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The Obama geothermal field is located on the western part of Kyushu Island, Japan. This area has importance
due to its high geothermal content which attracts sporadic researchers for study. In 2003 and 2004, Obama was
covered by gravity surveys to monitor and evaluate the geothermal field. In this paper, the surveyed gravity data
will be used in order to delineate and model the subsurface structure of the study area. Gradient methods such
as analytic signal and vertical derivatives were applied to the gravity data. The available borehole data and the
results of the gradient interpretation techniques were used to model the Obama geothermal field. In general, the
obtained results show that the gradient interpretation techniques are useful to obtain geologic information from
gravity data.
Key words: Analytic Signal, gravity interpretation, Obama geothermal area.

1. Introduction
The Obama geothermal field is located on the western

part of Kyushu Island, southwestern Japan (Fig. 1), on the
western foot of Unzen volcano and in front of Chijiwa Bay.
The Obama geothermal area is one of the most promising
geothermal fields in Japan, and therefore study of its struc-
ture contributes to a potentially useful understanding of its
reservoir characteristics.
In order to delineate the subsurface structure of the

Obama area, gradient techniques were applied to the grav-
ity data of the study area. In the early 1970’s, a variety of
automatic and semiautomatic methods, based on the use of
gradients of the potential field, were developed as efficient
tools for the determination of geometric parameters, such as
locations of boundaries and depth of the causative sources
(e.g. O’Brien, 1972; Nabighian, 1972, 1974; Cordell, 1979;
Murthy, 1985; Barongo, 1985; Blakely and Simpson, 1986;
Hansen et al., 1987; Hansen and Simmonds, 1993; Reid et
al., 1990; Keating and Pilkington, 1990; Ofoegbu and Mo-
han, 1990; Roest et al., 1992; Marcotte et al., 1992; Mar-
son and Klingele, 1993; Hsu et al., 1996, 1998; Salem and
Ravat, 2003; Keating and Pilkington, 2004; Aboud et al.,
2005). The success of these methods results from the fact
that quantitative or semi-quantitative solutions are found
with no or few assumptions.
In this work, gravity data of the Obama geothermal field

was analyzed and interpreted using the analytic signal and
vertical derivative methods. Initially, because the Obama
area is covered by reclaimed land that enlarges the noise, the
upward continuation technique was used as a noise-filter to
reduce the noise. Then, an analytic signal was applied to the
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gravity data in order to delineate the borders/contacts of the
geologic boundaries. Once the analytic signal is applied,
the depths to these boundaries were estimated using the
Nabighian method (1972). In order to calculate the second
vertical derivative of the gravity data, Fast Fourier Trans-
form (FFT) was applied to the gravity data. Finally, the
results of the analytic signal, depth estimation, and second
vertical derivative techniques were used to create a geologic
model expressing the subsurface structure of the Obama
area.
Geologically, the Obama area is composed of

Quaternary-Neogene volcanic formations. The base-
ment rock is composed of Pliocene (Neogene) formations
and the overlying sedimentary rock is composed essentially
of Quaternary formations (Fig. 2). Previous geological
studies indicated the existence of faults striking mainly
E-W (New Energy Developing Organization, 1988; Saibi
et al., 2006). However, a N-S trend can be observed in the
area, namely the Obama fault bordering the western coast
of the Obama area (Ōta, 1973; Saibi et al., 2006).
1.1 Gravity data
The Obama geothermal field was covered by gravity sur-

veys as a routine method for monitoring and evaluating
the geothermal reservoir. The gravity data collected during
2003 and 2004 were used in this study in an attempt to de-
lineate the subsurface structure of the Obama area. This will
hopefully lead to exploration of new features that can help
in maximizing the production and minimizing the cost of
energy production. A density of 2.3 g/cm3 (Murata, 1993)
was used to produce the Bouguer anomaly map of the study
area (Fig. 3).
Gravity was surveyed over an area of 4 km2. Surveys of

the GPS (Topcon GP-SX1) single frequency type were con-
ducted using the kinematic method, which can be placed
anywhere in radio contact of the base station to measure lo-
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Fig. 1. Location map of Obama geothermal area, Japan.

