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Abstract 

Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central 
nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological 
sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of 
SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proin-
flammatory factors levels, disturbances in the cerebral circulation, changes in blood–brain barrier permeability, injury 
to the brain’s vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of 
cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. 
The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder 
its early detection and appropriate implementation of management protocols, especially in paediatric patients where 
only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroen-
cephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing under-
lying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously 
to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is 
neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting 
in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, 
and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors 
associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there 
are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE 
models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, 
we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, 
therapeutic interventions, and potential emerging neuroprotective agents.
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Introduction
Sepsis-associated encephalopathy (SAE) is an acute brain 
dysfunction that occurs secondary to infection in the 
body without overt central nervous system (CNS) infec-
tion (Catarina et  al. 2021; Yang et  al. 2020); symptoms 
that include impaired consciousness, disorientation, cog-
nitive deficiency, convulsions or deep coma (Chen et al. 
2020). SAE is also referred to as sepsis-induced brain 
dysfunction (SIBD) (Orhun et al. 2019), sepsis-associated 
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brain dysfunction (SABD) (Crippa et  al. 2018; Czempik 
et  al. 2020), or sepsis-associated delirium (SAD) (Eber-
soldt et  al. 2007; Chaudhry and Duggal 2014), depend-
ing on the context it is being used. However, they are 
not entirely synonymous per se. For instance, delirium 
is one of the clinical features of SAE, while SAE is one 
of the causes of delirium (Chaudhry and Duggal 2014). 
The term “mixed encephalopathy” has also been postu-
lated to describe the complexity of its pathophysiological 
mechanisms involved, reflecting pathological remodel-
ling of the vascular system and blood components in 
the uncontrolled immune response induced by inflam-
matory cascades turn to affect the brain endothelium 
and parenchyma (Shulyatnikova and Verkhratsky 2020; 
Barbosa-Silva et  al. 2021), that subsequently leads to 
neuroendocrine network dysfunction, diffuse neuroin-
flammation, impaired BBB integrity, neurotoxicity, and 
autoregulation (Tauber et al. 2021).

The source and aetiology of infections associated or 
implicated in SAE include biliary tract or intestinal infec-
tions, pulmonary infections and respiratory infections 
(Czempik et  al. 2020; Chaudhry and Duggal 2014). The 
primary pathogens most often identified are Group B 
streptococcus, Staphylococcus aureus, Streptococcus 
pyogenes, Escherichia coli, and unspecified gram-posi-
tive rods (Sanz et al. 2018; Jenster et al. 2014); compared 
to those commonly reported in adults (Zhang et al. 2012; 
Takemoto et  al. 2019), though others argued that there 
is no correlation between SAE and a particular microor-
ganism (Cotena and Piazza 2012).

Epidemiology
The prevalence of SAE is challenging to predict or ascer-
tain because there are no specific tests or diagnostic crite-
ria to define this condition (Chaudhry and Duggal 2014), 
mainly due to its various neurological manifestations and 
other factors that cause brain dysfunction (Czempik et al. 
2020). One of these factors in intensive care unit (ICU) 
settings is sedation, yielding an estimate in adult patients 
diagnosed with sepsis, progressing to SAE of anywhere 
between 9 to 76% (Chaudhry and Duggal 2014; Andon-
egui et al. 2018; Rivera-Lara 2019). In a recent retrospec-
tive cohort study of 140 paediatric patients with sepsis 
and a clinically indicated MRI within 60  days of sepsis, 
30 patients had one or more sepsis-related MRI abnor-
malities with a prevalence of 21%. Sixteen (53%) patients 
had sepsis-related white matter signal abnormalities; 
53% demonstrated sepsis-related ischaemia, infarction, 
or thrombosis; and 27% showed sepsis-related poste-
rior reversible encephalopathy. The authors concluded 
that patients with sepsis-related MRI abnormalities were 
more likely to die before PICU discharge with increased 
mortality, new neurological disability at PICU discharge 

and longer PICU length of stay (Becker et  al. 2021). 
Thus, the incidence and prevalence of SAE in paediatric 
patients are not demonstrated (Table 1) (Sanz et al. 2018). 
Another recent review reported an incidence of 20% to 
40% in adult patients admitted to the ICU with sepsis-
developed encephalopathy, with delirium accounting for 
approximately 70% in mechanically ventilated elderly 
patients. In comparison, hospitalised septic patients are 
associated with a 10% increase in the prevalence of cog-
nitive impairment during eight years (Mazeraud et  al. 
2020). Indeed, such data are urgently needed to help with 
understanding its epidemiological distribution because 
paediatric patients seem to suffer more from SAE-associ-
ated sequelae, such as attention, verbal fluency, executive 
function, IQ, school performance, memory acquisition 
and processing, and quality of life in later years.

The mortality and morbidity of SAE reported in 
the literature vary according to different studies. For 
instance, in a prospective case–control study, the authors 
compared the neurodevelopmental and behavioural 
outcomes in 50 children with sepsis-associated encepha-
lopathy. They observed that children with SAE had low 
intelligence at 52% compared to 32% for controls and 
showed declined school performance at 44%, disobedi-
ence at 28%, and stubbornness/irritable behaviour at 26%. 
They concluded that children with SAE had delayed neu-
rodevelopment, low verbal IQ, a decline in school perfor-
mance and low intelligence at short-term follow-up (Kaur 
et al. 2016). Another retrospective study was in Mozam-
bique, Sub-Saharan Africa, where the authors recruited 
987 paediatric patients diagnosed with different diseases. 
Of these, 182 (18%) were diagnosed with sepsis, with a 
mortality of 56%, which was the highest among all other 
diseases; the authors found burns at 45%, positive HIV 
tests at 24%, malaria at 24%, respiratory tract infections 
at 21% and trauma 6% (Punchak et al. 2018). This might 
be the tip of the iceberg regarding sepsis mortality in pae-
diatric patients, especially in resource-limited healthcare 
settings, and probably because of under-reporting.

From those mentioned above, it is conceivable that 
SAEs have both short-term and long-term mortali-
ties and morbidities with different associated risk fac-
tors. Children’s most reported short-term mortality was 
cognitive impairment and poor academic performance 
(Sandquist et al. 2017). The long-term sequelae reported 
in the general population include physical, cognitive, 
and psychological impairment with high socioeconomic 
burdens (Ehler et  al. 2017); further sequelae were anxi-
ety, stress disorders, and lower quality of life (Orhun 
et  al. 2019); memory lapse, inattentiveness, disorienta-
tion, and verbal difficulties (Nwafor et  al. 2019). Other 
comorbidities include hypertension, anaemias, and neu-
rological diseases other than SAE (Yang et al. 2020; Chen 
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et al. 2020). Underlying conditions also pose a high risk 
of SAE occurrences, such as renal failure and metabolic 
disturbances (hypo/hyperglycaemia, hypercapnia, hyper-
natremia) (Sonneville et al. 2017). Children are more sus-
ceptible to metabolic derangement often encountered in 
the PICU, thus making them more prone to SAE devel-
opment than adults. However, very few documented pae-
diatric SAE incidences and mortalities are probably due 
to the few cases reported in the literature or the under-
reported incidence rate.

Diagnosis
The diagnosis of SAE involves excluding direct CNS 
infection or other types of encephalopathy (Czempik 
et  al. 2020; Huang et  al. 2020), which hinders its early 
detection and appropriate implementation of manage-
ment protocols, thus resulting in its associated high 
mortality rate. This scenario becomes more evident in 
paediatric patients than adults, with few documented 
cases (Table 2). Clinical assessment, electrophysiological, 
neurological imaging and biomarkers are employed to aid 
diagnosis and to direct therapeutic strategies. However, 
most of these diagnostic tools are potentially hampered 
by sedation and mechanical ventilation, thus delaying 
appropriate intervention strategies. Below we described 
the most commonly applied diagnostic paradigm in sus-
pected septic patients.

Electrophysiological tools
EEG
The most commonly used diagnostic tool is electro-
encephalography (EEG), which measures spontaneous 
electrical activity generated by synaptic transmission in 
the superficial layers of the cerebral cortex and modu-
lated by subcortical structures from the upper brainstem 
to the thalamus (Hosokawa et  al. 2014). The severity of 
EEG is classified into excessive θ, predominant δ, or 
triphasic waves, and suppression or burst suppressions 
(Chen et  al. 2020; Tsuruta and Oda 2016). The changes 
observed in these waveforms correspond to the changes 
in brain function. In other words, slow alpha activ-
ity and increased theta activity are associated with cor-
tical dysfunction, often observed in encephalopathic 
patients; slow delta activity indicates an impaired func-
tion of the deeper brain structures associated with more 
severe neurocognitive decline (Nwafor et  al. 2019), and 
burst-suppressions are associated with severe symptoms 
(Czempik et  al. 2020) and poor prognosis (Hosokawa 
et  al. 2014). The mortality is also related to the severity 
of EEG abnormalities, ranging from 19 to 67% (Chaudhry 
and Duggal 2014). In addition to its feasibility and acces-
sibility in most ICU tertiary institutions, EEG has high 
sensitivity in diagnosing SAE patients and its associated 

complications; it is also valuable for excluding non-con-
vulsive status epilepticus in critically ill patients caused 
by altered sensorium (Pantzaris et al. 2021). However, its 
specificity is very low and hampered by sedatives, mak-
ing its interpretation inconclusive in severe cases (Eber-
soldt et  al. 2007; Ehler et  al. 2017). EEG manoeuvre is 
also very challenging, especially in ventilated children. 
Reduced hippocampal volume and memory deficits in 
SAE patients might not show abnormality in the EEG 
during hospitalisation, implying that sepsis leads to dam-
age to specific regions of the hippocampus undetectable 
by EEG (Yuan et al. 2020).

