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Abstract

Background: The hunt for the molecular markers with specificity and sensitivity has been a hot area for the tumor
treatment. Due to the poor diagnosis and prognosis of pancreatic cancer (PC), the excision rate is often low, which
makes it more urgent to find the ideal tumor markers.

Methods: Robust Rank Aggreg (RRA) methods was firstly applied to identify the differentially expressed genes
(DEGs) between PC tissues and normal tissues from GSE28735, GSE15471, GSE16515, and GSE101448. Among these
DEGs, the highly correlated genes were clustered using WGCNA analysis. The co-expression networks and molecular
complex detection (MCODE) Cytoscape app were then performed to find the sub-clusters and confirm 35 candidate
genes. For these genes, least absolute shrinkage and selection operator (lasso) regression model was applied and
validated to build a diagnostic risk score model. Cox proportional hazard regression analysis was used and validated to
build a prognostic model.

Results: Based on integrated transcriptomic analysis, we identified a 19 gene module (SYCN, PNLIPRP1, CAP2, GNMT, MAT1A,
ABAT, GPT2, ADHFE1, PHGDH, PSAT1, ERP27, PDIA2, MT1H, COMP, COL5A2, FN1, COL1A2, FAP and POSTN) as a specific predictive
signature for the diagnosis of PC. Based on the two consideration, accuracy and feasibility, we simplified the diagnostic risk
model as a four-gene model: 0.3034*log2(MAT1A)-0.1526*log2(MT1H) + 0.4645*log2(FN1) -0.2244*log2(FAP),
log2(gene count). Besides, a four-hub gene module was also identified as prognostic model = −
1.400*log2(CEL) + 1.321*log2(CPA1) + 0.454*log2(POSTN) + 1.011*log2(PM20D1), log2(gene count).

Conclusion: Integrated transcriptomic analysis identifies two four-hub gene modules as specific predictive signatures
for the diagnosis and prognosis of PC, which may bring new sight for the clinical practice of PC.
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Introduction
Pancreatic cancer (PC) is a common malignant tumor
of digestive system and ranks the fourth leading cause
of cancer-related death worldwide (Kamisawa et al.,
2016). The prognosis of PC is grim, with patients’
displaying the 5-year survival rate of only 8% (Siegel
et al., 2016). The high mortality of PC patients mainly

attributes to the inability to diagnose the disease early
and the cancer being highly resistant to treatment
(Ryan et al., 2014). Though recent advances in the
diagnosis of PC have being evaluated, PC patients are
often diagnosed at a advanced stage, due to non-
specific clinical symptoms, the lack of truly effective
conventional imageological examinations that will
identify early stage, and the absence of specific and
sensitive diagnostic biomarkers (Ryan et al., 2014).
Hence, it is exceptionally urgent to establish novel
diagnostic molecular markers for PC (Resovi et al.,
2018; Tempero et al., 2013). In addition, a part of pa-
tients diagnosed at early stage also suffer a miserable
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ending, because of the high grade malignant of PC. It
is also necessary to monitor patients at high risk for
poor clinical outcome and identify novel prognostic
molecular markers as early diagnostic biomarkers.
Technological development largely catalyzed our under-

standing of cancer genomics. Since the first publication of
serial analysis of gene expression (SAGE) technique in
1995 (Velculescu et al., 1995), high-throughput gene ex-
pression analysis has revolutionized cancer genetics over
the last 15 years (Chibon, 2013). A comprehensive genetic
analysis of 24 pancreatic cancers sequenced the coding re-
gion of 20, 661 genes and indicated the genetic landscape
of PC (Jones et al., 2008). Four frequently mutated genes
have been identified in PC, including CDKN2A (p16),
SMAD4 (DPC4), and TP53 tumor suppressor genes and
KRAS oncogene (Jones et al., 2008). Several candidate can-
cer genes that alter at low frequency are also identified
such as MLL3 and ARID1A (Jones et al., 2008; Balakrish-
nan et al., 2007). These four frequently mutated genes are
well recognized as contributing to the carcinogenesis of
PC and regarded as the “driver” genes for this tumor
(Iacobuzio-Donahue, 2012), while the diagnostic value of
these altered genes for PC need to be further estimated.
CA19–9 is the common applied serologic marker for the
diagnosis of PC in clinic (Ballehaninna and Chamberlain,
2012). However, CA19–9 has limited performance in de-
tecting early-stage disease (Ballehaninna and Chamberlain,
2012). Hereby, specific and sensitive diagnostic gene
models have always been pursued by cancer researchers.
But, there has been few gene diagnostic model with high
sensitivity and specificity for PC hitherto. The similar pre-
dicament has also existed in the study of prognostic bio-
markers of PC. Though numerous genes, as ACTN4,
LMO2, p16INK4a, have been reported to be involved in
the prognosis of PC (Watanabe et al., 2015; Nakata et al.,
2009; Gerdes et al., 2002), none of them have been applied
in clinic.
In the recent years, gene expression data from the