cations precise to the centimeter level, and the Scintrex CG-
3M gravimeter, a very sensitive mechanical balance which
detects changes in the gravitational field to one part in a mil-
lion. The gravity data was corrected for temporal variations
(drift and tides). The ocean loads and tides were calculated
using the computer program GOTIC2 (Matsumoto et al.,
2001). The coordinates of stations and their altitudes were
measured by GPS, with an error of ±10 cm in altitude, and
approximately ±0.03 mgal of error in Bouguer gravity. The
terrain correction was applied for the observed gravity us-
ing the computer program KS-110-1 (Katsura et al., 1987)
with a mesh of 250 m.
Visual inspection of Fig. 3 shows that the area is charac-

terized by positive gravity values covering the whole area,
ranging between 11.2 and 13.5 mgal, and increasing in the
eastern and southern parts of the map area. This could
be related to the low gradient in the subsurface structure.
The depth to the basement from drill-hole data is 500 m
(New Energy Developing Organization, 1988). The ob-
served variations in the anomalies reflect the half graben
structure associated with the volcano-tectonic depression
zone of Shimabara peninsula.

2. Applications and Results
2.1 Analytic signal method
The basic concepts of the analytic signal method in 2D

for magnetic data were extensively discussed by Nabighian
(1972, 1974 and 1984) and Green and Stanley (1975). Their
counterparts, in the case of gravity data, have been in-
troduced by Klingele et al. (1991). Marson and Klingele
(1993) define the analytic signal of the vertical gravity gra-
dient produced by a 3D source as follows:
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Fig. 2. Geologic map of Obama geothermal area modified by the New
Energy Developing Organization (1988). The black rectangle indicates
the study area and the red rectangle indicates the southern part of the
study area.

where |Ag(x, y)| is the amplitude of the analytic signal at
(x, y), g is the observed gravity field at (x, y), and ( ∂g

∂x ,
∂g
∂y ,

and ∂g
∂z ) are the two horizontal and vertical derivatives of the

gravity field, respectively. The other unusual feature of our
technique is the use of the analytic signal for gravity data.
Straightforward application of the Poisson relation (Pois-
son, 1826; Baranov, 1957) and correspondence between
gravity and magnetic fields for homogeneous bodies would
suggest use of the analytic signal of the vertical gradient
of gravity data. This relates the vertical gradient of gravity
data from a given source to the magnetic effect of the same
source. Starting from this consideration, one can apply
magnetic interpretation methods to gravity data. Klingele
et al. (1991) showed in their paper that the analytic signal
could be applied directly to airborne gravity gradiometric
data as well as ground gravity surveys after transformation
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Fig. 3. Bouguer anomaly map of the Obama field, ρ = 2.3 g/cm3. The
black rectangle indicates the southern part of the study area. The black
line indicates the coastline.

of the Bouguer anomalies into vertical gradient anomalies.
Stanley and Green (1976) stated that gravity gradient infor-
mation is more sensitive to geological structure than grav-
ity itself, and gradient interpretation is less susceptible to
interference from neighbouring structures. The application
of the analytic signal method to gravity data was first sug-
gested by Nabighian (1972), but he did not apply this con-
cept to gravity data. Hansen et al. (1987) suggested that the
straightforward application of Poisson’s relation could lead
to the use of the analytic signal method for gravity data. For
geologic models, the shape of the analytic signal is a bell-
shaped symmetric function located above the source body.
The analytic signal maxima occur directly over the edges
of source bodies. The analytic signal is peaked over the lo-
cation of the top of the contact. In addition, depths can be
obtained from the shape of the analytic signal (MacLeod et
al., 1993). The analytic signal method, also known as the
total gradient method, as defined here, produces a particular
type of calculated gravity anomaly enhancement map used
for defining, in a map sense, the edges (boundaries) of ge-
ologically anomalous density distributions. Mapped max-
ima (ridges and peaks) in the calculated analytic signal of
a gravity anomaly map locate the anomalous source body
edges and corners (e.g., basement fault block boundaries,
basement lithology contacts, fault/shear zones, igneous and
salt diapirs, etc.). Analytic signal maxima have the useful
property that they occur directly over faults and contacts,
regardless of the structural dip present.
2.2 Depth estimation
The analytic signal anomaly over a 2-D magnetic contact

located at x and at depth h is described by the expression
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Fig. 4. Analytic signal of the first vertical gradient of the Bouguer gravity
map of the southern part of the Obama area. Lines 1–19 are the selected
profiles that were used to estimate the depths from the analytic signal.
The black line indicates the coastline.
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Fig. 5. Amplitude of the analytic signal of profile 1 of the study area.

