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Abstract 

Osteoarthritis (OA) is a chronic inflammatory disease that is associated with articular cartilage destruction, sub-
chondral bone alterations, synovitis, and even joint deformity and the loss of joint function. Although current basic 
research on the pathogenesis of OA has made remarkable progress, our understanding of this disease still needs to 
be further improved. Recent studies have shown that the estrogen-related receptor (ERR) family members ERRα and 
ERRγ may play significant roles in the pathogenesis of OA. In this review, we refer to the latest research on ERRs and 
the pathogenesis of OA, elucidate the structure and physiopathological functions of the ERR orphan nuclear receptor 
family, and systematically examine the relationship between ERRs and OA at the molecular level. Moreover, we also 
discuss and predict the capacity of ERRs as potential targets in the clinical treatment of OA.
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Introduction
Osteoarthritis (OA) is the most common joint disease 
among the elderly population (Glyn-Jones et  al. 2015). 
Approximately one-third of senior citizens over 65 years 
of age suffer from OA, and the incidence is significantly 
higher in women than in men. According to epidemio-
logical survey data (Johnson and Hunter 2014), with 
the aging of the population and the increase in aver-
age life expectancy, the incidence and prevalence of OA 
are soaring. However, the current treatment provided 
by clinicians for OA patients is still limited to symp-
tom management (Correa and Lietman 2017; DeRogatis 
et  al. 2019), which fails to curb the development of this 
condition. We now realize that inflammatory cytokines, 
metalloproteinases, cellular senescence, estrogen and 
biomechanical imbalances play crucial roles in the pro-
gression of OA and can lead to a series of critical patho-
logic changes (Wang et  al. 2017a; Mehana et  al. 2019; 
McCulloch et al. 2017; Watt 2016), such as focal cartilage 

deficiency, osteophyte formation, subchondral bone 
remodeling and synovial hyperplasia, in the joints of OA 
patients (Charlier et al. 2019), but our understanding of 
the pathogenesis of OA still needs to be improved. In 
recent years, studies have shown that estrogen-related 
receptor α (ERRα) and γ (ERRγ) in the estrogen-related 
receptor (ERR) family may play essential roles in the 
pathogenesis of OA. In this review, we systematically 
expounded on the relationship between ERRs and OA 
at the molecular level by referring to recent research 
findings.

Structure of estrogen‑related receptors
ERRs are members of the nuclear receptor superfam-
ily and have a tight structural relationship with estro-
gen receptor α (ERα) and β (ERβ) (Eichner and Giguere 
2011). In 1988, two unique nuclear receptors with con-
served steroid hormone receptor features were identi-
fied by a probe synthesized from a cDNA library, namely, 
estrogen-related receptors α and β (Giguère et al. 1988). 
Subsequently, in 1998, the third receptor isoform, estro-
gen-related receptor γ, was discovered by research-
ers (Eudy et  al. 1998). The ERR family have extensive 
sequence similarity with the DNA-binding domain 
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(DBD) and ligand-binding domain (LBD) of ERα (Divekar 
et  al. 2016). However, these receptors cannot bind to 
endogenous estrogen or its derivatives, and so ERRs are 
also referred to as orphan nuclear receptors (Huss et al. 
2015; Tripathi et al. 2020). In human tissue, ERRα has no 
known splice variants, ERRβ has three splice variants, 
and ERRγ has two splice variants (Xu et al. 2016). These 
splice variants signify a significant source of functional 
diversity in the proteome (Heckler and Riggins 2015); for 
instance, the expression of the ERRβL splice variant can 
augment ERα-dependent gene activation (Bombail et al. 
2010), and activated ERRβ2 splice variants are potent 
inhibitors of karyokinesis in breast carcinoma cells, 
including TNBC (Heckler et al. 2016). However, there are 
still quite a few limitations in the understanding of these 
splice variants due to the limited research currently avail-
able (Bombail et al. 2010; Bielli et al. 2019).

The molecular structure of ERRs is similar to that of 
other nuclear receptors, and these proteins consist of 
six conserved regions (A/B, C, D, E/F domains) (Lu et al. 
2019) (Fig. 1). The N-terminal region is the A/B domain, 
also known as activation domain-1 (AF-1), and has the 
characteristics of ligand-independent transcriptional 
activation. The A/B domains of ERRs contain conserved 

motifs that allow their transcriptional activity to be regu-
lated by posttranslational modifications such as phos-
phorylation and SUMOylation (Vu et al. 2007; Tremblay 
et al. 2008).