public database, such as the Cancer Genome Atlas Can-
cer Genome (TCGA), Gene Expression Omnibus (GEO),
offer available information with respect to the molecular
mechanism and variety of multiple carcinomas, and are
of great value to the diagnosis, prediction of progression
in these disease (Chibon, 2013). In this paper, Robust
Rank Aggreg (RRA) methods were employed to identify
the differentially expressed genes (DEGs) from four PC
genome expression datasets. Then, bioinformatics
method of weighted gene co-expression network analysis
(WGCNA) was applied to identify the gene modules
with importance. We next performed the co-expression
networks and molecular complex detection (MCODE) of
Cytoscape app to find the sub-clusters and confirm the
hub genes. Finally, two prediction models, involved in
the diagnosis and prognosis, were established.

Materials and methods
Collection of pancreatic cancer related genome
expression datasets
All of the PC associated datasets were firstly downloaded
from GEO (http://www.ncbi.nlm.nih.gov/geo/). A com-
prehensive assessment of each database was then per-
formed with specific criteria. The selection criteria for
this article are as follows: 1. one of the gene microarray
technology or RNA-Seq technique must be included in
genome expression profiling datasets; 2. DEGs between
PC and normal tissues require to be detected in human
samples and not in cell lines or other body fluid. Four
databases, including GSE28735 (Zhang et al. 2012),
GSE15471 (Badea et al., 2008), GSE16515 (Pei et al.,
2009), GSE101448 (Klett et al., 2018) were selected as
datasets for RRA analysis. GSE78229 (Wang et al., 2016)
was selected as training dataset in the matter of progno-
sis (Table 1).

Datasets processing
After downloading series matrix files of GSE28735,
GSE15471, GSE16515, GSE101448 from GEO, we nor-
malized samples of each matrix files by “normalizeBet-
weenArrays” (Additional file 1: Figure S1) and identified
the initial candidate genes of each dataset by the package
“limma” of R (version 3.5.1, http://www.r-project.org/)
(Ritchie et al., 2015), setting log2(Fold Change) ≥ 1, ad-
justed P < 0.05 as standard. The package “impute” was
used to complete missing expression data. The DEGs
were then identified by R package “Robust Rank Aggreg”
and selected to construct a new data frame with log2(-
Fold Change) ≥ 1, adjusted P < 0.05. RRA method uses a
probabilistic model for aggregation to monitor genes
that are ranked consistently better than expected under
null hypothesis of uncorrelated inputs and allocates a
significance score for each gene (Kolde et al., 2012).

WGCNA
WGCNA is a network biology method that is functioned
to cluster the highly correlated genes and identify the
co-expression modules. The highly correlated genes are
used to construct correlation networks, which facilitate
gene screening methods that can be used to identify can-
didate biomarkers (Langfelder and Horvath, 2008). The

Table 1 Characteristics of gene microarray of this study

Reference GEO Platform Normal Tumor

Zhang et al GSE28735 GPL6244 45 45

Badea et al GSE15471 GPL570 39 39

Pei et al GSE16515 GPL570 16 36

Klett et al GSE101448 GPL10558 19 24

Wang et al GSE78229 GPL6244 0 50

GEO Gene Expression Omnibus
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gene chip of GSE28735 was selected to identify the co-
expression modules for having a relatively large number
of samples and relatively detailed data of survival index.
The cutHeight = 0.8 and minSize = 10 were applied to
identify modules.

Enrichment analysis
Gene Ontology (GO) analysis was conducted by the PAN-
THER classification system for the enrichment analyses
(http://pantherdb.org/) (Mi et al., 2019). The statistical test
was Fisher’s Exact and False Discovery Rate (FDR) < 0.05 was
considered as statistically significant difference. The functional
annotation of genes were reflected in cellular component, bio-
logical process, and molecular function, three major GO clas-
sifications (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017). Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways (Kanehisa et al., 2017) and Reac-
tome pathway (RP) (Fabregat et al., 2018) were performed to
analyze related significant pathways. The enrichment analysis
was visualized by Graphad Prism 5.0 (La Jolla, CA).

