
to confirm whether there are abnormal signals. We 
calculate mean square root and kurtosis value as the 
fault features according to Eqs. (39) and (40): 

(36)uik =

c
∑

j=1

d
2

m−1

jk

/

d
2

m−1

ik ,

(37)vi =

n
∑

k=1

umikxk

/

n
∑

k=1

umik .

(38)PC =
1

n

c
∑

i=1

n
∑

k=1

u2ik .

(39)Xrms =

√

√

√

√

N
∑

i=1

x2i

/

N ,

Bearing fault
datasets

MMEMD
decomposition

FCM cluster

Meansquare root Kurtosis value

Hilbert envelope

Figure 1  Flowchart of FCM and MMEMD
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(2)	 Classify the datasets into n categories by FCM clus-
tering. n = {1, 2, 3, 4, . . .} is determined according 
to the partition coefficient (PC), the bigger of PC, 
the better of cluster result.

(3)	 Take one sample from each category and decom-
pose it by MMEMD, different frequency bands 
(IMFs) are obtained.

(4)	 Analyze the high frequency component by Hilbert 
envelope to determine the fault types.

4 � Simulation Experiment and Application
In order to improve the high performance of MMEMD 
and the feasibility of FCM-MMEMD method, simulation 
signal decomposition, bearing fault diagnosis experiment 
and wind turbine bearing fault diagnosis application are 
conducted.

4.1 � Decomposition of Simulation Signal by MMEMD
Consider a multi-component signal x(t):

where x1(t) = sin(100πt), x2(t) = 1.5 sin(200πt) and 
x3(t) = sin(300πt), the sample frequency f = 4000 Hz 
and sample time t = 0.256 s, so 1024 points are obtained.

First, x(t) was decomposed by EMD, 5 IMFs and a 
RES were obtained as Figure 2. Pearson correlation coef-
ficients between x(t) and IMFs were calculated as in 
Table 1. So the most relevant IMFs are IMF1, IMF2 and 
IMF3. Ideally, IMF1 should be x3(t) , but it contains 3 fre-
quency components, namely 150 Hz, 100 Hz and 50 Hz, 
because of the effect of mode mixing. And IMF2 should 
be x2(t) , but the amplitude is significantly reduced.

As discussed above, EMD has the shortcoming of 
mode mixing, which seriously affects the decomposition 
results.

Secondly, x(t) was decomposed by EEMD as a com-
parison. The white noise amplitude was determined as 
0.1 and average number was 50 by repeated experiments. 
Figure  3 is the EEMD decomposing result, which show 
only IMF1-IMF3 for convenience. From Figure  3 It can 
be seen that the IMF1 contains 2 frequency components 
and the amplitude of IMF2 is reduced a little. So EEMD 
can restrain the mode mixing but cannot avoid mode 
mixing completely.

Thirdly, x(t) was decomposed by MEMD. According 
to the method of Ref. [9], the frequency and amplitude 

(40)
Kv =

N
∑

i=1

x4i

/

(N · X4
rms).

(41)x(t) = x1(t)+ x2(t)+ x3(t), of the masking signal are obtained as fm = 252, 
am = 1.6 . The result is shown in Figure 4. It shows that 
the IMF2 contains 3 components, but the amplitude of 
the main frequency component is larger than the mix-
ing mode. The result is better than EEMD.

Finally, x(t) was decomposed by MMEMD. DFT spec-
trum of x(t) is analyzed as Figure 5. From Figure 5, the 
amplitudes of masking signals are am = 1.5 and the fre-
quencies are f1m = 125, f2m = 75. The decomposition 
result is shown in Figure 6. It shows that IMF1 contains 
component of 150 Hz and 100 Hz, but the amplitude of 
100  Hz is very small. And the amplitude of IMF2 was 
not reduced, so there is no mode mixing.