The central C domain of ERRs is referred to as the DBD 
and contains two highly conserved zinc finger motifs 
(Saito and Cui 2018), which can bind to a specific DNA 
sequence (TCA​AGG​TCA) called the ERR response ele-
ment (Xia et  al. 2019). ERRs can bind with ERR mono-
mers, homodimers or heterodimers consisting of two 
different ERR isoforms (Mohideen-Abdul et  al. 2017; 
Horard et al. 2004). Because all members of the ERR fam-
ily have virtually identical C domains, distinct isoforms of 
ERR can sometimes target the same gene (Casaburi et al. 
2018).

The D domain is a flexible hinge region that provides 
protein flexibility when the dimer is bound to DNA and 
links the C and E regions (Misra et al. 2017; Helsen and 
Claessens 2014).

The E/F domain is the ligand-binding domain. The 
LBDs of ERRs and ERα share 30–40% homology. How-
ever, ERRs cannot bind to endogenous estrogen or its 
derivatives because they lack Cys residues that identify 
ligands (Gibson and Saunders 2012). The LBD contains a 

Fig. 1  Structure of estrogen receptor α and the three estrogen-related receptors. ERRs are composed of six conserved regions (A/B, C, D, and E/F 
domains), and the colors symbolize the diverse functions of these domains. The number between the two receptors represents the sequence 
identity of the same domain in the different receptors
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conserved helix motif called activation function-2 (AF-2) 
(Huss et al. 2015), and this motif is exposed. Three ERRs 
are constitutively active due to the structure of the E/F 
domain, which is capable of binding coregulators in the 
absence of ligand binding (Misawa and Inoue 2015; Liu 
et al. 2016; Chen et al. 2001). Although the ligand binding 
pockets of ERRs are smaller than those of ERα, it is dif-
ficult to accommodate effective natural ligands (Greschik 
et  al. 2002). However, it is hypothesized that the tran-
scriptional activity of ERRs can still be regulated by cer-
tain undiscovered ligands (Gibson and Saunders 2012). 
A large number of experiments have shown that the use 
of some synthetic compounds can regulate the function 
of ERRs. For example, compound LingH2-10 is a novel 
selective inverse agonist of ERRα (Ning et al. 2017), com-
pound DY181 is also considered to be a selective inverse 
agonist of ERRβ and has excellent selectivity and effec-
tiveness (Yu et al. 2017), and compound DY40 is a syn-
thetic inverse agonist of ERRγ.

Protein sequence analysis of all members of the ERR 
family revealed that the DBDs and LBDs of the three 
ERR isoform have high amino acid sequence homology, 
suggesting that they may bind to similar ligands and tar-
get the same promoter and enhancer elements (Giguère 
2002). The ERR family has the highest DBD amino acid 
sequence identity (91–98%), relatively low sequence 
homology among LBDs (62–77%), and lowest sequence 
identity for A/B domains compared to DBDs and LBDs 
(15–59%).

Physiological and pathological function of ERRs
The physiological functions of ERRs are complex and var-
ied, and these proteins play crucial roles in controlling 
the balance of cellular metabolism, general metabolism, 
growth and development, cancer occurrence, and bone 
homeostasis (Villena and Kralli 2008; Thouennon et  al. 
2019; Misra et al. 2016; Zhang et al. 2015; Li et al. 2019a). 
The expression of ERRs is widespread and is particularly 
high in tissues with high energy expenditure or vigorous 
metabolic demands (Festuccia et al. 2018). Among adults, 
Esrra exhibits the highest expression level, Esrrg exhibits 
an intermediate level of expression, and Esrrb shows the 
lowest expression (Likhite et al. 2019). As the site of oxi-
dative metabolism, the metabolic activity of mitochon-
dria is strictly controlled to meet the energy demands of 
cells under different physiological conditions. The well-
known inducers of mitochondrial oxidative metabolism 
are peroxisome proliferator-activated receptor γ coac-
tivator 1α (PGC1α) and nuclear receptor corepressor 1 
(NCOR1) (Brown et  al. 2018b; Lima et  al. 2018), which 
are abundantly expressed in high-energy demand tis-
sues such as the heart, skeletal muscle, and brown adi-
pose tissue (BAT). However, both PGC1α and NCOR1 