SEP
Another electrophysiological tool is sensory evoked 
potentials (SEPs), which have recently gained popular-
ity in diagnosing SAE. Evoked potentials (EPs) meas-
ure brain responses to sensory stimulation, including 
responses generated by subcortical structures (brainstem 
auditory evoked potentials (BAEPs) or from N14 and P18 
somatosensory evoked potentials (SSEPs)) (Hosokawa 
et al. 2014). SEP show peak latencies in cortical and sub-
cortical pathways and is associated with SAE severity 
(Cotena and Piazza 2012; Tsuruta and Oda 2016). It is 
not affected by sedation, as an advantage, while its draw-
backs are that it is cumbersome to use in ICU settings 
and possibly expertise availability and interpretation.

Thus, electrophysiological tools may aid in the early 
clinical assessment of suspected SAE patients and help 
guide treatment strategies, but considering its associ-
ated limitations (especially sedation, which is equivo-
cally unavoidable in ICUs for agitated patients) make its 
diagnostic accuracy unreliable that warrant further vali-
dation. Thus, other diagnostic modalities are needed to 
increase diagnostic accuracy and early treatment strategy 
initiation.

Biomarkers
Serum biomarkers are routinely employed in patients 
admitted to ICU to help assess the severity of brain 
injury, not only in cases with encephalopathies but also in 
traumatic brain injury and stroke (Wu et al. 2020). Such 
biomarkers include NSE, S100B, and GFAP.

NSE
Neuron-specific enolase (NSE) is a gamma-enolase 
isomer of the cytoplasmic glycolytic enzyme found in 
neurons and neuroendocrine cells (Zenaide and Gusmao-
Flores 2013). A high concentration of NSE and S100B are 
associated with SAE severity. S100B correlates strongly 
with severe encephalopathy and other brain lesions than 
the other biomarkers (Cotena and Piazza 2012). Zhang 
et  al. assessed the expression levels of S100B, NSE, and 
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GFAP in paediatric septic patients; their results showed 
higher levels of serum NSE, S100 β and GFAP than that 
of controls and that NSE and S100 β were the highest in 
children who did not survive sepsis (Zhang et al. 2014). 
In another study in children with septic encephalopathy, 
the authors evaluated serum intercellular adhesion mole-
cule-1 (ICAM-1), nitric oxide (NO), lipid peroxide (LPO) 
and S100B. They demonstrated elevated levels of these 
biomarkers, not only in serum but also in cerebrospinal 
fluid (Hamed et al. 2009).

In contrast, Zhu et al. 2016 reported that NSE and IL-6 
demonstrated the more diagnostic significance of SAE 
than S100B (Zhu et al. 2016). This discrepancy might be 
due to diagnostic methods and cut-off values used in each 
study. NSE in cord blood and cerebral blood flow (CBF) 
in early-onset neonatal sepsis (EONS) were examined to 
predict SAE occurrence and showed that increased cord 
blood NSE and CBF in early hours of birth could be used 
in neonates with EONS with a predictive accuracy of SAE 
(Shimy et al. 2018).

GFAP
Glial fibrillary acidic protein (GFAP) is also increased in 
SAE patients with specificity and sensitivity of 77.7% and 
75.9%, respectively; here, serum GFAP level correlated 
positively with APACHE II score but negatively corre-
lated with Glasgow Coma Scale (GCS) score, 28- day sur-
vival rate and 180-day survival rate (Yan et al. 2019). The 
serum concentration of GFAP and ubiquitin C-Terminal 
hydrolase-L1 (UCH-L1) were assessed in SAE patients 
where GFAP was associated with worse long-term usual 
activities, and UCH-L1 had more long-term pain (Wu 
et  al. 2020). However, the clinical significance of ele-
vated S100B and NSE levels in SAE patients has been 
questioned due to their poor sensitivity and specificity 
(Spapen et  al. 2010). Nevertheless, these studies have 
demonstrated the significance of these biomarkers in 
diagnosing sepsis and other infectious diseases, pointing 
to the need for more research to validate their potential 
diagnostic accuracy in sepsis or SAE.

Other biomarkers include Neurofilament (Nf) (Ehler 
et  al. 2019; Manabe and Heneka 2021), S100A8 pro-
tein (Hamasaki et  al. 2019), Amyloid β peptide and tau 
proteins (Zhao et  al. 2019), vascular cell adhesion mol-
ecule-1 (VCAM-1) (Su et al. 2014), and acetylcholinester-
ase activity (Zujalovic et al. 2020). Others have suggested 
using some microRNAs as a marker for diagnosing SAE 
as they play a central role in the pathophysiological pro-
cesses of SAE (Osca-Verdegal et  al. 2021). For instance, 
miR-370-3p was increased in the brain and plasma of 
SAE mice induced by LPS (Visitchanakun et  al. 2020). 
MiR-29a is highly expressed in the peripheral blood 
of patients diagnosed with SAE and can be used as a 

molecular marker for early diagnosis and prognostic pre-
diction of SAE patients (Guo et  al. 2021). Noninvasive 
bedside monitoring through physical examination is also 
essential in aiding the early detection and management of 
patients with sepsis (Postelnicu and Evans 2017). These 
noninvasive parameters include mental status changes, 
capillary refill time (CRT), skin mottling and temperature 
gradients. These manoeuvres are very useful in paediat-
ric ICUs though they heavily depend on the clinician’s 
expertise.

These biomarkers need further study to validate their 
diagnostic accuracy, especially in paediatric patients with 
sepsis-related encephalopathies, to aid early diagno-
sis and implementation of appropriate interventions to 
decrease mortality and improve neurological outcomes 
associated with SAE.

Neurological imaging
MRI
Magnetic resonance imaging (MRI) is the ICU’s most 
commonly used neurological imaging modality. Different 
parameters of MRI have been used, including diffusion-
weighted imaging (DWI), apparent diffusion coefficient 
(ADC), and fluid-attenuated inversion recovery (FLAIR). 
Their common abnormalities include multiple ischaemic 
strokes or white matter lesions in the centrum semio-
vale (Kuperberg and Wadgaonkar 2017). Sandquist et al. 
2017 identified 80 abnormal MRI findings in their cohort 
study. They observed that the most common were abnor-
mal hyperintense signals on T2 in 46 patients and 40 
patients on FLAIR; the most common sites were white 
matter and cerebral cortex (Sandquist et al. 2017). In an 
animal model, Bozza et  al. observed that a decreased 
ADC is more evident in animals that would not survive 
the septic challenge than in surviving animals (Bozza 
et al. 2010).

In one study involving 194 children diagnosed with 
septic encephalopathy, the predominant watershed pat-
tern of injury was the most common pattern, seen in 98 
(38%) newborns, whereas 59 (23%) showed the basal gan-
glia/thalamus as the predominant pattern on brain MRI 
(Jenster et  al. 2014). Another observational study found 
that ischaemia and cerebritis were the most frequent 
brain lesion patterns on neuroimaging, with volume loss 
as the most common abnormal findings in paediatric 
patients (Sanz et al. 2018). In a case report by Chacque-
neau et al. 2013, their patient’s MRI showed non-specific 
diffuse lesions with vasogenic oedema on the subcortical 
substance or the basal ganglia and the thalami (Chac-
queneau et  al. 2013). While Abe et  al. 2008 reported 
an abnormal intensity in the subcortical white matter 
of the frontal lobe and occipital regions in 2 month old 
diagnosed with SAE (Abe et al. 2008). Kondo et al. 2009 
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also reported similar findings in two patients diagnosed 
with SAE (Kondo et al. 2009). BBB dysfunction, impaired 
vascularity, and decreased brain metabolites were dem-
onstrated as a measure of long-term neuroinflammatory 
indicators when assessed by MRI and MRS in the LPS-
induced rat SAE model (Towner et  al. 2018). However, 
the downside of this modality is its cost and the risk of 
transporting critically ill patients, limiting its use in the 
clinical management of septic or SAE patients (Cotena 
and Piazza 2012).

Transcranial Doppler
Another commonly used modality is Transcranial Dop-
pler (TCD) which assesses vasomotor activity (Lamar 
et al. 2011). As with MRI, TCD also has different param-
eters used to assess cerebral blood flow (CBF) and fluid 
volume (FV) in cerebral arterioles, such as pulsatility 
index (PI) and resistive index (RI). A study by Algebaly 
et  al. recruited 45 children with SAE and found that PI 
and RI were significantly higher in SAE patients com-
pared to their counterparts without SAE. Specifically, PI 
was more negatively correlated to a Full outline of unre-
sponsiveness (FOUR) score with high significance and 
PI related well with illness severity when assessed by the 
paediatric risk of mortality assessment III (PRISM III) 
and hence increasing cerebrovascular resistance (CVR) 
with subsequent deepening of coma (Algebaly et  al. 
2020). Similar results were also reported in SAE adult 
patients, where a majority of patients (76%) presented 
a maximum PI > 1.1, showing a lower GCS at the initia-
tion of sepsis and indicating that a PI cut-off value of > 1.3 
could be used in clinical practice as a risk factor for 
delirium in septic patients (Pierrakos et al. 2014). How-
ever, one study reported variability of TCD measurement 
attributable to age, sedation, and arterial partial pressure 
of carbon dioxide (PaCO2) (Pfister et  al. 2008), making 
definitive estimation of average range flow volume (FV) 
a challenge.