(after Nabighian, 1972):

|A (x)| = α
1(

h2 + x2
)1/2 , (2)

where |A(x)| is the analytic signal and α is the amplitude
factor. For a contact, taking the second derivative of Eq. (2)
with respect to x produces the following (MacLeod et al.,
1993):

d2 |A (x)|
dx2

= α
2x2 − h2(
h2 + x2

)5/2 . (3)

After rearranging Eq. (3), we obtain (MacLeod et al., 1993):

xi =
√
2h, (4)
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Table 1. Estimated depths from analytic signal method at the contacts.

Profile Depth m. Profile Depth m. Profile Depth m. Profile Depth m. Profile Depth m.

Profile 1 39 Profile 5 42 Profile 9 29 Profile13 42 Profile17 50

Profile 2 39 Profile 6 42 Profile10 32 Profile14 39 Profile18 25

Profile 3 46 Profile 7 46 Profile 11 35 Profile15 64 Profile19 42

Profile 4 33 Profile 8 46 Profile12 42 Profile16 42
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Fig. 6. Second vertical derivative map of the Bouguer gravity data of the
southern part of the Obama field. The black line indicates the coastline.

where h is the depth to the top of contact and xi is the width
of the anomaly between inflection points.
2.3 Results of analytic signal method
The analytic signal signature of the southern part of the

Obama field was calculated (Fig. 4) from the first vertical
gradient of the Bouguer gravity data, in the frequency do-
main using the Fast Fourier Transform technique (Blakely,
1995). Higher values of the analytic signal are observed at
three regions labeled A, B, and C as shown in Fig. 4, which
indicate that these regions have significant density contrasts
that produce identifiable signatures on the map. To estimate
the depth to the contacts from the analytic signal, 19 pro-
files were selected over the regions A, B, and C in which
contrasts could be found. Equation (4) was used to calcu-
late the depth for each profile at the top of contacts. Table 1
shows the depth values. Generally, the depth values for re-
gion (A) have an average value of 44.4 m, for region (B)
an average of 42 m, and for region (C) an average of 39 m.
The calculated depths from the Euler deconvolution method
(Saibi et al., 2005) ranged between 50 and 100 m. We can
observe coherent results between the Euler method and the
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TUFF BRECCIA
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density = 2.2 g/cm

density = 2.4 g/cm

3

3

Fig. 7. Stratigraphic log of drill-hole at the southern part of the Obama
area.

analytic signal method. To test the usefulness of the ana-
lytic signal in the gravity case, we have calculated the depth
to the contact from profile 1 (Fig. 5), where a drill-hole was
drilled recently. The drill-hole data shows that a main frac-
tured zone is situated between 110 and 121 m depth. On
the other hand, the drill-hole data gives information that in-
dicates the existence of a zone of clay minerals at 45 m
depth. Generally, a clay mineral zone indicates a leaching-
weathering phenomenon, or simple alteration caused by in-
trusion of water, which means the existence of lateral flow
reaching the top of contacts. Drilling report results agree
with the analytic signal results (42 m depth).
2.4 Second vertical derivative (SVD)
A second vertical derivative (SVD) map of gravity data

is calculated by using the Fast Fourier Transform (FFT).
The result is an enhanced anomaly or residual map related
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Fig. 8. Enhanced Bouguer gravity map using separation filter of the
southern part of the Obama area. The black line indicates the coastline.

to the “curvature” of the input gravity (Fig. 6). The SVD
map tends to emphasize local anomalies and isolate them
from the regional background. The SVD enhances near-
surface effects at the expense of deeper anomalies. The
quantity 0 mgal/m2 should indicate the edges of local ge-
ological features. Three regions can be seen: A, B, and C,
with almost the same positions determined by the analytic
signal method. Unfortunately, SVD amplifies noise and so
is capable of producing many second derivative anomalies
that could be artificial.
2.5 2D forward modeling of enhanced bouguer
The southern part of the Obama area is covered by re-

claimed land about 30 m in thickness (Fig. 7). Upward
Continuation (UC) filtering was carried out on the grav-
ity data to remove the effect of the reclaimed land. The
UC serves to smooth out near-surface effects (shorter—
wavelength anomalies) after calculating the gravity field at
an elevation higher than that at which the gravity field is
measured. The Enhanced Bouguer (Fig. 8) may remove the
trend caused by the reclaimed land. The Enhanced Bouguer
gravity data was calculated using this expression:

BouguerEnhanced = Bouguerwithout transformation

− BouguerContinued upward 50 m. (5)

After calculating the Enhanced Bouguer gravity, six par-
allel lines were selected in order to get a geologic model
of the shallow layers in the southern part of Obama. The
Enhanced Bouguer was forward modeled using the algo-
rithm of Talwani et al. (1959) and a contrast density of−0.2
g/cm3. Figure 9 shows a 2D model with the control point

Fig. 9. 2-D model line using control point based on forward modeling
of the gravity data using Talwani’s algorithm (distance in meters and
gravity in mGal).

(drill-hole) using Talwani’s algorithm and shows the true
depth value of the tuff breccia layer in relation to other lines,
which will be taken into consideration for forward model-
ing of lines 1–6 (Figs. 10 and 11).

3. Discussion
The total area of the southern part of the Obama field is

around 240 m2. The gradient interpretation techniques can-
not detect deep anomalies. All these methods use deriva-
tives of the first and second order; this may add noise to
the field and affect the results. Here, we applied many
transformations in order to minimize the noise and enhance
the gravity data. The analytic signal method defines the
edges of geologically anomalous density distributions and
the maxima in the calculated analytic signal of a gravity
anomaly map to locate the anomalous source body edges
and corners; in our case are andesitic lava bodies. The ig-
neous rocks are bordered by normal faults which contain
drained water (trace of alteration zones). To estimate the
depth from the analytic signal, we have used the method of
MacLeod et al. (1993) who stated that the contact model
will underestimate the depth by 18%, especially in residual
data, as in this case. Our results show noise ranging from 15
to 18%, taking all noise-source possibilities into account.
Figure 12 shows the geologic model of the southern part
of the Obama field integrated from gradient interpretation
techniques of gravity data.

4. Conclusions
In this paper we have applied different gradient interpre-

tation techniques for geological mapping purposes. The ap-
plication of the analytic signal in gravity is not common.
Here we present an application of this method for the grav-
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Fig. 10. 2-D conceptual structural model (line 1–line 6) based on forward modeling of the gravity data.

ity field. The depths to the contacts vary between 39 and
64 m. All the methods show three bodies A, B, and C elon-
gated north-east to south-west. The bodies represent the up-
doming of andesitic lava. This structure is a typical graben
related to the regional geology. The study area is charac-

terized by a graben structural system taking the direction
of NE-SW, with two directions of faults striking NE-SW
and WNW-ESE. This study shows that the analytic signal,
SVD, and transformation filter are useful and complemen-
tary tools in the analysis of complex geological structures.
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Fig. 11. 3-D view of 2-D gravity forward modeling of lines 1–6 of the
southern part of Obama.

BODY A BODY B BODY C

North-east South-west

Trend of
 fa

ult 
WNW-ESE

Trend of fault NE-SW

40
 m

 d
ep

th

Alterated zone

0 m 700 m

Fig. 12. Schematic geologic model of a north-east cross-section at the
southern part of the Obama area.

Acknowledgments. The first author would like to thank Prof.
Richard Hansen (School of Mines, Colorado) for his suggestions
and comments. We also thank two anonymous reviewers for their
revisions and useful comments which improved the paper. We
would like to thank Ms. Katie Kovac (Energy and Geoscience In-
stitute, USA) for suggesting a number of improvements in this
manuscript. We gratefully acknowledge the financial support of
the Ministry of Education, Culture, Science and Technology, Gov-
ernment of Japan in the form of a Scholarship.

References
Aboud, E., A. Salem, and K. Ushijima, Subsurface structural mapping of

Gabel El-Zeit area, Gulf of Suez, Egypt using aeromagnetic data, Earth
Planets Space, 57, 755–760, 2005.

Baranov, V., A new method for interpretation of aeromagnetic maps:
pseudo-gravimetric anomalies, Geophysics, 22, 359–383, 1957.

Barongo, J. O., Method for depth estimation on aeromagnetic vertical
gradient anomalies, Geophysics, 50(6), 963–968, 1985.

Blakely, R. J., Potential Theory in Gravity and Magnetic Applications,
Cambridge University Press, 1995.