lack DNA binding activity and depend on interactions 
with transcription factors that directly bind and control 
downstream target genes. ERRs have been shown to be 
key transcription factors that regulate mitochondrial 
oxidative metabolism and induce PGC1α and NCOR1 
expression (Fan and Evans 2015). Studies have shown 
that ERRs can bind and regulate the expression of glyco-
lytic genes (Long et al. 2020), including pivotal enzymes 
such as phosphofructokinase, hexokinase 2 (HK2), glyc-
eraldehyde phosphate dehydrogenase (GAPDH) and 
enolase 1 (ENO1), which are crucial components of cel-
lular glucose metabolism (Kida et  al. 2015). ERRα is 
highly expressed in tissues involved in lipid metabolism 
and energy balance, such as white adipose tissue (WAT) 
and BAT, the heart and skeletal muscles, which require 
high oxidative capacity (Audet-Walsh and Giguere 2015). 
Mice lacking adipose ERRs (ERRαγAd−/−) have reduced 
oxidative and thermogenic capacity, and when exposed 
to a low-temperature environment, they rapidly become 
hypothermic (Brown et al. 2018a). The thermogenesis of 
BAT depends on the level and activity of mitochondrial 
uncoupling protein 1 (UCP1) (Oelkrug et al. 2015). Epi-
nephrine stimulates BAT cells to activate UCP1-medi-
ated thermogenesis (Porter 2017), which also stimulates 
UCP1 gene expression. Recent studies have shown that 
ERR isoforms function in BAT in a highly complementary 
manner to control mitochondrial biogenesis and cellular 
oxidative capacity. There are defects in the transcrip-
tion and metabolic reaction of BAT lacking all ERRs to 
adrenaline-stimulated UCP1 (Gantner et al. 2016), result-
ing in a significant decrease in mitochondrial content and 
oxidative capacity. ERRs are vital effectors of adrenaline-
stimulated BAT transcriptional reprogramming.

The high expression of ERRα is related to the poor 
prognosis of numerous malignancies and can promote 
the invasive characteristics of a variety of cancers (Tri-
bollet et  al. 2016). In estrogen receptor-negative (ER−) 
breast cancer cells, ERRα acts as an activating transcrip-
tion factor. ERRα overexpression increases the growth of 
breast cancer cells in the mammary gland, as well as the 
expression of vascular endothelial growth factor (VEGF) 
(Misawa and Inoue 2015; Fradet et  al. 2011). In triple-
negative breast cancer (TNBC), ERRα can also regulate 
the expression of genes needed for cancer cell metabo-
lism, enhancing the ability of breast cancer cells to use 
lactic acid as a metabolic substrate (Park et  al. 2016). 
Furthermore, ERRα enhances breast cancer resistance 
to certain anticarcinogens by regulating mitochondrial 
metabolic adaptation (Li et  al. 2020). The combined 
administration of an ERRα inhibitor and rapamycin to 
ER− breast carcinoma cells can synergistically suppress 
the proliferation of tumor cells (Berman et  al. 2017). In 
contrast, ERRα expression is upregulated in urinary 
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bladder carcinoma. After inhibiting the expression of 
ERRα, the growth, proliferation, invasion and migration 
of bladder carcinoma cells are inhibited, promoting can-
cer cell apoptosis and inhibiting the epithelial–mesen-
chymal transition (EMT) of tumor cells (Ye et al. 2019). 
ERRs can directly and/or indirectly affect the physiologi-
cal and molecular characteristics of tumor Leydig cells 
via the formation of a microenvironment (Kotula-Balak 
et  al. 2018). ERRα in endometrial carcinoma cells plays 
a critical role in TGF-β-induced EMT through cancer-
stromal interactions (Yoriki et al. 2019).

Interestingly, ERRs have also beneficial effects on dis-
ease treatment in the context of tumorigenesis and 
development. ERRα can also serve as an activating tran-
scription factor or a transcriptional repressor depending 
on the cellular microenvironment, thereby promoting 
or inhibiting tumor growth in breast cancer (Misawa 
and Inoue 2015). In some patients with TNBC, the 
high expression of ERRα is a biomarker of the patients’ 
response to tamoxifen and a favorable prognostic factor 
for tamoxifen treatment (Manna et  al. 2016). The over-
expression of ERRβ or ERRγ can inhibit the prolifera-
tion of prostate cancer cells, and some research findings 
indicate that the expression of ERRβ or ERRγ in pros-
tate carcinoma is frequently diminished (Misawa and 
Inoue 2015). The ERRγ agonist DY131 suppresses cancer 
growth and inhibits the Wnt signaling pathway. ERRγ is a 
novel tumor inhibitor that can block Wnt signaling and is 
a potential therapeutic target for gastric carcinoma (Kang 
et al. 2018).