ScvO2 and rSCO2
One study recorded changes in central venous oxygen 
saturation (Scvo2) and regional cerebral oxygen satura-
tion (rSco2) in children with SAE at different time points 
to determine prognosis and its related clinical features. 
The results showed that the ScvO2 values in the deceased 
group were significantly higher than those in the survi-
vors’ group at all different time points. The differences 
were statistically significant, suggesting that changes in 
ScvO2 are closely related to the prognosis of children 
with sepsis or SAE (Guo et  al. 2019). The authors sug-
gested that the importance of continuous monitoring of 
Scvo2 changes with other measurement modalities in 

evaluating treatment is closely related to the prognosis of 
children with SAE.

Other diagnostic methods in adult animal models 
include intravenous acetazolamide to assess cerebral vas-
omotor reactivity (VMR) using maximal cerebrovascular 
reserve capacity (CRC) in patients with SAE (Szatmári 
et al. 2010). Nuclear medicine radiotracers have also been 
used in SAE models (Szöllősi et  al. 2018). At the same 
time, another study used Gas Chromatography-Mass 
Spectrometry (GC–MS) to find the differences in plasma 
metabolites in SAE patients that were strongly correlated 
in predicting SAE severity when assessed by GCS (Zhu 
et  al. 2019). Measurement of optic nerve sheath diame-
ter was used to detect intracranial hypertension (ICH), a 
common risk factor associated with SAE (Yang and Sun 
2020; Czempik et al. 2020; Wang et al. 2022), and histo-
pathological changes (Shulyatnikova and Verkhratsky 
2020).

Brain CT is also routinely applied, showing diffuse 
oedema of the whole brain (Sanz et  al. 2018; Guo et  al. 
2019). However, it is less applicable due to its associated 
radiation effect. Another study postulated that near-
infrared spectroscopy (NIRS) could be used to identify 
blood pressure ranges that enhance autoregulation in 
patients with SAE and that disturbances in autoregula-
tion are associated with the severity of encephalopathy 
(Rosenblatt et al. 2020). Large clinical trials are needed to 
validate these emerging diagnostic tools and the efficacy 
of the investigated drugs to help clinicians and healthcare 
providers with a more robust approach to treating and 
managing SAE patients.

Nomograms are being developed for early identifica-
tion and stratification of appropriate treatment and pre-
dicting hospital mortality, risk factors and prognosis in 
SAE patients (Yang et al. 2020; Zhao et al. 2021).

Pathophysiological mechanisms
The mechanisms of SAE are well established (Fig.  1), 
ranging from oxidative stress, increased cytokines and 
proinflammatory factors levels, disturbances in the 
cerebral circulation, changes in blood–brain barrier 
permeability, injury to the brain’s vascular endothe-
lium, altered levels of neurotransmitters, changes 
in amino acid levels, dysfunction of cerebral micro-
vascular cells, mitochondrial dysfunction, activa-
tion of microglia and astrocytes, and neuronal death 
(Chen et  al. 2020; Ziaja 2013), while its pathophysi-
ology remains unclear (Crippa et  al. 2018). The most 
described mechanisms include microcirculatory 
dysfunction; BBB impairment; cerebral autoregula-
tion disruption; inflammatory cytokine activation, 
and oxidative stress. These pathogenetic mechanisms 
have similar characterisations in adults and children, 
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though their pathogenesis and clinical presentation 
might differ due to the evolving brain. For instance, 
systemic adaptive and innate immune responses fol-
lowing infections react differently between adults and 
neonates, as helper type Π (Th2) cells tend to favour 
neonates in their function. In contrast, Th1 cells func-
tion more in adults (Brochu et  al. 2011). The imma-
ture brain is also more resistant to injury, possibly 
due to a lower cerebral metabolic rate, the plasticity 
of immature CNS, and immaturity in the development 
of balance in the available neurotransmitters (Vaishali 
and Patel 2014). Functional BBB response also differs 
after brain injury insult, as well as differences in gene 
expression of cerebral endothelial cells (Zhang et  al. 
2019). In addition, sepsis-related brain damage in chil-
dren is more or less of vascular regulation dysfunction 
rather than direct damage from infectious agents (Sanz 
et  al. 2018), probably due to the immaturity of the 
developing brain. Therefore, these differences might 
influence how these pathogenetic mediators respond 
to specific brain injury insults in adults and children. 
Below, we describe the most implicated pathogenetic 
mechanisms activated or disrupted following sepsis or 
SAE. It should be noted that these mechanisms may 
act independently or in synergy to induce pathophysi-
ological changes seen in patients diagnosed with SAE.

Dysregulation of inflammatory cytokines
Pro-inflammatory cytokines (PICs) are activated follow-
ing an infection, such as tumour necrosis factor-alpha 
(TNF-α), interleukin-1 beta (IL-1β), and IL-6. Infiltra-
tion of these cytokines, in turn, enhances the activation 
of endothelial cells and microglia, ultimately leading to 
the loss of neuronal function (Nwafor et al. 2019). These 
cytokines also modulate the expression of AMPARs and 
N-methyl-D-aspartate receptors (NMDARs) on neurons, 
further causing aberrant neuronal function and result-
ing in delirium and SAE. Different routes and regions of 
the brain are accessible by inflammatory signals through 
neural or humoral pathways that will trigger inflamma-
tory stress responses clinically observable in sickness 
symptoms (Moraes et al. 2021).

Upregulation of PICs genes is also involved in micro-
circulatory dysfunction by potentially altering blood flow 
(Szatmári et  al. 2010). Upregulation of TNF-α mediates 
SAE occurrence due to its direct correlation with BBB 
disruption, brain oedema, neutrophil infiltration, astro-
cytosis, and apoptosis of brain cells, but not in TNFR1-
deficient mice (Ren et al. 2020). The mRNA expression of 
TNF-α and its receptor, TNFR1, is upregulated follow-
ing LPS induction in the septic encephalopathy model 
(Alexander et  al. 2008). IL-1β activates afferent vagal 
fibres in the nucleus tractus solitarius, further causing 

Fig. 1  Proposed pathophysiological mechanisms involved in SAE. SAE Sepsis-associated encephalopathy, TNF-α tumour necrosis factor alpha, IL-1β 
Interleukin 1beta, HMGB1 High-mobility group box 1, VCAM-1 Vascular cell adhesion molecule 1, ICAM-1: Intercellular adhesion molecule 1, SOD 
Superoxide dismutase, CAT​ Catalase, NO Nitric oxide, ROS Reactive oxygen species, RNS Reactive nitrogen species, PMN Polymorphonuclear cells, 
mtROS mitochondrial reactive oxygen species, GPX Glutathione peroxidase, MDA Malondialdehyde, MPO Myeloperoxidase, MMP Mitochondrial 
membrane potential, DCA Dynamic cerebral autoregulation, NVC Neurovascular coupling, CBF Cerebral blood flow, ZO-1 Zonular occludens 1, CC3 
Cleaved caspase 3, Tregs Regulatory T cells, Th2 helper T cells
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cerebral damage and stimulating the hypothalamic–pitu-
itary–adrenal (HPA) axis (Ebersoldt et  al. 2007). TNF-α 
and IL-1β activation can induce IL-6, cyclooxygenase 2 
(COX2), implicated in activating the HPA axis (Cotena 
and Piazza 2012). Stimulated microglia and astrocytes by 
cytokines produce other cytokines, chemokines, nitric 
oxide, excitatory amino acids, COX2, and reactive oxy-
gen species (ROS), which are detrimental to the imma-
ture brain due to the enhanced vulnerability of maturing 
cells (Bartha et  al. 2004). Inflammatory cytokines also 
disrupt the blood-cerebrospinal fluid barrier (BCSFB) by 
increasing the influx of peripheral neutrophils through 
the choroid plexus in a neonatal infection leading to SAE 
(Michels et al. 2015). Activated cytokines can inhibit the 
differentiation and proliferation of oligodendrocyte pre-
cursors, which affects active myelination and may lead to 
white matter injury (Bartha et al. 2004), commonly seen 
in paediatric brain injury.

One study compared expression levels of PICs in both 
preterm and term septic rat models; the authors reported 
that at postnatal day 1 (P1), the neuroinflammatory 
reaction triggered by hypoxia–ischaemia (HI), lipopoly-
saccharide (LPS) or LPS + HI was limited to IL-1β and 
monocyte chemoattractant protein 1 (MCP-1) with no 
TNF-α over-expression, which was more prominent 
within the cerebral white matter than in the grey matter. 
At the same time, anti-inflammatory cytokines’ responses 
were absent (IL-6, IL-10) or even down-regulated (IL-1ra, 
TGF-β1) under HI, LPS or LPS + HI conditions. In con-
trast, at p2, both pro-and anti-inflammatory cytokines 
were over-expressed within brains exposed to HI or 
LPS + HI. The authors concluded that p1 is more vul-
nerable to neurotoxicity than p2 due to the immaturity 
of neuronal cells (Brochu et al. 2011). From this study, it 
is conceivable that children respond differently to brain 
injury insults and are more susceptible than adults. 
’Cytokine storm’ has also been implicated in the patho-
genesis of SAE, where PICs decrease nitric oxide (NO), 
resulting in cerebral arteriolar resistance and decreasing 
CBF and blood volume (Czempik et al. 2020). However, 
other studies have reported opposing results regard-
ing cytokine activation during inflammatory response 
(Orhun et  al. 2019; Andonegui et  al. 2018; Blom et  al. 
2015). Nevertheless, these studies have shed more light 
on the pathophysiological understanding of SAE due to 
the disruption of these inflammatory mediators.