Co-expression network and MCODE analysis
The STRING (https://string-db.org/) was served to iden-
tify the pairwise relationships of all genes (Szklarczyk
et al., 2017). The co-expression networks of different
modules were firstly constructed through the employ-
ment of STRING. The cut-off for confidence scores of
interactions is 0.4. To further analyze the physical rela-
tionships among these distance-related genes, MCODE
algorithm was used to select the clusters of the co-
expression networks with the default settings: node score
cutoff 0.2, K-core: 2 (Bader and Hogue, 2003). The sub-
clusters were visualized by Cytoscape (version 3.6.0).
The genes in sub-clusters were selected as candidate
genes for diagnosis and prognosis analysis of PC.

Construction and validation of diagnostic risk model
The gene expression profile of GSE28735 (n = 90) were
served as training cohort to build least absolute shrink-
age and selection operator (Lasso) regression model for
diagnosis. Lasso regression is a kind of penalized regres-
sion method, which identifies regression coefficients for
genes to shrink a weighted average of mean squared pre-
diction error for cases (Zhao and Simon, 2010; Cai et al.,
2018). The risk score model of Lasso regression was
built by the package “LARS” of R (Xiao et al., 2015). To
further determine the superiority of risk score model, we
assessed the sensitivity and specificity of genes that
formed risk model and the risk score model respectively,
receiver operating characteristic (ROC) analysis was per-
formed and the area under the curve (AUC) value was
calculated to compare the prognostic performance. Be-
sides, the gene expression profile of GSE16515 (n = 52)
was used as validation cohort to verify the ability of

diagnostic risk score model. Since the optimum model
contained too many mRNAs to diagnose PC, we deleted
mRNAs with low weight step by step and then rebuilt
lasso regression model. We set AUC > 0.90 as the cut-off
value to get the simplified diagnostic risk model with
minimum quantity of gene count.

Construction and validation of prognostic risk model
The gene expression profile of GSE78229 (n = 49) was
served as training cohort to build prognostic model.
Cox proportional hazard regression model was com-
pleted by SPSS (version 20.0). Additionally, the gene
expression profile of GSE28735 (n = 41) and TCGA
(https://cancergenome.nih.gov/) were used as valid-
ation cohort to verify the prognostic ability of risk
score model. The results were displayed with hazard
ratios (HRs) and coefficient with 95% confidence in-
tervals (95%CI). The package “survminer” of R was
applied to visualize the survival curves.

Results
Identification of the DEGs by integrated analysis
To describe the design process of this study, a flow dia-
gram was indicated in Fig. 1. Before RRA analysis, differ-
entially expressed genes were identified of each gene
chip with log2(Fold Change) ≥ 1, adjusted P < 0.05 as
standard (Fig. 2a). In total, there were 138 up-expressed
genes and 165 down-expressed genes identified as DEGs
with statistical significance through the integration of 4
datasets using RRA method. The top 30 of up-expressed
genes and down-expressed genes were shown in Fig. 2b.
GO enrichment analysis and Reactome pathway enrich-
ment analysis of these up-expressed genes and down-
expressed genes were then carried out and the results
were shown in Fig. 2c and d. It was found that in these
up-expressed genes, the top 3 enriched Reactome path-
ways were collagen degradation, extracellular matrix
organization and PTK2 signaling pathway. As for bio-
logical process, cellular component, and molecular func-
tion, the DEGs mainly concentrated on the pathways of
extracellular matrix organization, collagen degradation,
vesicle, biological and metabolism. The above results
indicated that these DEGs might be the key genes in
pancreatic cancer.

WGCNA and co-expression analysis
Based on the gene chip of GSE28735, WGCNA analysis
was performed to cluster the highly correlated genes that
mentioned above. These genes were mainly divided into
three parts, of which blue and turquoise modules were
considered as the most significant parts (Fig. 3a). As
shown in Fig. 3b, in regard to KEGG pathway, turquoise
module primarily focused on pancreatic secretion, pro-
tein digestion, glycine, serine threonine metabolism and
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fat digestion and absorption, while the blue modules in-
volved in ECM-receptor interaction, focal adhesion, pro-
tein digestion and absorption and PI3K-Akt signaling
pathway. To further identify the key genes from tur-
quoise and blue module, co-expression networks of
these two modules were constructed by STRING.
Through the application of MCODE app by Cytoscape
software, six sub-clusters were found and visualized that
extracted from the turquoise and blue module (Fig. 4).
The genes of sub-clusters were served as key genes for
diagnosis and prognosis analysis of PC (Table 2).