ERRs have significant physiological and pathological 
effects on bone tissue. ERRα plays a role in tumor bone 
metastasis, which can occur in up to 70% of patients 
with advanced breast cancer, and ERRα can play multiple 
roles to promote the invasion of bone tissue by primary 
tumors (Misawa and Inoue 2015). In bones, the effects of 
cholesterol, statins, and bisphosphonates on osteoclast 
formation require ERRα. Both cholesterol-induced bone 
loss and bisphosphonate-mediated protective effects are 
lost in an ERRα-knockout (KO) mouse model (Wei et al. 
2016). ERRα regulates bone remodeling by controlling 
osteoclastogenesis, which is a necessary cell differentia-
tion process for bone resorption. The deletion of ERRα 
disrupts osteoclast differentiation and inhibits bone 
resorption (Wan 2010).

Additionally, ERRα inhibits osteoblastic differentiation 
(Gallet and Vanacker 2010). Another study showed that 
ERRα-KO mice were resistant to bone loss, and compared 
with those of wild-type mice, the number and activ-
ity of osteoclasts remained unchanged, while the bone 
formation rate and the activity of osteoblasts increased 
(Zhang et al. 2016). Some studies mainly point  to ERRα 
as a switch that represses the differentiation of precursor 

cells into the osteoblastic pathway while favoring the 
adipocytic pathway (Gallet and Vanacker 2010). ERRα-
deficient mice exhibited mild increases in cancellous 
bone volume and the amount of bone surfaces covered 
with bone-forming osteoblasts, whereas bone marrow fat 
volume was decreased (Delhon et al. 2009).

Moreover, ERRγ negatively regulates osteoblast differ-
entiation and bone formation (Jeong et  al. 2009). Bone 
trabeculae in ERRγ+/− heterozygous mice lacking the 
ERRγ gene were increased compared to those of control 
animals (Cardelli and Aubin 2014). However, ERRγ is 
strongly expressed in bone marrow-derived macrophages 
(BMMs), which are osteoblast precursors; ERRγ sup-
presses the formation of multinucleated osteoclasts and 
attenuates the induction of nuclear factor of activated T 
cells c1, which is a critical modulator of osteoclastogen-
esis (Kim et  al. 2019a). Suppressing ERRα and/or ERRγ 
can boost bone formation and compensate for bone 
loss due to aging or estrogen deficiency (Carnesecchi 
and Vanacker 2016). These experiments have fully dem-
onstrated that ERRα and ERRγ play significant roles in 
maintaining bone homeostasis.

Functions of ERRs in the pathogenesis of osteoarthritis
ERRs are highly expressed in the bone and cartilage tis-
sue of the extremities and trunk, and they play essential 
roles in maintaining tissue homeostasis (Bonnelye et  al. 
1997; Bonnelye and Aubin 2005; Lorenzo 2017). Previous 
studies have shown that the ERRs, which are dominated 
by ERRα and ERRγ, are significantly associated with OA 
(Fig. 2).

Estrogen‑related receptor α
ERRα has dual functions in the occurrence and develop-
ment of OA. On the one hand ERRα may response to the 
healing signal promotes the cartilage formation by upreg-
ulating Sry-type high-mobility-group box transcription 
factor 9 (Sox-9), but on the other, it can accelerate pro-
gression of OA in multiple ways (Bonnelye et al. 2011).