BBB disruption
Another critical element in the pathogenesis of SAE is 
blood–brain barrier (BBB) impairment, which regulates 
the microenvironment of the nervous system, controls 
blood flow through the brain capillaries, and protects 
against the influx of harmful substances circulating in 

the blood (Ziaja 2013). The BBB comprises endothelial 
cells, astrocytes, pericytes, and basal lamina (Nwafor 
et al. 2019). Brain microvascular endothelial cells (BMV-
ELs), the main constituent of BBB, are located in close 
apposition to perivascular pericytes, astrocyte foot pro-
cess, and microglia. Its structural support is provided 
by cellular adhesion molecules (CAMs) and transmem-
brane proteins, including junctional adhesion molecules, 
claudins, and the adaptor cytoplasmic proteins zonula 
occludens-1–3, which connect to the actin cytoskeleton 
and serve as a scaffold as well as mediate cell–cell interac-
tions (Kuperberg and Wadgaonkar 2017). Increased BBB 
permeability is caused either by endothelial activation 
or astrocyte end-foot swelling that results in vasogenic 
oedema (Cotena and Piazza 2012). The disruption of BBB 
integrity can lead to numerous cytokines and leukocyte 
infiltration in brain tissue, causing neuronal apoptosis 
and dysfunction (Kuperberg and Wadgaonkar 2017; Peng 
et  al. 2021). Endothelial cells and polymorphonuclear 
(PMN) activation result in BBB breakdown, which may 
lead to dysfunction of the brain’s extracellular environ-
ment and subsequent neuronal dysfunction, resulting in 
SAE (Blom et al. 2015). Endothelial cell injury caused by 
neuroinflammation further leads to derangement of cer-
ebral perfusion, which renders the ischaemic processes of 
SAE an intractable problem (Ren et  al. 2020). Activated 
endothelial cells not only lead to BBB breakdown but also 
alter microcirculation and vascular tone, changes that 
can lead to ischaemia or haemorrhagic lesions (Lamar 
et al. 2011).

The pathophysiological factors implicated in BBB dis-
ruption during the pathogenesis of sepsis include upreg-
ulation of vascular endothelial growth factor (VEGF) 
and activation of VEGFR2, disorganisation of adherens 
junctions, reduced expression of tight junction proteins, 
activation or upregulation of inflammatory cytokines, 
oxidative stress induction and upregulation of matrix 
metalloproteinases (Archie et  al. 2021). These factors 
may act in synergy to disrupt BBB permeability, further 
exacerbating SAE pathology, resulting in neuroinflam-
mation, neuronal degradation and potentially cell death 
with resulting sepsis-induced brain dysfunction. Recent 
studies have shown that the choroid plexus and cir-
cumventricular organs (CVOs) are more permeable to 
inflammatory mediators that cross the BBB or signals via 
neurovascular units (NVUs) (Moraes et al. 2021). There-
fore, one of the ways inflammatory cytokines enter the 
BBB other than the active transport via specific carriers 
is through the vulnerable CVOs that lack BBB but con-
tain neuronal cells that receive chemical input from the 
bloodstream, both endogenous mediators of inflamma-
tion and pro-inflammatory products of pathogens (Tau-
ber et al. 2021).
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There is a decrease in branch chain amino acids 
(BCAAs) and an increase in aromatic amino acids (AAA) 
in septic encephalopathic patients, and their ratio is sig-
nificantly increased due to the disruption of BBB integ-
rity (Chaudhry and Duggal 2014). Reduced autothermia 
temperature (Ta) was associated with early BBB break-
down in LPS-induced SAE, where mice kept at reduced 
Ta developed an exacerbated and prolonged hypothermia 
when Ta was reduced from 3 ℃ to 4 ℃ below the lower 
critical Ta value (Lang et  al. 2020). However, in a rat 
model of SAE, Griton et al. showed that SAE could occur 
without BBB breakdown. Instead, it increases water dif-
fusion anisotropy, alters glial cell morphology in brain 
white matter, and decreases expression of COX-2 and 
AQP4 in the cortex, suggesting that early SAE is related 
to changes in cerebral blood flow and white matter 
microstructure instead of BBB breakdown (Griton et al. 
2020). Another study reported that the BBB is relatively 
resistant to LPS-induced disruption, with some brain 
regions more vulnerable to LPS (hippocampus, thalamus, 
pons-medulla) than others (Hypothalamus, occipital cor-
tex), with increased BBB permeability at a dose of 3 mg/
kg of LPS and no effect at a dose of 0.03 mg/kg or 0.3 mg/
kg; and that this disruptive effect is probably dependent 
on COX rather than oxidative stress (Banks et al. 2015). 
Thus, though an essential mechanism in the pathogenesis 
of SAE, BBB disruption might not be the sole culprit in 
SAE pathophysiological changes.

Microglia and astrocytes activation
The functions of microglia include surveillance, neuro-
protection, phagocytosis, and toxicity. Recent studies 
showed that astrocytes and microglial cells are involved 
across the SAE pathomechanistic spectrum during SAE 
inflammatory activation, with inflammatory activation 
occurring mainly in microglial cells (Moraes et al. 2021). 
Thus, microglial activation is one of the key players in 
neuroinflammation implicated in SAE pathophysiological 
processes.

Microglia activation involves two phenotypes, M1 
cells that produce PICs and ROS, causing neurotoxicity 
and M2 cells that produce anti-inflammatory effects that 
play a neuroprotective role and a tissue repair function 
(Moraes et  al. 2021; Michels et  al. 2015). Thus, micro-
glial activation acts as a double-edged sword where M1 
activation-induced release of inflammatory mediators 
causes neurotoxicity, while M2 activation results in neu-
roprotection. Activated microglia deteriorate BBB integ-
rity, subsequently enhancing ROS release, which leads to 
brain dysfunction (Ren et  al. 2020). Activated microglia 
can affect the amygdala leading to obvious psychological 
manifestations in septic patients (Czempik et  al. 2020). 
Microglia depletion during severe sepsis development is 

associated with early exacerbation of brain and systemic 
inflammation (Michels et al. 2019). Microglial activation 
is an early responder during the acute phase of neuroin-
flammation. However, recent studies have demonstrated 
that cerebral endothelial cells (CECs) are the most likely 
initial source of inflammatory mediators with subsequent 
activation of apoptotic signalling that will lead to BBB 
disruption resulting in leakage of peripheral cytokines 
into the CNS, exacerbating the vicious neuroinflamma-
tory cascade, implicated in the pathophysiology of SAE 
(Kodali et  al. 2021). Prolonged soluble epoxide hydro-
lase (sEH) reactivity in CECs may be one of the culprits 
(Wang et al. 2020).

Similarly, astrocytes, which control homeostasis and 
catabolism, also have two forms; reactive astrogliosis 
triggers nervous tissue damage by attracting immune 
cells specifically to the injured region and facilitating 
their extravasation and tissue infiltration (Shulyatnikova 
and Verkhratsky 2020). Astrocytes are not only involved 
in CBF by controlling the release of mediators activated 
following inflammation, but they also regulate the con-
centration of neurotransmitters, such as glutamate, 
GABA, and glycine, in the synaptic space by taking up 
any excess neurotransmitter, that will further exacerbate 
neuroinflammation resulting in long-term consequences 
of SAE (Barbosa-Silva et al. 2021; Mazeraud et al. 2020; 
Heming et al. 2017). Thus, astrocytes’ activation may lead 
to an uncontrollable release of these mediators and the 
overwhelmed concentration of neurotransmitters and 
subsequent accumulation of these neurotransmitters into 
the synaptic space, disrupting synaptic space integrity.

Impaired cerebral autoregulation
The mean arterial pressure (MAP) and intracranial pres-
sure (ICP) determine the cerebral perfusion pressure 
(CPP) as CPP = MAP − ICP. The value of intracranial 
pressure is affected by cerebral blood flow (CBF) and cer-
ebral blood volume (CBV) (Molnár et al. 2018; Goodson 
et al. 2018). Cerebral autoregulation  (CAR) is a homeo-
static mechanism that protects the brain tissue from the 
potentially damaging effects of hypo- and hyperperfusion 
(Crippa et al. 2018). Impaired autoregulation is one of the 
significant triggers of SAE pathogenesis (Ren et al. 2020). 
The diameter of cerebral arterioles also determines the 
severity of CAR disruption, as 40 to 200 μm in diameter 
of cerebral arterioles are said to be a significant contribu-
tor to both the autoregulatory and metabolic response of 
the brain circulation (Szatmári et  al. 2010). Thus, their 
dilation beyond this range may result in a decrease in cer-
ebrovascular resistance. High cerebrovascular resistance 
and disturbed cerebral autoregulation may expose septic 
patients to a decreased CBF if a compensatory elevation 
in CPP is absent (Molnár et al. 2018).
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Altered CAR is an independent risk factor associ-
ated with SAE occurrence, while lower MAP, a history 
of chronic kidney disease, and fungal infection were 
associated with altered CAR (Crippa et  al. 2018). One 
study determined the degree of CAR in a time-depend-
ent manner. The authors reported that autoregulation 
was impaired in 60% of patients on day 1, 59% on day 2, 
41% on day 3, and 46% on day 4; in addition, impaired 
autoregulation on day 1 was also associated with the 
presence of SAD on day 4 (Tsuruta and Oda 2016). Simi-
larly, in a sheep model of SAE, the authors determined 
the time course of alterations of CAR and neurovascu-
lar coupling (NVC). They observed a progressive loss of 
dynamic CA (DCA) and NVC in septic shock associated 
with cortical neuronal dysfunction. This study indicated 
that the alteration of mechanisms controlling cortical 
perfusion is critical in the pathophysiology of SAE; hence, 
assessment of DCA and NVC in clinical practice is essen-
tial (Ferlini et al. 2020).