Construction and validation of diagnostic risk model
We constructed lasso regression analysis using these
key genes by R language. As a result, optimal diagnostic
risk model = 0.0504*log2(SYCN)-0.0492*log2(PNLIPRP
1) + 0.0002*log2(CAP2) + 0.1098*log2 (GNMT) + 0.0958
*log2(MAT1A)-0.0415*log2(ABAT) + 0.1113*log2(GPT2)
-0.0352*log2(ADHFE1)-0.0863*log2(PHGDH) + 0.0120
*log2(PSAT1)-0.0180*log2(ERP27)-0.0302*log2(PDIA2)-
0.0999*log2(MT1H) + 0.0770*log2(COMP)-0.1238*log2(-
COL5A2) + 0.2361*log2(FN1)-0.0729*log2(COL1A2)-0.0
560*log2(FAP) + 0.1020*log2(POSTN), log2(gene count).
The results were shown in Additional file 2: Figure S2
that none of 19 genes could be used solely for diagnosis
in that the AUC of them were almost less than 0.90.
The solution paths and parameters of lasso regression
model of 19-genes diagnostic risk model were shown in
Fig. 5a and b. The distribution of risk score of normal
and tumor group of training set-GSE28735 and valid-
ation set-GSE16515 were shown in Fig. 5c and e re-
spectively. The results in Fig. 5d and f both indicated

the co-detection of these genes that exhibited excellent
performance of risk score in diagnosing pancreatic can-
cer using ROC analysis. The AUC in training set-
GSE28735 was 0.975, P < 0.0001 and in validation set-
GSE16515 was 0.948, P < 0.0001. In consideration of ac-
curacy and feasibility, we simplified the diagnostic risk
model by removing mRNAs with low weight step by
step. As shown in Fig. 5g, as the number of gene de-
creased, the overall trends of AUC values of training
and validation cohort were downward. We set AUC >
0.90 as the cut-off value to get the simplified diagnostic
risk model with minimum quantity of gene count. A
four-gene diagnostic risk model was built: 0.3034*log2(-
MAT1A)-0.1526*log2(MT1H) + 0.4645*log2(FN1)-0.224
4*log2(FAP), log2(gene count). The AUC in training
cohort-GSE28735 of simplified model was 0.954, P <
0.0001 (Fig. 5i) and in validation cohort-GSE16515 was
0.928, P < 0.0001 (Fig. 5k).

Construction and validation of prognostic risk model
To identify the prognosis-associated genes in sub-
clusters, prognostic risk model was conducted, which in-
cluded genes CEL, CPA1, POSTN, and PM20D1. The
formula for the prognostic risk scores used in this study
was as follows: prognostic model = − 1.400*log2(CEL) +
1.321*log2(CPA1) + 0.454*log2(POSTN) +
1.011*log2(PM20D1). The patients involved in the re-
search were separated into two groups, high-risk group
(N = 20) and low-risk group (N = 21) (Fig. 6a). It was in-
dicated that patients in high-risk group tended to exhibit
shorter survival time while in low-risk group, patients
had the lower mortality (HR: 0.39, 95%CI: 0.19–0.81,

Fig. 1 Flow diagram describing the design process of this study
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P = 0.013). To further test the finding, the risk model in
GSE28735 and TCGA was reevaluated. Although in
GSE28735 database, it seemed to have no prognostic
value for the P value = 0.061 (Fig. 6b). The patient sam-
ples in the database were small, only 41. To compensate
its defects, another validation in TCGA was performed.
Similarly to the training cohort, the results in Fig. 6c
(HR: 0.64, 95%CI: 0.43–0.98, P = 0.040) revealed that the
high-risk group had the higher mortality than that in
low-risk group. Beside, we compared the prognostic per-
formance between the prognostic model and existing
prognosis models. The prognostic risk model we defined
had a preferable prognostic performance in both
GSE78229 and TCGA cohort (Additional file 3: Figure
S3).

Discussion
Application of the public archives is a powerful weapon
to understand three fundamental questions of cancers:
from exploring cancer biology, to prediction of progres-
sion, and treatments to which it will respond (Rung and

Brazma, 2013). However, many difficulties are encoun-
tered in data collection, analysis and annotation for the
rather noisy data from one individual research. Thus, in-
tegrating different databases can generate valuable re-
sources and overcome the rather noise from different
individual study (Dai et al., 2017). In this study, we
adopted an integrated analysis, the RRA method, to se-
lect significant DEGs from four independent datasets of
PC gene chips, which could provide more convincing re-
search results.
Ultimately, 138 up-regulated and 165 down-regulated