The effect of ERRα on cartilage formation is mainly 
associated with the regulation of its target gene of Sox-9 
(Chen et al. 2014), which is involved in the proliferation, 
differentiation and maturation of chondrocytes. Sox-9 is 
a key regulator of chondrogenic differentiation and car-
tilage formation (Liu et  al. 2018; Wu et  al. 2018). ERRα 
directly or indirectly upregulates Sox-9 gene expression 
in chondrocytes (Bonnelye et al. 2007), thereby promot-
ing the proliferation and accumulation of cartilage pre-
cursor cells and further induces the differentiation of 
these cells into mature chondrocytes; these cells partici-
pate in gristle formation, which plays an important role 
in maintaining the integrity of cartilaginous tissue (Bon-
nelye and Aubin 2005). The effect of ERRα on cartilage 
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in vertebrate embryo development was verified in a 
zebrafish embryo model. In the zebrafish embryo model 
with ERRα gene knockout, the expression of Sox-9 was 
significantly lower than that in the equivalent wild-type 
embryo model during growth and development, which 
leads to malformation of the pharyngeal arch cartilage 
of the embryo in the course of upgrowth (Kim et  al. 
2015). Bonnelye et  al. collected femoral condyles and 
tibial plateaus from OA patients after total knee arthro-
plasty to isolate and culture OA chondrocytes in  vitro. 
OA chondrocytes were treated with the XCT790, a 
synthetic reverse agonist of ERRα, for 24  h, and the 
expression index of Sox-9 in OA chondrocytes was dose‐
dependently downregulated by XCT790 (Kokabu et  al. 
2019). This experiment indirectly confirmed that ERRα 
slows OA chondrocyte loss by participating in cartilage 
formation.

The ERRα-mediated degradation of cartilage is asso-
ciated with interleukin-1β (IL-1β) and matrix metal-
loproteinase-13 (MMP-13). IL-1β is an inflammatory 
cytokine that is closely related to the occurrence and 
development of OA (Liao et al. 2020; Wang and He 2018) 
and can participate in the pathological changes in OA 

through many mechanisms. When human OA chondro-
cytes were treated with IL-1β for 24 h, the expression of 
ERRα increased (Bonnelye et al. 2011). Further research 
showed that IL-1β stimulated ERRα expression via the 
PGE2/cAMP/PKA signaling pathway. MMP-13, also 
known as collagenase 3, performs a significant role in the 
process of OA (Li et  al. 2017; Chan et  al. 2017). MMP-
13 can induce gristle damage by degrading collagens and 
proteoglycans in the cartilaginous extracellular matrix 
(ECM) (Fosang et  al. 1996; Zhang et  al. 2018a), and 
IL-1β is one of the major cytokines that induces MMP-
13 expression (Tabeian et al. 2019). ERRα is generated in 
response to IL-1β stimulation through the PGE2/cAMP/
PKA signaling pathways and is an important orphan 
nuclear receptor that regulates MMP-13 production. The 
level of IL-1-induced MMP-13 mRNA in OA chondro-
cytes was dose-dependently decreased by XCT790 (Bon-
nelye et al. 2011), which demonstrated that ERRα could 
upregulate the expression of MMP-13. ERRα is involved 
in IL-1β-mediated OA cartilage degradation and acceler-
ates the progression of cartilage loss.

Osteocyte and chondrocyte senescence is one of the 
vital causes leading to the initiation and development 

Fig. 2  When the joint is affected by pathogenic factors such as aging, menopause, obesity, hereditary factors, and mechanical stress, the expression 
of the ERR family becomes disordered. a ERRα promotes chondrocyte proliferation by upregulating Sox-9. ERRα is generated in response to IL-1β 
stimulation through the PGE2/cAMP/PKA signaling pathways and regulates MMP-13 production. The dysregulation of ERRα may affect the aging of 
chondrocytes. ERRα participates in osteophyte formation and synovial hyperplasia by impacting osteoclasts. b The overexpression of the ERRγ, as 
regulators of IL-6, VEGFA and MMPs, will inevitably result in the dysfunction of molecular substances, disrupt homeostasis, and induce osteophyte, 
synovitis and cartilage degradation. ERRγ also restrains chondrocyte proliferation by upregulating p27
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of OA (Rahmati et  al. 2017; Millerand et  al. 2019). In 
chondrocytes in human OA, the expression of ERRα is 
dysregulated, and this condition becomes more com-
mon with age (Bonnelye and Aubin 2013), which indi-
cates that ERRα may be a significant regulator of cellular 
senescence, thereby affecting the aging of chondrocytes 
(Huang et al. 2017).