Table 2 is the evaluating indicator of the four decom-
position methods. RMSE is the root mean square error 
between the IMFs and the corresponding frequency 
components of the original signal. TC is the time con-
suming of the decomposition methods. It shows that 
the MMEMD has the smallest RMSE, indicating that 
the IMF obtained by MMEMD can represent the dif-
ferent frequency components of the original signal well. 
Moreover, it can be seen that the EMD has the shortest 
time consuming, and the EEMD has the longest time 
consuming, which is about 80 times as much as EMD. 
The time consuming of MMEMD is little longer than 
EMD but it can be accepted compared to avoiding the 
mode mixing.

0 0.1 0.2
-2

0

2

IM
F

1

0 100 200
0

0.5

1

0 0.1 0.2
-1

0

1

IM
F

2

0 100 200
0

0.5

1

0 0.1 0.2
-1

0

1

IM
F

3

0 100 200
0

0.5

1

0 0.1 0.2
-0.1

0

0.1

IM
F

4

0 100 200
0

0.5

1

0 0.1 0.2
-0.1

0

0.1

IM
F

5

0 100 200
0

0.5

1

0 0.1 0.2
-0.1

0

0.1

R
E

S

Time (s)

a

0 100 200
0

0.5

1

Frequency (Hz)

b
Figure 2  x(t) decomposed by EMD: (a) waveform; (b) 
amplitude-frequency characteristic
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4.2 � Bearing Fault Diagnosis Experiment
Bearing fault diagnosis experiment was carried out in 
order to verify the validity and superiority of FCM-
MMEMD method. Bearing vibration data was collected 
from the bearing fault diagnosis experiment rig [31]. 
It consists of a 1.47  kW motor, a torque transducer/

encoder, a dynamometer, and control electronics. The 
type of bearing is SFK6205. Single point faults with diam-
eters of 0.007 inches in ball, inner raceway and outer 
raceway were introduced to the test bearings by electro-
discharge. The motor speed was 1750  r/min, load was 
1.47 kW and sampling frequency was 12 kHz. The fault 
characteristic frequency of the ball fault, inner raceway 
fault and outer raceway fault are respectively 57.5  Hz, 
157.9 Hz and 104.6 Hz. For each kind of signal (normal 
was included), 10 samples were collected and the total 
samples is 40. Xrms and Kv were calculated and normal-
ized listing in Table  3. FCM cluster was employed to 
classify these samples and the cluster result is shown in 

Table 1  Pearson correlation coefficients

IMF1 IMF2 IMF3 IMF4 IMF5 RES

0.8647 0.7445 0.5004 0.0444 0.0323 0.0456
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Figure 3  x(t) decomposed by EEMD: (a) waveform, (b) 
amplitude-frequency
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amplitude-frequency

Table 2  Evaluating indicator of 3 decomposition method

Method Evaluating indicator

RMSE1 RMSE2 RMSE3 TC (s)

EMD 0.5564 0.5610 0.1731 0.0308

EEMD 0.3286 0.4196 0.1903 23.4909

MEMD 0.3580 0.3921 0.2587 0.1831

MMEMD 0.1880 0.2138 0.1152 0.4375
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Figure 7. It is clearly that the samples are classified into 
4 categories. That means there are 4 bearing states. But 
what are the states need more analysis.

A sample was decomposed by MMEMD in order to 
verify the high accuracy of MMEMD to bearing fault 
vibration signal decomposition. Figure  8 is the wave-
form and amplitude-frequency characteristic of three 
high frequency components obtained by MMEMD. It 
can be seen that the shock characteristic is more obvi-
ous than the MEMD shown as Figure 9. From Figure 9, 
it can be seen that the frequency components of 2000 Hz 
to 3000 Hz are mixed in the IMF1, denoting that there is 
mode mixing when the bearing signal is decomposed by 
MEMD. So MMEMD can restrain the mode mixing bet-
ter than MEMD.

In conclusion, MMEMD can decompose the bearing 
signal into different frequency bands effectively, and is 
beneficial to fault diagnosis accurately.

Take a sample from each categories and decompose 
them by MMEMD. Hilbert envelope was employed to 
the highest frequency component shown in Figure  10. 
It is easily to find the fault characteristic frequency 
and its fold frequency when the bearings are in failure. 