DEGs were selected by RRA methods from the four in-
dependent datasets of PC. Part of them have been docu-
mented to be tumor promoter genes of PC, such as
GABRP, CEACAM5, CEACAM6 and CST1 (Takehara
et al., 2007; Govindan et al., 2009; Riley et al., 2009; Jiang
et al., 2015). Some of them are considered as the tumor
suppressor genes of PC, such as PLA2G1B, SERPINI2
and NR5A2 (Goonesekere et al., 2018; Bailey et al., 2016;
Murtaugh, 2014). Several genes have been proven to be
the prognostic or diagnostic biomarkers of PC, such as

Fig. 2 Identification of differentially expressed genes and their enrichment analysis. a The volcano plots of gene chips. b Heatmap displayed the
log2(Fold change) of top 30 high expression genes and 30 low expression genes selected by Robust Rank Aggreg (RRA) methods from 4 independent gene
chips. Each row represented the same mRNA from different gene chips and each column represented the same chip. The log2(Fold change) tendency of each
mRNA was displayed in shade of red or green and the values of log2(Fold change) were marked within each box. Red represented the fold change of up-
expressed genes and green represented down-expressed genes, respectively, compared to para-carcinoma tissues. c-d Gene ontology (GO) enrichment analysis
and Reactome pathway enrichment analysis of high expression genes (c) and low expression genes (d). The vertical axis represented GO term or pathway, and
the horizontal axis represented count of genes or fold enrichment. The column with black patches represented fold enrichment. The value of false discovery
rate was shown at the end of each column. BP, biological process; CC, cellular component; MF, molecular function; RP, Reactome pathway
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LCN2, CLDN18, LAMC2 and SULF1(Bartsch et al.,
2018; Ito et al., 2011; Kosanam et al., 2013; Lyu et al.,
2018). GO enrichment analysis of up-regulated genes re-
vealed that these significant genes were highly related to
extracellular matrix (ECM) regulation, which was con-
sistent with the clinical features of PC: early local inva-
sion/distant metastasis (Wray et al., 2005). Enrichment
analysis of down-regulated genes is also indicative of the
close connection between these significant genes and an-
other crucial pathway in PC (Halbrook and Lyssiotis,
2017; Michalski et al., 2017). Furthermore, we also dis-
covered many DEGs, whose roles in PC are still ill-
defined, such as IFI27, KRT17, COMP and COL8A1.
Their functions need to be further researched in PC.
Next, WGCNA and co-expression networks were

used to identify the hub genes of PC. The significant
modules of WGCNA were involved in ECM regula-
tion, metabolism correction pathways, PI3K-Akt sig-
naling pathway and platelet derived growth factor

signaling pathway, which have been widely studied in
PC (Vaquero et al., 2003; Stoll et al., 2005; Weiss-
mueller et al., 2014). Prognostic and diagnostic pre-
dictive models in multiple cancers could be identified
according to the information of clinical indicator,
pathological classification and related gene expression
(van ’t Veer et al., 2002a; van ’t Veer et al., 2002b).
Finally, a set of robust prognostic signatures including
SYCN, PNLIPRP1, CAP2, GNMT, MAT1A, ABAT,
GPT2, ADHFE1, PHGDH, PSAT1, ERP27, PDIA2,
MT1H, COMP, COL5A2, FN1, COL1A2, FAP and
POSTN were identified by lasso regression analysis
from DEGs and could diagnose the PC. Then, a four-
gene simplified diagnostic risk model was built. A
four-gene prognostic signature composing CEL, CPA1,
POSTN and PM20D1 was established by Cox propor-
tional hazards regression model combined with
Kaplan-Meier survival analysis and could predict the
overall survival of PC.

Fig. 3 WGCNA analysis of the differentially expressed genes and Gene ontology enrichment analysis and KEGG pathway analysis of the functioned
modules (a) Gene clustering and module identification was made by WGCNA analysis on the basis of the gene chip-GSE28735. Cluster dendrogram
diaplayed the result of hierarchical clustering, and each line represented a gene. The colored column below the dendrogram represented module
conducted by the static tree cutting method. The blue and turquoise color show different co-expression network modules for DEGs and grey module
represents insignificant module. b-c Gene ontology enrichment analysis and KEGG pathway enrichment analysis of turquoise (b) and blue (c) module.
The vertical axis represented GO term or pathway, and the horizontal axis represented count of genes. The value of false discovery rate was shown at
the end of each column. BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto encyclopedia of genes and genomes;
WGCNA, weighted gene co-expression network analysis
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Early diagnosis of PC has always been the challenge in
cancer field (Keiji Hanada et al. 2017). CA19–9 is perhaps
the widely evaluated tumor marker in PC patients, while
its universal applicability in the diagnosis of PC was se-
verely limited for the non-specific expression in several
benign and malignant diseases (Balakrishnan et al., 2007).
A great deal of effort has been made for the early detec-
tion of PC, and put forward kinds of diagnostic bio-
markers for PC, such as ICAM-1, OPG, TIMP-1 (Brand
et al., 2011). However, these biomarkers have also not
broken through the dilemma of difficult detection of early
PC. Endoscopic ultrasound-guided fine needle aspiration