ERRα is a crucial conditioning agent that promotes 
osteoclastogenesis and oxidative metabolism and is 
involved in many processes (Bae et  al. 2017; Yang and 
Wan 2019), such as cell adhesion and transport, when 
expressed in osteoclasts (Bonnelye et  al. 2010). ERRα is 
also expressed in highly motile cells such as macrophages 
and is an important regulator of biological functions 
(Leopold Wager et al. 2019). Macrophages lacking ERRα 
gene expression have decreased cell viability due to 
decreases in intracellular mitochondrial gene expres-
sion and reactive oxygen species (ROS) levels (Sonoda 
et al. 2007). A comprehensive analysis of the relationship 
between ERRα, osteoclasts and macrophages supports 
the role of ERRα in inflammatory diseases, such as OA 
and rheumatoid arthritis, that are associated with oste-
oclast-induced bone degradation leading to bone degen-
eration (Bonnelye et  al. 2010). For example, enhanced 
subchondral bone remodeling and synovitis are the main 
pathological manifestations of osteoarthritis (Aho et  al. 
2017; Mathiessen and Conaghan 2017). The former is 
primarily characterized by macrophage infiltration and 
osteoclastogenesis (Zhu et  al. 2019), while the latter is 
chiefly characterized by the infiltration of inflammatory 
cells such as macrophages and vascular proliferation 
(Zhang et al. 2020). Researchers verified the role of ERRα 
in osteoclasts in ERRα-KO mice and showed that ERRα 
deletion disrupted the expression of several major genes 
in cells, and ERRα-KO mice exhibited osteopetrosis due 
to osteoclast defects and decreased bone resorption, 
suggesting that ERRα may be a significant regulator of 
osteoclastogenesis (Yang and Wan 2019). However, while 
ERRα may participate in the occurrence and develop-
ment of OA by regulating osteoclasts and macrophages, 
sufficient experimental evidence is required to elucidate 
its specific mechanism of action.

Estrogen‑related receptor γ
ERRγ can upregulate matrix metalloproteinase-9 (MMP-
9) expression via the IL-6-mediated MAPK/ERK pathway 
and thus has an essential role in the destruction of OA 
cartilage (Son et al. 2017). An OA mouse model was used 
to show that the expression of ERRγ in cartilage was sig-
nificantly higher than that in wild-type mouse cartilage. 
When ERRγ expression was inhibited by ERR siRNA or 
GSK5182, a reverse agonist of ERRγ (Kim et  al. 2016), 
to inhibit its transcriptional activity, the expression of 

MMP-9 decreased when chondrocytes were stimulated 
with IL-6 (Son et al. 2017). It has been demonstrated that 
in OA chondrocytes, IL-6 mediates ECM degradation by 
stimulating the expression of MMP-9, and the overex-
pression of ERRγ amplifies this effect.

ERRγ can participate in the occurrence and develop-
ment of OA through vascular endothelial growth factor 
A1 (VEGFA). IL-6 can stimulate chondrocytes to pro-
duce angiogenic factors, such as VEGFA (Son et al. 2017). 
The expression of VEGFA in OA is significantly related 
to the severity and pain intensity in OA (Hamilton et al. 
2016; Guan et  al. 2020), which is also crucial for osteo-
phyte development (Wang et  al. 2017b). After osteo-
phytes are formed, the continuous production of VEGFA 
further stimulates vascular proliferation by osteophytes 
(Hashimoto et  al. 2002). Another function of VEGFA is 
to stimulate the proliferation of OA synovium and syn-
ovial blood vessels, leading to inflammatory cell infil-
tration of the synovium and pain in patients with OA 
(Semerano et al. 2016). IL-6 is an important cytokine that 
regulates VEGFA gene expression (Kayakabe et al. 2012). 
ERRγ can regulate VEGFA gene expression by participat-
ing in the MAPK/ERK signaling pathway downstream of 
IL-6. Animal experiments indicated that the expression 
level of VEGFA in OA chondrocytes was reduced after 
using ERR siRNA to inhibit ERRγ expression or GSK5182 
to inhibit ERRγ transcription (Son et  al. 2017). ERRγ 
affects the expression of MMP-9 and VEGFA through the 
MAPK/ERK signaling pathway in chondrocytes, thereby 
participating in pathological processes such as cartilage 
degradation, vascular proliferation, osteophyte formation 
and synovial hyperplasia in the course of OA.