According to the fault characteristic frequency, bearings 
from top to bottom are normal, ball fault, inner raceway 
fault and outer raceway fault. Let us look back Figure 7. 
According to Figure 7, if the signals can be clustered in 
different clusters, it can be sure that there were abnormal 
signals. Further analysis of the samples of each cluster 
by MMEMD and Hilbert envelope, the fault type can be 
determined.

4.3 � Application of the Method
The data was collected from a 2  MW wind turbine 
with a condition monitoring system. For the reason of 
alarm failure, the high speed bearing is damaged seri-
ously. The vibration signals of high speed bearing were 
sampled at 10 min intervals every day. The sample rate 
was 97656  Hz and sample time was 6  s. The unit was 
Gs, where 1g is the earth standard gravitational accel-
eration. Figure 11 is the acceleration sensor fixed to the 
high speed bearing. The high speed shaft is driven by a 
20 teeth gear, the rated speed is 1800 r/min. According 
to the rated speed, the fault characteristic frequency 
of the ball fault, inner raceway fault and outer raceway 
fault are respectively 86.1 Hz, 284.3 Hz and 201.8 Hz.

For the reason of condition of wind turbine bearing, 
the speed is changing along the time shown as Fig-
ure 12. It is clearly that the high speed bearing signal is 
non-stationary.

Figure  13 is the waveform and the amplitude-fre-
quency characteristic of the high speed bearing at one 
day. The high speed bearing is gradually damaged but 
the condition monitoring system had not given an 
alarm seasonable until it damaged seriously.

Table 3  Xrms and Kv of different samples

Sample Xrms Kv

1 0.0203 0.0356

2 0.4453 0.5360

3 0.1389 0.0292

4 0.9335 0.8405
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FCM-MMEMD method was implemented for 50 days 
data. Figure  14 is the FCM cluster result and the data 
is clustered into 3 classes, namely there are 3 bear-
ing states. Take a sample from each class for further 
analysis.

Figure 15 is the waveform and IMF1 Hilbert envelope 
of the three samples. It is clear that sample 1 (day11) 
is normal for there is neither shock in waveform nor 
fault characteristic frequency in Hilbert envelope. Sam-
ple 2 (day34) are the signals with fault, because fault 
characteristic frequency of 280.1 Hz (corresponding to 
inner raceway fault, 284.3 Hz) can be found in Hilbert 
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envelope. And also there are shocks in waveform. How-
ever, the 2 octave frequency is not clear and the shocks 
are slight, so the fault of simple 2 is a slight damage 
in inner raceway. For sample 3 (day48), there are both 
serious shocks in waveform and fault characteristic fre-
quency in Hilbert envelope, and the 2 octave frequency 
is more obvious than that in sample 2. Therefore sample 
3 is in serious damage condition.

According to the above analysis, the bearing was 
damaged from day34 and became serious later day and 

day. However, the condition monitoring system did not 
alarm until the bearing damaged seriously. Figure 16 is 
the damaged bearing when it is serviced after 50 days 
later. It appeared a serious crack and the power qual-
ity was seriously declined. But, by the FCM-MMEMD 
method, when a sample is clustered into class 2 (abnor-
mal signal), it should be focused on. In order to ensure 
the normal operation of the wind turbine and produc-
tion of high quality power, the wind turbine should 
be maintained at day34 to prevent the situation from 
becoming worse.

As a conclusion, the method can find the mechanical 
fault accurately and timely, which is important to the 
maintenance of the equipment.

5 � Conclusions

(1)	 A new bearing fault diagnosis method FCM-
MMEMD is presented. The abnormal signals could 
first be detected by FCM, and be further analyzed 
by MMEMD and Hilbert envelope to determine the 
fault type.

(2)	 MMEMD is an improvement of MEMD, which can 
restraint the mode mixing better and can be con-
ducted more easily. Simulation to signals decom-
position showed that MMEMD could decompose 
signals into different frequency bands fast and accu-
rately.

(3)	 Experiments of bearing fault diagnosis and applica-
tion of wind turbine bearing fault diagnosis proved 
that the method could diagnosis the bearing fault 
timely and accurately.
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