(EUS-FNA) is a new development technique for forecast-
ing the quality of pancreatic neoplasm in recent years (Puli
et al., 2013). Previous analysis showed that EUS-FNA dis-
played a high specificity, but lower sensitivity (Puli et al.,
2013). Though EUS-FNA has shortcomings in PC diagno-
sis, it is an efficient method to obtain tissues of pancreatic
neoplasm besides surgery. Hence, building an effective
diagnostic risk model based on gene detection in pancre-
atic neoplasm is of great importance in PC diagnosis and
may break the state quo. In this study, we firstly confirmed
a 19-gene prognostic model through integrated transcrip-
tomic analysis. Among these genes, SYCN and POSTN

Fig. 4 Visualization and identification of key genes form turquoise and blue module. a Co-expression network of turquoise module and sub-clusters
that were highly interconnected regions in the network based on topology. b The co-expression network and sub-clusters of blue module
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have been reported as the diagnostic biomarkers in PC
(Makawita et al., 2013; Dong et al., 2018). PNLIPRP1 and
GNMT have been documented as the tumor suppressor
genes of PC (Goonesekere et al., 2018; Zhang et al., 2013)
and PHGDH been certified as the tumor promoter gene of
PC (Song et al., 2018). This risk model could accurately
diagnose PC in our subsequent verification, while many
variables in this model need to be controlled, resulting in

limited application of these prognostic signatures in clinic
in the future. In addition, this model was based on the
DEGs from surgical specimen of PC. It remains unclear
whether this model displayed an excellent accurate diag-
nosis in the tissues from EUS-FNA. The expression of
these biomarkers should be detected in a large number of
tissues from EUS-FNA to confirm the high specificity and
sensitivity of the diagnostic model. Thus, further study is