Experimental mouse models of OA were established 
by destabilization of the medial meniscus (DMM) sur-
gery (Hong et al. 2020). Eight weeks later, the expression 
of ERRγ in the cartilage of OA mice was significantly 
increased compared with that in wild-type mice (Zhao 
et  al. 2019), while the expression of matrix metallopro-
teinase-3 (MMP-3) and MMP-13 increased, and DMM 
mice showed significant OA manifestations, includ-
ing cartilage erosion, subchondral osteosclerosis and 
osteophyte formation (Fang et  al. 2018; Tetlow et  al. 
2001). When the experimental mice were replaced with 
Esrrg+/− heterozygous mice lacking one Esrrg allele, the 
OA mouse model was then established by DMM surgery. 
Eight weeks later, the researchers examined heterozy-
gous mice for the lack of an allelomorph of Esrrg, and the 
expression level of ERRγ in joint tissue was reduced (Son 
and Chun 2018), the expression levels of MMP-3 and 
MMP-13 induced by DMM were dramatically reduced, 
and the OA symptoms of cartilage erosion, subchondral 
osteosclerosis and osteophyte formation were signifi-
cantly decreased compared with those of normal DMM 



Page 7 of 12Tang et al. Mol Med            (2021) 27:5 	

mice (Zhao et  al. 2019). This experiment shows that 
ERRγ upregulates the levels of MMP-3 and MMP-13 in 
articular chondrocytes via overexpression (Son and Chun 
2018), which in turn leads to the degradation of collagens 
and proteoglycans in cartilage ECM and the exacerbation 
of OA symptoms (Guo et al. 2017; Hardy and Fernandez-
Patron 2020). ERRγ is a novel regulator of the pathogen-
esis of osteoarthritis.

Transgenic technology was used to generate ERRγ-
overexpressing mouse models, and the expression level 
of ERRγ in bone and cartilage was significantly higher 
than that in wild-type mice. Quantitative analysis of 
the proximal humerus, distal femur and proximal tibia 
revealed that the cartilage growth plate was obviously 
smaller than that of wild-type mice (Cardelli et al. 2013), 
and the declining regions were principally concentrated 
in the zone of proliferating cartilage (Michigami 2013). 
Compared with that of the control group, the height of 
the proliferating cartilage zone in the experimental group 
was decreased by 22%, and the primary reason for this 
dramatic decrease was that chondrocyte proliferation, 
differentiation, maturation and other behaviors were all 
affected (Cardelli et al. 2013; Hirota et al. 2018). Further 
studies demonstrated that the main trigger for the inhi-
bition of chondrocyte proliferation ERRγ-mediated inhi-
bition of chondrocyte proliferation by upregulating the 
expression of cyclin-dependent kinase inhibitor 1B (p27) 
(Kashiwagi et  al. 2010), thus affecting the formation of 
cartilage growth plates. These studies show that ERRγ 
is a negative regulator of chondrocyte proliferation and 
differentiation, and its function appears to be opposite 
to that of ERRα (Bonnelye et al. 2011). In the occurrence 
and development of OA, the proliferation and differen-
tiation of chondrocytes can slow the damage to articular 
cartilage (Charlier et al. 2019; Harrell et al. 2019). In sum-
mary, however, the expression of ERRγ in the cartilage of 
OA mice was significantly higher than that of wild-type 
mice (Zhao et  al. 2019). Overexpression of ERRγ may 
affect the proliferation and differentiation of chondro-
cytes, which is detrimental to the process of self-repair in 
OA cartilage.

Bone and cartilage tissue homeostasis is coregulated 
by a variety of cytokines, growth factors and metal-
loproteases, and numerous molecular substances can 
synergetically or antagonistically maintain homeostasis 
(Mehana et  al. 2019; Wojdasiewicz et  al. 2014; Boehme 
and Rolauffs 2018). When bone and cartilage tissues are 
affected by pathogenic factors such as age, menopause, 
obesity, heredity, and mechanical stress, the expres-
sion of the ERR family, as regulators of IL-1/IL-6, Sox-9 
and other molecular substances, becomes disordered 
(Loeser et al. 2012). Dysregulated expression will inevita-
bly result in the dysfunction of cytokines, growth factors 

and metalloproteinases, disrupt homeostasis, and induce 
articular cartilage ECM degradation, synovial hyperpla-
sia, osteophyte formation and other pathological mani-
festations in the occurrence and development of OA, as 
well as affect the duration of symptoms.