Loss of autoregulation is also implicated in brain 
oedema due to impaired CBF resulting in an altered 
microvascular system (Cotena and Piazza 2012). One 
study stated that cerebrovascular autoregulation depends 
on cerebral endothelial function, and endothelial dys-
function is a critical feature in sepsis (Pfister et al. 2008). 
Also, systemic inflammation triggers vascular dysfunc-
tion, which further disrupts CAR observed in SAE 
(Rivera-Lara 2019). Sustained cerebral dysfunction 
resulting from impaired CAR is potentially associated 
with reduced attention, disrupted sleep-wakefulness bal-
ance, impaired memory, speech, and orientation, focal 
neurological deficits and seizure activity, perception 
disorders, decreased consciousness and coma (Shulyat-
nikova and Verkhratsky 2020). Thus, a synergistic mecha-
nism may be involved in cerebrovascular dysfunction and 
CAR impairment, leading to the pathogenesis of SAE. 
Both cerebrovascular dysfunction and microcirculatory 
changes result from impaired autoregulation leading to 
cerebral ischaemia and potentially SAE (Rosenblatt et al. 
2020).

Oxidative stress
Oxidative stress plays a significant role in inducing cell 
apoptosis and endothelial vasculopathy (Czempik et  al. 
2020; Lamar et al. 2011). An imbalance in oxidative stress 
disrupts cellular respiration and abnormal metabolism, 
producing free radicals, and further causing cell damage. 
Free radicals produced by these phenomena can induce 
inflammatory mediators and cause disruption of BBB 
and secondary brain damage (Vasiljevic et al. 2011). Acti-
vated glutamate caused increased production of ROS. 
ROS causes damage and oxidation of lipids, DNA, and 
proteins, leading to energy depletion. Calcium overload 

activates the release of nitric oxide synthase (NOS), 
leading to high levels of the toxic free radical neuro-
transmitter nitric oxide (NO). NO attack enzymes that 
are associated with oxidative phosphorylation and elec-
tron transfer. It also exacerbates brain damage by reduc-
ing neuronal energy production by inhibiting glycolytic 
and mitochondrial enzymes (Kostandy 2012), thereby 
increasing DNA damage.

Nox2, essential for glial cell activation, is the primary 
source of ROS in the oxidative damage to the hippocam-
pus in SAE and Nox2-derived ROS is a determining 
factor for cognitive impairments after sepsis (Michels 
et  al. 2015). Activated Nox2 was demonstrated by Her-
nandes et al. 2014 in a septic rat model using apocynin, 
an inhibitor of NADPH oxidative activity, which inhib-
ited Nox2 and 4-HNE expressions in the hippocampus 
and prevented the development of long-term cognitive 
impairment in septic survivors (Hernandes et  al. 2014). 
In another model, LPS induced increases in ROS genera-
tion, inducible nitric oxide synthase (iNOS) expression, 
and Nox production, as well as upregulation of G pro-
tein-coupled receptor kinase 2 (GRK2) cytosolic expres-
sion in LPS-stimulated microglia. The authors concluded 
that GRK2 is a critical regulator of cellular oxidative and 
nitrosative stress in LPS-stimulated microglia (Kawakami 
et  al. 2018). An imbalance in neurotransmitters such as 
dopamine increases neuronal excitability. GABA and 
Ach, which decrease neuronal excitability, lead to neu-
ronal instability and unpredictable neurotransmission 
(Tsuruta and Oda 2016), implicated in the SAE pathoge-
netic mechanism.

Mitochondrial impairment
Mitochondria play a vital role in neuronal functions, and 
altering mitochondrial dynamics, including fission and 
fusion, can have deleterious effects. In an SAE model, 
the authors observed a decrease in cellular respiration 
and a shift towards glycolysis under LPS stimulation 
that further led to the loss of mitochondrial membrane 
potential, propagation of dynamin-related protein 1 
(Drp1) and p53 recruitment to the mitochondrial outer 
membrane, with subsequent initiation of cell death path-
ways (Haileselassie et  al. 2020). Increased ROS and NO 
result in decreased mitochondrial ATP generation, which 
induces neuronal apoptosis by releasing cytochrome 
C (Cotena and Piazza 2012). Reactive nitrogen species 
(RNS), NO and ROS activation inhibit complexes I and 
IV of the electron transport chain (ETC), disrupting 
mitochondrial function implicated in SAE pathogen-
esis. Furthermore, ROS/RNS enhance both endoplasmic 
reticulum and mitochondrial membrane permeability, 
which permits calcium and proapoptotic protein leak-
age into the cytoplasm (Nwafor et al. 2019; Heming et al. 
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2017). Exacerbated PICs activation lead to disruption of 
mitochondrial biogenesis. Zhao et  al. 2017 assessed the 
expression of TNF-α, IL-6, ROS and NO at 0 h, 6 h, 12 h 
and 24 h time points in the neonatal SAE model and dis-
covered that these factors were significantly increased 
in groups 6  h, 12  h and 24  h groups, resulting in ultra-
structural damage of mitochondrial biogenesis (Zhao 
et al. 2017). In essence, there is a synergy between PICs 
upregulation and mitochondrial dysfunction involved 
in SAE pathogenesis. Knockdown of voltage-dependent 
anion channel 1 (VDAC1), a critical component of the 
mitochondrial permeability transition pore (MPTP), 
in a mouse model of SAE was shown to alleviate cogni-
tive dysfunction secondary to SAE (Cai et al. 2021). This 
study highlighted the central role VDAC1 played in mito-
chondrial dysfunction during SAE pathogenesis.

Immune cells
Immune cells are implicated in the pathogenesis of SAE, 
where monocyte/macrophage and microglial cells are 
activated, with subsequent infiltration of neutrophils 
associated with neuroinflammation. A ’vicious cycle’ 
has been proposed as the primary mechanism involved 
in sepsis-induced immunosuppression leading to SAE 
pathogenesis. This vicious cycle involved the overacti-
vation of neutrophils and CNS dysfunction caused by 
neutrophil infiltration (Ren et  al. 2020). Recruitment of 
leukocytes (PMN) into the microcirculation leads to the 
interaction of adhesion molecules and selectins, which 
further dysregulates the immune response (Blom et  al. 
2015). Another potential mechanism by which immune 
cells participate in the SAE pathophysiological process 
is through meningeal CD4 + cells, which are an essen-
tial part of the inflammatory microenvironment related 
to CNS functions. Meninges function as a protective 
mechanism in the CNS; thus, damage or injury to this 
structure can be detrimental to the CNS. In an animal 
model of SAE, Luo et  al. 2020 reported that LPS injec-
tion induced the activation of CD11b + monocyte/ 
macrophages in the peripheral blood and meninges, 
accompanied by the upregulation of meningeal PICs, as 
well as a decrease in the percentage of CD4 + T cells in 
the peripheral blood and meninges. They, therefore, con-
cluded that reduced meningeal CD4 + T cells and related 
cytokine gene expression indicate the involvement of 
CD4 + T cells in the SAE induced by LPS injection. They 
also reported an increased upregulation of proBDNF, a 
precursor for mature brain-derived neurotrophic factor 
(BDNF), in circulating and meningeal immune cells. That 
upregulated proBDNF promotes the development of SAE 
via reducing peripheral CD4 + T cells and its infiltration 
into the meninges, further exacerbating the pathogen-
esis of SAE (Luo et al. 2020). Infiltration of regulatory T 

cells (Treg) and Th2 cells in the brain contribute to the 
attenuation of SAE and mental impairment alleviation in 
a mouse model by resolving neuroinflammation during 
the acute phase of sepsis (Saito et al. 2021).

Apoptosis
Apoptosis is another mechanism involved in the patho-
genesis of SAE, which may lead to cell death accom-
panied by autophagy. Extensive apoptosis of T cells, 
inhibited by the over-production of corticosteroids, has 
been associated with poor outcomes in sepsis-induced 
immunosuppression in a Fas/FasLdependent manner, 
which is one of the pathogenic mechanisms implicated 
in SAE occurrence (Ren et  al. 2020). Neuronal sensitiv-
ity from increased levels of NO produced by activated 
microglia can exacerbate neuronal apoptosis (Nwafor 
et  al. 2019). Chemokines also promote neuronal apop-
tosis, as evidenced by increased upregulation of Ccl2 or 
Cxcl2 protein levels in the LPS model, resulting in hip-
pocampal neuron apoptosis, thus supporting a direct role 
of these chemokines in neuronal death (Wolff et al. 2009). 
Intraperitoneal hypertension (IAH) can also potentiate 
SAE occurrence by promoting neuronal apoptosis (He 
et al. 2018).