Table 2 List of 35 key genes in four gene chips

Gene GSE28735 GSE15471 GSE16515 GSE101448

logFC adj P logFC adj P logFC adj P logFC adj P

CTRL −2.19 2.22E-5 −2.92 8.42E-4 −3.92 7.73E-3 −5.18 2.7E-22

SYCN − 1.30 1.94E-4 −2.57 7.54E-3 −3.78 2.59E-2 −5.63 8.31E-21

PRSS3 −1.24 5.67E-4 −1.54 3.08E-2 −2.22 3.85E-2 −3.60 7.79E-12

CTRC −2.61 4.62E-5 −1.56 8.09E-2 −3.40 3.93E-2 −3.45 3.77E-10

CELA2B −2.21 1.12E-4 −2.38 8.13E-3 −3.42 1.53E-2 −4.38 1.08E-23

CEL −2.51 1.36E-4 −1.27 1.86E-1 −3.51 3.85E-2 −3.52 1.61E-10

PNLIPRP1 −2.83 3.73E-5 −2.23 1.32E-2 −4.20 5.89E-3 −5.45 6.64E-14

CPA1 −1.87 1.39E-3 −1.27 2.22E-1 −3.33 7.09E-2 −4.96 3.24E-13

CPA2 −2.45 2.78E-4 −1.70 5.76E-2 −3.98 1.26E-2 −4.94 1.90E-14

GNMT −1.41 1.77E-4 −2.85 1.03E-6 −3.07 3.94E-4 −4.83 5.59E-19

GATM −1.46 7.98E-4 −0.93 8.45E-6 −2.72 1.23E-3 −3.08 1.52E-14

MAT1A −0.80 2.28E-4 −1.50 9.31E-08 −1.41 6.06E-3 −1.27 8.05E-5

GCAT −0.57 6.11E-4 −1.55 6.87E-7 −1.46 6.00E- −2.48 1.11E-6

ABAT −1.12 4.47E-7 −1.55 1.05E-6 −2.19 6.19E-5 −1.84 2.21E-14

GPT2 −0.87 1.20E-3 −1.43 5.99E-6 −1.48 1.56E-2 −2.13 1.86E-13

ADHFE1 −1.09 3.11E-8 −0.75 3.05E-8 −1.31 8.46E-7 −2.21 9.28E-11

PM20D1 −1.40 7.49E-5 −2.48 2.43E-7 −2.01 4.71E-3 −0.70 5.67E-3

PHGDH −0.88 6.05E-5 −1.08 8.35E-7 −1.15 6.47E-3 −1.23 1.03E-6

PSAT1 −0.98 1.82E-3 −2.29 5.09E-8 −1.93 2.16E-3 −1.12 2.48E-5

BCAT1 −0.52 2.79E-2 −1.07 6.20E-3 −1.06 5.80E-2 −1.62 2.67E-8

PRDX4 −0.64 4.42E-4 −1.22 2.09E-6 −1.35 2.82E-4 −1.08 4.64E-2

ERP27 −2.50 2.31E-5 −2.28 2.08E-3 −3.42 5.15E-3 −4.16 2.57E-15

PDIA2 −2.12 7.91E-6 −1.43 1.11E-6 −3.48 1.06E-3 −5.23 1.38E-21

MT1H −0.70 1.20E-5 −1.02 1.17E-5 −1.87 3.05E-6 −3.53 1.39E-17

MT1F −1.00 4.95E-5 −1.23 3.68E-6 −1.86 8.16E-6 −2.32 1.79E-7

MT1G −1.15 4.34E-5 −1.65 7.28E-8 −2.15 4.75E-6 −2.53 3.04E-10

COL5A1 0.77 4.83E-6 3.22 3.83E-15 1.81 1.71E-3 1.99 3.02E-8

COMP 1.44 1.47E-6 3.54 1.28E-14 2.17 5.19E-3 2.45 1.59E-7

CDH11 1.43 2.19E-7 2.55 8.28E-14 1.72 2.56E-3 2.20 5.03E-4

COL5A2 1.33 9.57E-6 3.54 1.69E-15 1.71 1.43E-3 1.74 8.66E-6

FN1 2.31 2.65E-10 2.80 2.66E-17 2.30 5.10E-6 1.45 4.92E-9

SULF1 1.94 9.20E-9 4.23 1.17E-19 2.56 6.86E-5 2.53 2.47E-6

COL1A2 1.58 7.27E-6 3.43 1.18E-16 1.68 7.98E-4 1.57 7.13E-11

FAP 1.44 1.44E-5 3.26 3.72E-16 1.84 4.73E-3 2.23 1.03E-6

POSTN 2.67 1.13E-10 2.94 1.58E-14 2.75 6.46E-5 3.08 1.76E-12

logFC:log2(fold change) (tumor compared to normal tissue); adj P: adjusted P value
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necessary to the clinical application of the model for PC
diagnosis.
PC is one of the worst prognosis cancers, making the

prognostic biomarkers becoming especially important in
PC. Recently, it has been reported that several predicted
models for risk estimation, such as S100P, ERO1LB,
SULF1, ITGA2, GPRC5A, ACTN4, LMO2, p16INK4a
and CLPS (Watanabe et al., 2015; Nakata et al., 2009;
Gerdes et al., 2002; Lyu et al., 2018; Zhang et al., 2013; Ji
et al., 2014; Zhu et al., 2017; Li et al., 2018; Liu et al.,
2018). A study recently identified three genes COL11A1,
GJB2 and CTRL as prognostic biomarkers for PC by
using integrated whole genome microarray analysis and
immunohistochemical assay (Sun et al., 2018). Most
existing prognosis models of PC involve only one gene
or mRNA, which have their limitations. Because the ex-
pression and crosstalk of multiple genes jointly account
for the outcome of PC. That’s the reason why we paid
far more attention in identifying co-expression networks
and hub genes. The prognostic model that we built in-
volves multi-hub genes that interact in different modules

and pathways, which improves the specificity and reli-
ability of the model. Testing of serum miRNAs has been
a novel method for predicting the outcome of PC pa-
tients. Researchers from Nanjing, PR China identified a
six-miRNA (miR-19a-3p, miR-192-5p, miR-19b-3p, let-
7b-5p, miR-223-3p, and miR-25-3p) signature in the
serum for PC early and noninvasive diagnosis (Zou
et al., 2019). Besides, a study was to identify a prognostic
model that combined the clinical factors-distance from
common hepatic artery or superior mesenteric artery
and biomarker CA19–9 to predict the outcome, which
also indicated that one gene or mRNA could not fully
forecast the outcome (Suzuki et al., 2019). Anyway, using
clinical factors related models for predicting survival of
PC are intuitive. Although a mass of clinical prediction
models for PC have been reported, most succumb to
bias and have not been validated externally (Strijker
et al., 2019).
In this paper, we identified a four-gene prognostic sig-

nature for PC, containing CEL, CPA1, POSTN and
PM20D1. Compared to the study of Defeng Sun et al.,