Blakely, R. J. and R. W. Simpson, Approximating edges of source bodies
from magnetic or gravity anomalies, Geophysics (short note), 51(7),
1494–1498, 1986.

Cordell, L., Gravimetric expression of graben faulting in Santa Fe Coun-
try and the Espanola Basin, New Mexico, in Guidebook to Santa Fe
Country, 30th Field Conference, edited by R. V. Ingersoll, New Mexico
Geological Society, pp. 59–64, 1979.

Green, R. and J. M. Stanley, Application of a Hilbert transform method
to the interpretation of surface-vehicle magnetic data, Geophysical
Prospecting, 23, 18–27, 1975.

Hansen, R. O. and M. Simmonds, Multiple-source Werner deconvolution,
Geophysics, 58(12), 1792–1800, 1993.

Hansen, R. O., R. S. Pawlowski, and X. Wang, Joint use of analytic sig-
nal and amplitude of horizontal gradient maxima for three-dimensional
gravity data interpretation, 57th SEG meeting, New Orleans, extended
Abstracts, pp. 100–102, 1987.

Hsu, S. K., D. Coppens, and C. T. Shyu, Depth to magnetic source using

the generalized analytic signal, Geophysics, 63, 1947–1957, 1998.
Hsu, S. K., J. C. Sibuet, and C. T. Shyu, High-resolution detection of

geologic boundaries from potential anomalies: an enhanced analytic
signal technique, Geophysics, 61, 373–386, 1996.

Katsura, I., J. Nishida, and S. Nishimura, A computer program for terrain
correction of gravity using KS-110-1 topographic data, Butsuri-Tansa,
40(3), 161–175, 1987 (in Japanese with Abstract in English).

Keating, P. B. and M. Pilkington, An automated method for the interpre-
tation of magnetic vertical-gradient anomalies, Geophysics, 55(3), 336–
343, 1990.

Keating, P. and M. Pilkington, Euler deconvolution of the analytic signal
and its application to magnetic interpretation, Geophysical Prospecting,
52, 165–182, 2004.

Klingele, E. E., I. Marson, and H. G. Kahle, Automatic interpretation of
gravity gradiometric data in two dimensions: vertical gradient, Geo-
physical Prospecting, 39, 407–434, 1991.

MacLeod, I. N., K. Jones, and T. F. Dai, 3-D analytic signal in the interpre-
tation of total magnetic field data at low magnetic latitudes, Exploration
Geophysics, 679–688, 1993.

Marcotte, D. L., C. D. Hardwick, and J. B. Nelson, Automated interpre-
tation of horizontal magnetic gradient profile data, Geophysics, 57(2),
288–295, 1992.

Marson, I. and E. E. Klingele, Advantages of using the vertical gradient of
gravity for 3-D interpretation, Geophysics, 58(11), 1588–1595, 1993.

Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, GOTIC2: A program
for computation of ocean tidal loading effect, J. Geod. Soc. Japan, 47,
243–248, 2001.

Murata, Y., Estimation of optimum average surficial density from gravity
data: An objective Bayesian approach, J. Geophys. Res., 98(B7), 12097–
12109, 1993.

Murthy, I. V. R., The midpoint method: Magnetic interpretation of dykes
and faults, Geophysics, 50(5), 834–839, 1985.

Nabighian, M. N., The analytic signal of two-dimensional magnetic bod-
ies with polygonal cross-section: its properties and use for automated
anomaly interpretation, Geophysics, 37(3), 507–517, 1972.

Nabighian, M. N., Additional comments on the analytic signal of two-
dimensional magnetic bodies with polygonal cross-section,Geophysics,
39(1), 85–92, 1974.

Nabighian, M. N., Toward a three-dimensional automatic interpretation
of potential field data via generalized Hilbert transforms: Fundamental
relations, Geophysics, 49(6), 780–786, 1984.

New Energy Developing Organization, Geothermal development research
document, Unzen Western Region, New Energy Developing Organiza-
tion, No. 15, 1988.

O’Brien, D. P., CompuDepth—a new method for depth-to-basement cal-
culation, presented at the 42nd Meeting of the Society of Exploration
Geophysicists, Anaheim, CA, 1972.

Ofoegbu, C. O. and N. L. Mohan, Interpretation of aeromagnetic anoma-
lies over part of southeastern Nigeria using three-dimensional Hilbert
transformation, Pageoph, 134, 13–29, 1990.
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