As mentioned earlier, numerous pathogenetic mecha-
nisms have been postulated that underlie the patho-
genesis of SAE, such as diffuse neuroaxonal injury 
and ischaemic brain injury, not only in animal models 
but also in postmortem and clinically admitted septic 
patients (Ehler et al. 2017). Variations in mtDNA makeup 
also play crucial roles in the development and protec-
tion from delirium during sepsis (Samuels et  al. 2019). 
mtDNA makeup variant is also an area of consideration 
to examine whether mitochondrial DNA haplogroup 
dysfunction is a key risk factor in developing SAD/SAE 
pathogenesis.

Clinical features
Manifestations of SAE include impaired consciousness, 
seizures, delirium, coma, focal cognitive deficits, hallu-
cinations, abnormal sleep rhythms, personality changes, 
lack of concentration, and depressive symptoms (Nwafor 
et al. 2019; Ziaja 2013; Helbing et al. 2018). Other symp-
toms include confusion, disorientation, agitation, stupor 
and hypersomnolence (Zhang et al. 2012). Delirium, the 
most common feature of SAE, is associated with sev-
eral adverse outcomes, including psychomotor activity, 
visual and functional memory, verbal fluency, and visual 
construction (Ziaja 2013). Sickness behaviour is also 
observed in most patients with SAE, characterised by 
fever, adaptive behavioural changes, and neuroimmune 
changes (Shulyatnikova and Verkhratsky 2020; Nwafor 
et  al. 2019). Some paediatric patients may also present 
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with new-onset refractory status epilepticus (NORSE) as 
an initial clinical sign, which is common in SAE patients 
(Huang et al. 2020).

Clinical screening scales
Numerous assessment scales have been used to screen 
for depth of coma and delirium or predict treatment out-
comes and prognostication in adults and children. Such 
scales include confusion assessment method (CAM), 
CAM-ICU, sequential organ failure assessment (SOFA), 
quick SOFA (qSOFA), Glasgow coma scale (GCS), assess-
ment to intensive care environment (ATICE), Richmond 
agitation sedation scale (RASS), Full outline unrespon-
siveness (FOUR), acute physiology and chronic health 
evaluation Π (APACHE Π), paediatric risk of mortality 
assessment III (PRISM III), paediatric sequential organ 
failure assessment (pSOFA).

The pSOFA has recently been used to determine the 
number of organs involved and the severity of organ 
damage (Matics and Sanchez-Pinto 2017; Mohamed El-
Mashad et al. 2020). FOUR is used in intubated patients, 
which is associated with high mortality (Heming et  al. 
2017). The FOUR scores are said to provide more incred-
ible neurological details than GCS. It is superior to GCS 
due to the availability of brainstem reflexes and breath-
ing patterns in children suspected of SAE (Wijdicks 
et al. 2005). As shortcomings, GCS cannot assess verbal 
scores or test brainstem reflexes in intubated patients. 
In addition to GCS, BSID Π and Bayley Π are often 
used in children suspected of sepsis or critical condition 
(Jenster et  al. 2014) to assess disease severity, interven-
tion and prognostic prediction. PRISM Ш is a mortality 
predictor for critically ill paediatric patients admitted 
to PICU (Kaur et al. 2020). Those used in adults include 
CAM-ICU (Ehler et  al. 2017), SOFA or qSOFA (Yang 
et  al. 2020), ATICE (Ziaja 2013) and the intensive care 
delirium screening checklist (ICDSC) (Tsuruta and Oda 
2016). However, despite the availability of these screen-
ing tools, there is still controversy in their applicability 
(Chaudhry and Duggal 2014), especially in children, con-
sidering the delicacy and nature of their disease presenta-
tions and clinical manifestations.

Animal models of SAE
The most commonly used animal models to induce SAE 
are caecal ligation and puncture (CLP), colon ascendens 
stent peritonitis (CASP), lipopolysaccharide (LPS), fae-
cal slurry (FS), etc. The most commonly used models are 
LPS and CLP. Recent studies have outlined their pros and 
cons for a better understanding and interpretation of data 
obtained from these models (Savi et  al. 2021). In gen-
eral, the heterogeneity of patients with septic syndromes 
makes it challenging to replicate sepsis-type symptoms 

in animal models, such as preexisting conditions, age, 
genetic make-up, weight, sex, nutritional status, and 
aggravating factors like trauma. All these factors or con-
ditions are sometimes clearly excluded in animal models 
before they are challenged with a single well-defined pre-
cipitating event (Moraes et  al. 2021; Poli-de-Figueiredo 
et al. 2008). Because of these limitations, scoring systems 
have been developed to help validate some of these ani-
mal models for mimicking sepsis, such as the Murine 
Sepsis Score (MSS), which is reliable, sensitive and spe-
cific not only on CLP models but also on faecal slurry 
septic models (Shrum et al. 2014; Mai et al. 2018).

Though these models mimic sepsis/SAE and provide 
helpful information in understanding sepsis pathophysi-
ological manifestations, they still need to catch up to 
the actual scenarios seen in human sepsis/SAE charac-
teristics. Thus, such results obtained from these mod-
els, be they diagnostic, treatment mechanism(s) or 
outcome stratification, should be interpreted cautiously. 
In essence, mimicking the SAE model in paediatrics 
proves very challenging, including dosage of the poten-
tial treatment agent, assessment of physiological factors, 
depth of sedation in the SAE model and clinical presen-
tation. Most of these physiological factors are difficult 
to initiate, imitate or assess because of the postnatally 
developmental changes. For instance, LPS injection can 
elicit an immune response violently by acting on TLR-
4dose-dependently (Luo et al. 2020). Also, the depth and 
duration of sedation are associated with poor behavioural 
outcomes (Kaur et al. 2016), thus, proving the limitations 
of these models in mimicking paediatric SAE. Therefore, 
the interpretation and accuracy of these models or their 
results become inconclusive, and translation into clinical 
practice becomes tricky. In addition, in most of the treat-
ment strategies being proven or suggested through these 
models, translation into clinical practice still needs to be 
improved. As stated by Rittirsch et al. animal models of 
sepsis need to be redesigned to reflect more accurately 
the corresponding age of septic humans (Rittirsch et  al. 
2007), and therefore cautious interpretation and extrapo-
lation of data obtained from these models into preclinical 
and clinical trials.

Indeed, animal models have provided insight into 
understanding sepsis’s pathogenesis, but we still need to 
mimic the complete picture of sepsis encountered clini-
cally. However, one cannot ignore the fact that animal 
models remain essential and play a crucial role in the 
development of new treatments and experimentation of 
emerging therapeutic agents for sepsis and its associated 
syndromes, as these models provide us with not only the 
basic understanding of pathophysiological and mechanis-
tic processes of sepsis but also the basic information of 
pharmacologic and toxicology of a potential investigated 
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drug because of their reproducibility and duplicability, 
which is impossible in humans.

Management
Standard therapy
SAE treatment focuses on managing the underlying con-
ditions, as there is no specific treatment protocol (Ziaja 
2013). Antibiotics and supportive therapy are the main-
stays of treatment, while the sedative medication is used 
to treat agitation features (Helbing et  al. 2018). Judi-
cious use of fluid therapy is also crucial. Control of organ 
dysfunction and metabolic alterations is also essential 
(Chung et al. 2020).

Fluid therapy is an integral part of the resuscitation 
protocol in septic patients to restore and maintain circu-
lation, perfusion, adequate oxygen delivery, and normal-
ising vital signs. However, these fluids pose a high risk of 
hyperchloremic metabolic acidosis, hyperkalemia, patho-
logic immune activation and cell damage, bleeding disor-
ders, renal failure or life-threatening allergic responses as 
side effects (Gu et  al. 2021) due to fluid overload accu-
mulating into the microcirculatory system. These adverse 
effects remain insidious at the initial stage of fluid ther-
apy but develop gradually, further exacerbating disease 
progression, especially in paediatric patients. However, 
a recent study has reported that cardiovascular collapse 
contributes most to excess death with rapid fluid resusci-
tation rather than fluid overload (Maitland et al. 2013). In 
addition, the effect of fluid resuscitation in children with 
severe illness has been questioned, especially in resource-
limited settings (Maitland et al. 2011).

The mainstay of pharmacologic treatment is antibiotic 
administration started as soon as possible before or after 
obtaining appropriate cultures, which is a norm for sus-
pected septic patients admitted to ICUs. However, anti-
biotic administration in children with sepsis is without 
risks, such as the increased risk of necrotising enterocol-
itis (NEC) and death, altered intestinal microbial colo-
nisation, wheezing in infants, and increased BMI and 
incidence of obesity (Poggi and Dani 2018; Leonardi et al. 
2019). Whereas SAE is not a direct infection, it becomes 
problematic to initiate antibiotic treatment because even 
recent sepsis guidelines do not mandate microbial ther-
apy in systemic inflammatory response without infec-
tion to minimise the likelihood that those septic patients 
will become infected with the antimicrobial-resistant 
pathogen or will develop a drug-related adverse effect, 
as outlined in adults and paediatric sepsis guidelines 
(Coopersmith et al. 2018; Weiss et al. 2020). Interestingly, 
a quality improvement web-based calculator has been 
developed to help reduce the unnecessary use of antibiot-
ics in children diagnosed with sepsis (Zayek et al. 2020).