Fig. 5 Construction of risk model for diagnosis of pancreatic carcinoma and ROC curve. a The solution paths of lasso regression model. The numbers on
the right represented which variable each path corresponds to. Horizontal axis represented |beta|/max|beta| and vertical lines showed the event times for
easy comparison between various solution paths. b The relationship between cross-validated mean square error (CV MSE) and model size. Horizontal axis
represented fraction of final L1 norm, which referred to the ratio of the L1 norm of the coeffcient vector relative to the norm at the full least squares
solution for the model with the maximum steps used. c The distribution of risk score of normal and tumor group of training set-GSE28735. d ROC curve of
risk score for differentiating tumor from normal of training set. e The distribution of risk score of normal and tumor group of validation set-GSE16515. f ROC
curve of risk model for differentiating tumor from normal of validation set. g The relation between gene counts that involve in diagnostic risk model and
AUC of training cohort and validation cohort. h The distribution of risk score of normal and tumor group of training set-GSE28735 for simplified diagnostic
risk model. i ROC curve of risk score for simplified diagnostic risk model of training set. j The distribution of risk score of normal and tumor group of
validation set-GSE16515 for simplified diagnostic risk model. k ROC curve of risk score for simplified diagnostic risk model of validation set. AUC, area under
the curve; ROC curve, Receiver operating characteristic curve
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Fig. 6 Four-gene prognostic model of pancreatic cancer in training and validation cohort. a Construction of prognostic risk model of pancreatic
cancer in training cohort-GSE78229. Yellow and blue represent patients with low and high risk scores. We defined high risk group as risk score≥
median, low risk group as risk score < median. b Validation of prognostic risk model of pancreatic cancer in GSE28735. c Validation of prognostic
risk model of pancreatic cancer in TCGA. TCGA, The Cancer Genome Atlas
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we included more quantified datasets of PC. Poor prog-
nosis of PC may be due to the hallmarks of easy migra-
tion and resistance. POSTN has been reported to be
related to the resistance and invasion in cancers (Park
et al., 2016; Landré et al., 2016). In PC, periostin,
encoded by POSTN, could enhance the invasiveness and
resistance ability of PC cells via activation of the PI3 kin-
ase pathway (Baril et al., 2007). CPA1 could promote the
development of PC via ER stress (Tamura et al., 2018)
and CEL has also been reported as the risk factor of PC
(Dalva et al., 2017). PM20D1 is related to the metabol-
ism pathway (Long et al., 2016), and it may be involved
in cancer via influencing tumor metabolism (data no
shown). These previous documents have also highlighted
the potential role of the four genes in PC. Here, the re-
sults of survival analysis cross-checked the accuracy of
this prognostic risk model in different cohort and indi-
cated that these four genes could serve as predictive bio-
markers for PC.
Rapid development of technology platforms, free access

to many published experimental datasets and different
statistic values account for the diversity of methods to
treat the same question. RRA method is a rigorous way to
integrate their results in an unbiased manner for getting
rid of noise and error (Kolde et al., 2012). The candidate
genes were obtained from RRA analysis of four independ-
ent gene chips with great statistic difference. The molecu-
lar biology experiments discussed above indicated the
functional role of predictors in cancers, while there is little
experimental evidence to demonstrate their role in PC.
Biological systems are holistic and complicated. Bioinfor-
matic findings provide theoretical guide for basic experi-
ments. Biostatistical and bioinformatics approaches to
biological systems will definitely require experimental val-
idation to define their biological relevance.
We have to admit some limitations of this study.

Firstly, a major issue is that we can’t collect enough
cases of PC in our own institute due to the characteristic
of PC. Secondly, due to the lack of the details on TNM
stage, symptoms, complications, metastasis, treatment,
etc., we can’t make sure that the diagnostic risk model
could be used in any manner to diagnose PC and
whether the biomarkers could be further tested as serum
markers for surveillance purposes. But the candidate
genes were selected from four independent gene profiles
and diagnostic and prognostic risk model were both vali-
dated in other cohort, which could make up for it
slightly. We have already collected specimen of PC in
different centre with adequate information and the find-
ing would be further verified not long in the future.

Conclusions
Integrated transcriptomic analysis identifies two four-
hub gene modules as specific predictive signatures for

the diagnosis and prognosis of PC, respectively. Further
study of these hub genes may improve the clinic status
of pancreatic cancer therapy.
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