ERRs and the development of innovative drugs
Because we generally lack a systematic and specific 
understanding of the pathogenesis of OA, the treatment 
options for early-stage patients are still limited (Dadabo 
et  al. 2019; Murphy et  al. 2016). Current OA treatment 
measures are symptomatic treatments but not etiological 
treatments. At best, these treatments can only alleviate 
pain and frequently fail to effectively curb the develop-
ment of OA (Vinatier et al. 2016). Although joint replace-
ment can ameliorate the condition of patients with 
advanced OA (Gademan et al. 2016), it is expensive, and 
artificial prostheses have limited service lives. In the case 
of postoperative complications such as prosthesis loos-
ening and periprosthetic infection, revision surgery is 
required, which brings enormous psychological pressure 
and financial burden to patients (Kulshrestha et al. 2019; 
Schwartz et  al. 2020). Based on the role of ERRs in the 
pathogenesis of osteoarthritis, the use of ERR molecular 
modulators to treat OA has a certain theoretical basis 
(Table  1) and important biomedical significance for the 
development of optimal therapies for the prevention and 
treatment of OA. Studies have shown that certain ERR-
related inhibitors have good therapeutic effects on ERR-
mediated diseases (Tripathi et al. 2020). For example, one 
ERRγ reverse agonist is a tetrasubstituted olefin analog 
that enhances the function of sodium iodide transport-
ers in anaplastic thyroid cancer cells, thereby promoting 
the response to radioactive iodine treatment in vitro, and 
can be used as a potential therapeutic agent for ERRγ-
mediated cancers (Kim et al. 2019b). Moreover, diethyl-
stilbestrol (DES) can be used as a reverse agonist for all 
three ERR isoforms (Gibson and Saunders 2012; Gres-
chik et al. 2002). Compound LingH2-10 is a novel selec-
tive inverse agonist of ERRα and can inhibit the growth of 
TNBC cells (Ning et al. 2017). Compound GSK5182 is an 
ERRγ inverse agonist (Zhang et al. 2018b; Kim et al. 2013) 
that can strengthen the antitumor efficacy of the tumor-
reducing drug paclitaxel (Vernier et al. 2020). The com-
pounds GSK 4716 and DY 131 are synthetic ERRβ/ERRγ 
agonists. These synthetic compounds have conspicuous 
inverse or positive agonistic effects on ERRs, and they 
may be used as effective drugs for the prevention and 
treatment of OA in the future. However, there are quite a 
few types of ERR inhibitors, their chemical structures and 
biological functions are exceedingly complex, and our 
understanding of their mechanisms of action is still far 
from complete. Because long-term use of DES increases 
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the risk of malignant tumors in the reproductive system, 
this drug was restricted in 1971 (Huo et  al. 2017; Titus 
et  al. 2019; Smith et  al. 2012). The compound XCT790 
has always been regarded as a specific inverse agonist of 
ERRα, and it has been widely used in experiments related 
to ERRα (Kokabu et al. 2019). It is believed that XCT790 
has the ability to disrupt the interaction between ERRα 
and PGC-1α and inhibit the growth of breast cancer cells. 
However, some studies suggest that XCT790 does not 
appear to be a very specific ERRα inverse agonist because 
at nanomolar concentrations, which is tenfold lower than 
the concentration required to inhibit ERRα, XCT790 is 
an effective, fast-acting mitochondrial uncoupler that 
enables rapid ATP depletion, and its effect is independent 
of ERRα inhibition (Vitto et al. 2019). Therefore, further 
research is needed to elucidate the mechanisms of action 
of ERR-related inhibitors on joints and other tissues to 
find innovative drugs to prevent and treat OA.

Conclusion
ERRα and ERRγ, which are typical orphan nuclear recep-
tors, can regulate inflammatory cytokines and growth 
factors and thus exert significant effects on the occur-
rence and development of OA. Through the progress 

of basic experimental research, the roles of ERRs in OA 
have become clearer, while their mechanisms of action 
still require further study. More research on ERRs in 
osteoarthritis will provide an additional scientific basis 
for thoroughly understanding the pathogenesis of OA. 
The ultimate purpose is to identify drugs to prevent and 
treat movement system diseases such as OA based on 
the regulatory actions of ERRs. It is believed that with 
in-depth research, the advancement of technology and 
the deep integration of biomedicine and clinical medi-
cine, patients with arthritis will be offered safer and 
more effective therapies in the immediate future, and this 
knowledge will also help us to develop novel treatment 
strategies.
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