In PICUs, about 90% of mechanically ventilated chil-
dren receive sedatives as part of treatment. The practice 
of sedation is a clinical balance between both states of 
undersedation and oversedation, which represent haz-
ards to the critically ill child. Undersedation may lead to 
distress and adverse events such as unintentional extuba-
tion or displacement of catheters and increased lengths of 
stay. Conversely, oversedation can cause cardiovascular 
depression and ileus, may interfere with comprehensive 
neurological examinations, and, with prolonged sedation, 
tolerance and withdrawal phenomena may occur. Opi-
oids are the preferred analgesics because of their marked 
beneficial sedative effects. Combination with midazolam 
and benzodiazepines are often co-prescribed.

Nevertheless, opioids and benzodiazepines produce 
tolerance, dependence and several unwanted side effects, 
including cardiovascular and respiratory depression in 
children. Animal studies also suggest the risk of neu-
rotoxicity and impaired neurodevelopment with these 
agents (Hayden et al. 2017). No specific sedative agent is 
recommended, but rather to avoid or discontinue them 
whenever possible (Mazeraud et al. 2020).

Agents approved for other indications
Drugs indicated for treating other disease entities are 
being explored in suspected SAE patients, with the con-
troversy surrounding their effectiveness in adult animal 
models (Table  3). The most widely used medication is 
dexmedetomidine, which is neuroprotective by inhibit-
ing neuronal apoptosis, reducing the sepsis-associated 
inflammatory response and improving BBB integrity, 
thus improving short-term mortality, more encephalop-
athy-free days, and shorter time on a ventilator (Czem-
pik et  al. 2020; Nwafor et  al. 2019). A consecutive 
dexmedetomidine exposure (1  week) in the SAE model 
decreased neuronal apoptosis, enhanced cell viability 
in vitro and in vivo, and improved spatial and emotional 
dysfunction in CLP rats (Yin et  al. 2019). A systematic 
review of animal and human studies about the effect of 
dexmedetomidine and clonidine on the inflammatory 
response in critical illness showed that α2 agonist drugs 
might potentially modify inflammatory and immune 
pathways in acute inflammatory conditions (Flanders 
et  al. 2019). Though dexmedetomidine may effectively 
reduce ICU length of stay and time to extubation in criti-
cally ill ICU patients, there is an increased risk of brady-
cardia among patients treated with dexmedetomidine 
(Cruickshank et  al. 2016). A Systematic Review on the 
efficacy of α2-agonists for sedation in Paediatric Critical 
Care reported inconclusive outcomes. In contrast, the 
authors showed that the reporting of study results using 
the outcome "time maintained at target sedation score’ 
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Table 3  Therapeutic agents in SAE treatment

Agent Model Mechanism Refs.

Dexamethasone CLP rats Reduced inflammation in cerebral cortical cells; improved neurobehavioural function; 
reduced cortical cerebral oedema; increased autophagy by inhibiting mTOR signalling with 
SdDex severe cortical damage; induced neuronal apoptosis with HdDex

Zhou (2019)

Insulin LPS rats Inhibited inflammatory cytokines, oxidative stress in the cortex, hypothalamus and hip-
pocampus improved brain tissue damage

Chen et al. (2014)

Metformin CLP rats Attenuated cognitive dysfunction Tang et al. (2017)

Decreased neuronal apoptosis

Increased anti-inflammatory factors and p-AKt

Sevoflurane CLP rats Attenuated systemic inflammation Bedirli et al. (2018)

Reduced lipid peroxidation

Enhanced apoptotic genes expression

Ecballium elaterium CLP rats Suppressed oxidant activity by decreasing TOS levels Arslan et al. (2017)

Anti-inflammatory effects by decreasing TNF-α expression level

Melatonin CLP mice Increased survival tare improved neurobehavioural dysfunction by normalising BDNF and 
GDNF expressions in the hippocampus

Ji et al. (2018)

Erythropoietin CLP rats Altered oxidative parameters and energetic metabolism reversed cognitive impairment Comim et al. (2012)

Resveratrol CLP mice Inhibited NLRP3/IL-1 axis Sui et al. (2016)

Reduced Iba and IL-1 expression levels

Improved spatial learning and memory capacity

Hydrogen gas CLP mice Increased Nfr2 expression Xie et al. (2020)

Alleviated inflammatory cytokines, neuronal apoptosis and mitochondrial dysfunction

Neuroglobin CLP rats Reduced neuronal apoptotic factors Zhang et al. (2014)

Improved histopathologic changes

Attenuated oxidative stress factors

Myricitrin CLP rats Ameliorated neuroinflammation Gong et al. (2019)

Improved memory

Regulated NLRP3/Bax/Bcl signalling pathway

Ethyl pyruvate CLP mice Inhibited NLRP3 inflammasome activation Zhong (2020)

Improved cognitive function

Decreased IL-1β release from microglia

USP8 CLP mice Attenuated cognitive and motor impairment Bi (2019)

Suppressed release of pro-inflammatory mediators

Huperzine LPS rats Improved deficient cholinergic nervous function Zhu (2016)

Attenuated abnormal neuroinflammation

Attractylone LPS mice Attenuated cognitive impairment, neural apoptosis, inflammatory Tian (2019)

factors, microglial activation

Promoted SIRT1 expression and suppressed NF-κB expression

Ginsenoside Rg1 CLP mice Attenuated brain histopathologic changes Li (2017)

Improved survival rate

Decreased inflammatory cytokine and reduced neuronal apoptosis

Mdivi-1 LPS rats Downregulated Drp1 level in a dose-dependent manner Deng (2018)

Attenuated brain damage, S100B and NSE release, and  oxidative stress in a dose-dependent 
manner

Butein CLP mice Prolonged survival rate; improved cognitive function;  decreased cerebral oedema and 
maintained BBB integrity;  decreased PICs production; increased activation of SIRT1 pathway

Zhu (2019)

FBP Gelatin mice Maintained and prevented glucose metabolism; reduced ROS  release Catarina (2018)

l-dopa CLP, LPS mice Improved neuroinflammation and cognitive function; attenuated  neuroinflammation via 
D1 receptor; decreased hippocampal  dopamine level; L-DA’s protection on cognition was 
mediated by  D1 and D2 receptors

Li (2020)

Bornoel LPS mice Attenuated brain neuronal and microglial inflammation;  Suppressed the p-p65 and p38 
pathways; blocked the activation  of MAPK and NF-κB signalling pathways

Wang (2019)
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for clonidine or dexmedetomidine was poor (Hayden 
et al. 2017).

A prospective, randomised, controlled trial has shown 
that plasmapheresis may reduce mortality in patients 
with severe sepsis or septic shock. However, this study 
failed to make general recommendations due to few data 
availability during the study period (Busund et al. 2002). 
A recent case report showed that therapeutic plasma 
exchange (TPE) effectively eliminates pro-inflammatory 
cytokines and modulates sepsis cascade in a 5-year-old 
child with fulminant encephalopathy complicated by 
hyperferritinemia sepsis (Huang et  al. 2020). TPE is a 
non-selective intervention that removes multiple toxic 
mediators, including endotoxins, PICs and procoagulant 
factors (Hadem et al. 2014).

Dexamethasone is an effective agent in SAE subjects. 
Zhou et al. 2019 compared low and high doses of dexa-
methasone in a juvenile SAE model and reported that 
a low dose of dexamethasone significantly increased 
blood levels of IL-10, reduced levels of TNF-a and low-
ered bacterial blood load, as well as increased autophagy 
in cerebral cortical neurons by inhibiting the mTOR sig-
nalling pathway. In contrast, high-dose dexamethasone 
resulted in severe cortical damage, no improvement in 
cerebral oedema, and disordered neuronal structure via 
the activation of caspase-3 (Zhou et al. 2019). In infants 
diagnosed with SAE complicated by biliary atresia, dexa-
methasone improved infection severity and overall neu-
rological outcome (Abe et al. 2008).

Melatonin regulates the circadian rhythm and also 
has anti-inflammatory and antioxidant properties. In 
a study by Ji et  al., the authors examined melatonin’s 
short- and long-term effects in a mouse model of SAE. 
They observed that early melatonin treatment increased 
survival rate and decreased IL-1β, while delayed mela-
tonin administration improved neurobehavioural dys-
function by normalising hippocampal BDNF and GDNF 

expression levels (Ji et al. 2018). Insulin is also a potential 
candidate for treating subjects with SAE by suppressing 
oxidative stress, ameliorating mitochondrial function or 
inhibiting the release of cytokines in septic patients and 
animals (Chen et al. 2014).

Despite the controversy about the beneficial effect of 
statins in treating sepsis, a comparable number of stud-
ies have shown statins to reduce glial activation, regulate 
mitochondrial bioenergetics, restore balance in redox 
reactions, and reduce microvascular damage and apop-
tosis (Reis et  al. 2017; Catalão et  al. 2020). Ketamine is 
potentially neuroprotective in SAE but has not yet been 
in interventional trials (Mazeraud et  al. 2020). Intra-
venous immunoglobulin (IVIG) binds to Fc receptors 
(FcγRs) which neutralise endotoxins/cytokines, inhibit 
complement activation, and block leukocyte adhesion 
molecule binding. It is also effective in septic patients 
(Takemoto et al. 2019; Nwafor et al. 2019).

Molecular hydrogen (H2) is said to exert its antineu-
roinflammatory effects associated with TLR4/NF-κb 
activation and neuroprotective effects by inhibiting the 
excessive release of PICs and neuronal loss and apop-
tosis via the Nrf2 signalling pathway (Xie et  al. 2020; 
Chen et  al. 2021). Inhaled sevoflurane exerts its neu-
roprotective effects in the SAE rat model by enhancing 
the expression of apoptotic genes as well as decreasing 
memory impairment (Bedirli et  al. 2018). The effect of 
sevoflurane on mortality and inflammatory parameters 
is currently being assessed (NCT03643367). The neuro-
protective effect of isoflurane is through the activation of 
HO-1, which mediates anti-inflammatory, antioxidative 
and anti-apoptotic effects in the SAE model (Zhang et al. 
2021). Metformin (Tang et al. 2017; Ismail Hassan et al. 
2020), EPO (Comim et al. 2012; Gao et al. 2015), L-dopa/
benserazide (Li et al. 2020), Ethyl pyruvate (Zhong et al. 
2020), Neuroglobin (Ngb) (Zhang et  al. 2014), Ubiqui-
tin-specific protease 8 (USP8) (Bi et al. 2019), Ecballium 

Table 3  (continued)

Agent Model Mechanism Refs.

Morin CLP mice Downregulated the expressions of IL-6, MCP-1, TNF-α and IL-10;  Diminished microglia acti-
vation; reduced phosphokinase GSK3β  and elevated phosphatase PP2A activity; reduced 
Aβ deposition  and protected synaptic integrity

Xu et al. (2020)

Fisetin CLP rats Blocked NLRP3 inflammasome activation via mitophagy; reduced  neuroinflammation; 
ameliorated cognitive impairment

Ding (2022)

KYNA F S rats Reduced peripheral NET formation; lowered BBB permeability  changes; alleviated mito-
chondrial dysfunction

Poles (2021)

Bax Bcl-2 associated X protein, Bcl-2 B-cell lymphoma 2, BDNF Brain-derived neurotrophic factor, CLP Caecal ligation and puncture, GDNF Glial-derived neurotrophic 
factor, HdDex High dose dexamethasone, IL-1β Interleukin-1 beta, LPS Lipopolysaccharide, mTOR mammalian target of rapamycin, NF-κB Nuclear factor-kappa B, 
Nfr2 Nuclear factor erytheroid 2-related factor 2, NLRP3 Nucleotide-binding domain-like receptor factor 3, p-Akt Phosphorylated protein kinase B, SdDex Small 
dose dexamethasone, SIRT1 Silent information regulator 1, TNF-α Tumour necrosis factor-alpha, TOS Total oxidant status, USP8 Ubiquitin-specific protease 8, KYNA 
Kynurenic acid, NET Neutrophil extracellular trap, MCP-1 Monocyte chemoattractant protein 1, PP2A Protein phosphatase 2A, BBB Blood–brain barrier, FBP Fructose-1, 
6-bisphosphate, ERK Extracellular signal regulated kinase, GSK-3β Glucogen synthase kinase-3 beta, MAPK Mitogen-activated protein kinase, NSE Neuron specific 
enolase, SAE Sepsis associated encephalopathy, FS Faecal slurry
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elaterium (EE) (Arslan et al. 2017), Myricitrin (Gong et al. 
2019), Electroacupuncture (EA) (Li et al. 2020; Mo et al. 
2021), Resveratrol (Sui et  al. 2016), Attractylone (Tian 
et al. 2019), Ginsenoside (Li et al. 2017), Mdivi-1 (Deng 
et al. 2018), Butein (Zhu et al. 2019), Boenoel (Wang et al. 
2019), Morin (Xu et al. 2020), Fisetin (Ding et al. 2022), 
Kynurenic acid (Poles et al. 2021), etc. all are neuropro-
tective in SAE adult models. However, some of these 
agents, in some ways, have failed a successful translation 
from bench to bedside (Flierl et al. 2010). Therefore more 
research is needed to evaluate and validate their effec-
tiveness, especially in children.

Maintaining intestinal microbiota integrity is very cru-
cial in patients with SAE. Faecal microbiota transplanta-
tion (FMT) is one of the agents implicated in maintaining 
this integrity (Li et  al. 2018). A recent study compared 
the efficacy of 4 therapeutic methods to modify gut 
microbiota dysbiosis and brain dysfunction in septic rats 
exposed to LPS, i.e. FMT, prebiotics, probiotics, and syn-
biotics. FMT was the most effective method for correct-
ing dysbiosis and restoring the normal gut microflora (Li 
et al. 2021).

Short-chain fatty acids (SCFAs), produced by gut 
microflora metabolising dietary fibre, are shown to 
improve abnormal behaviour, neuronal degeneration, and 
BBB impairment in the SAE mice, to decrease excessive 
activation of microglia and production of pro-inflamma-
tory cytokines, such as IL-1β and IL-6, to increase the 
expression levels of tight junction-associated proteins, 
such as Occludin and ZO-1, and decrease the phos-
phorylation levels of JNK and NF-kB p65 in the brain 
of SAE mice (Liu et  al. 2021). In contrast, in the septic 
mice model, fructose-1, 6-bisphosphate (FBP) was shown 
to maintain and prevent glucose metabolism and reduce 
ROS release (Catarina et al. 2018).

Managing modifiable factors associated with SAE is 
also crucial, such as hypoglycaemia, hyperglycaemia, 
hypercapnia, and hypernatremia (Czempik et  al. 2020). 
Non-pharmacological approaches are also necessary 
to prevent and manage delirium as an acute symptom 
of SAE; this includes but is not limited to reorientation, 
anxiety reduction and general measures such as rein-
forcement of regular circadian sleep cycles, early mobi-
lisation, occupational therapy and physiotherapy, 
encouraging mental activity, music therapy, and ensuring 
sufficient nutrients and fluid intake (Tauber et  al. 2021; 
Chung et al. 2020).

Perspective and conclusion
SAE is one of the most common types of sepsis-related 
organ dysfunction associated with high mortality, lower 
quality of life and long-term neurological sequelae. It has 
gained much attention from clinicians and researchers 

because of these neurological consequences, and its 
prevalence remains uncertain. The pathophysiology of 
SAE is multifactorial, involving diffuse neuroinflamma-
tion, disrupted BBB, mitochondrial dysfunction, oxida-
tive stress, excitotoxicity and cerebral autoregulation 
impairment. Early diagnosis of SAE is crucial for appro-
priate intervention protocols, such as EEG, SEP, MRI and 
biomarker detection, to guide treatment regimens, treat-
ment effects, prognostic evaluation and anticipated neu-
rological outcomes. However, SAE remains a diagnostic 
of exclusion wherein other encephalopathies with related 
characteristics are diagnosed first, posing a delay in the 
anticipated timely intervention.

Interestingly, some gaps and puzzles need to be solved. 
For instance, the consistency and validity of these models 
used to induce sepsis, the efficacy of investigated drugs, 
and the lack of a paediatric animal model of sepsis. Key 
issues should also be taken into consideration when 
interpreting and extrapolating animal models clinically, 
including physiological differences between animals and 
humans in response to infections; consistency in repro-
ducibility of findings; involvement of peripheral organs 
when inducing septic models to a specific organ, and 
technical consistency in manipulating these models and 
interpreting of findings (Moraes et  al. 2021). Thus, the 
standardisation of animal models while solving these key 
differences is worth considering. In addition, there is no 
single study investigating any potential drug in a paediat-
ric septic model, which is alarming considering the prev-
alence of sepsis in children and its associated mortality 
and long-term neurodevelopmental sequelae.

Furthermore, recent clinical trials are yet to show any 
efficacy of these new treatment strategies that are effec-
tive in preclinical animal models. Moreover, one of the 
contributing factors is the misinterpretation of preclini-
cal data obtained from animal experimentations because 
these models need to adequately mimic human sepsis 
with its clinical manifestations (Poli-de-Figueiredo et al. 
2008). The efficacious effects of these agents need valida-
tion in extensive clinical studies.

Though the pathophysiology of SAE is being explored 
with limited treatment options other than systemic sup-
port and antibiotics that are sometimes associated with 
brain dysfunction in critically ill patients as side effects, 
especially in children due to the complexity of their brain 
development and disease course, at the moment, it is 
noteworthy that judicious use of empirical regimen is the 
mainstay of managing SAE patients. Even those emerg-
ing agents under investigation are mainly focused on SAE 
adult models, and clinical trials are needed to investigate 
their efficacy.

This review highlighted the current understanding of 
SAE pathogenetic mechanisms, diagnostic paradigms 



Page 18 of 24Dumbuya et al. Molecular Medicine           (2023) 29:27 

and treatment strategies. It is also noteworthy that the 
long-term mortality and sequelae associated with SAE 
are more pronounced in children and thus pose high 
economic, social and parental burdens. Therefore, it is 
prudent to prioritise early diagnostic and interventional 
strategies to mitigate its short- and long-term neuro-
logical consequences in paediatric patients. Numerous 
models mimicking SAE pathogenesis and mode of action 
have expounded our understanding of its mode of action, 
possible management strategies, and potential emerging 
agents.
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