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New approach for optimizing energy by adjusting
the trade-off coefficient in wind turbines
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Abstract

Background: As fossil fuels run out, more attention should be paid to renewable energies, among which wind
energy is one of the best. Therefore, the optimization of its energetic efficiency in variable speed wind turbines is
an important focus of this recent study.

Methods: Based upon linearization, a trade-off between energy conversion maximization and minimization of
damage caused by mechanical fatigue, the resulting energy produced by a wind turbine, is optimized. Mathematically,
the objective is defined as a stochastic criterion, belonging to the class of linear quadratic regulator (LQR) optimal
control problems.

Results: A linear control law has been obtained using an LQR stochastic approach, and the optimal value for α has
been calculated using a real-value genetic algorithm. The numerical simulations show a better efficiency for this
method compared to other methods used thus far. They also present a better stability when the optimal trade-off
coefficient is applied.

Conclusions: The results demonstrate that the curves of the state variables and output variables for the different
valves of α converge to zero, which shows that the design controller was fully able to reduce the effectiveness of
the white noise.
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Background
Renewable energies are obtained from natural resources
such as sunlight, wind, rain, tides, and geothermal heat. As
fossil fuels become scarce, more attention should be paid
to new energy sources or technically new energies. Among
the renewable energies, wind energy is known to provide
one of the most economical ways to produce electricity
because it is inexhaustible and causes no environmental
pollution. Moreover, wind turbines normally do not need
any extra fuel, water, and other intermediary. Therefore,
the exploitation of wind energy using wind turbines for
producing electricity has been taken into consideration.
On the other hand, variable-speed fixed-pitch wind

turbines are well suited for small- to medium-scale wind
power markets due to their simple structure, low cost,
and high reliability [1]. Therefore, the optimization of
energy efficiency in variable speed for wind turbines is
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the focus of studies about the designing and exploitation
of wind turbines. Indeed, the exclusive goal of wind en-
ergy conversion systems is the optimization of the en-
ergy conversion with the aim of maximizing the energy
captured from wind.
One of the previous studies used variable speed of

electrical generators in conjunction with a nonlinear con-
trol algorithm (see [2]). Also, Wood (in 2004) employed
differential evolution to optimize wind turbine blades (see
[3]). Liu et al. (in 2007) presented an optimization model
for rotor blades of horizontal axis wind turbines. Their
model refers to the wind speed distribution function (see
[4]). In another study, a power optimization objective is
gained by computing the optimal control settings of wind
turbines using data mining and an evolutionary strategy
algorithm (see [5]). In this study [6], an approach to per-
form another linearization for determining an optimal
control design was applied. A stochastic model of wind
turbines which convert wind speed signals into power out-
put signals with appropriate multifractal statistics was
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suggested in [7]. Munteanu et al. [8] have presented a re-
view of both the operational methods for the analysis of
the stochastic data and the reconstruction of the detailed
stochastic evolution equations from the available data.
Among the recent new works in this area, it is pre-

ferred to emphasize not only on an optimization-based
approach to reduce extreme structural loads during rapid
and emergency shutdown [9], but also on predicting the
maximum generation capacity to obtain power control
[10] and extreme seeking to perform maximum point
tracking [11] as well dynamic responses of land-based and
floating wind turbines under pitch system faults [12].
Regarding the mentioned studies, in this current re-

search, we have attempted to optimize the energy in
wind turbines by means of simplification using lineariza-
tion in order to achieve the best adjusting coefficient for
the trade-off action via the application of the stochastic
LQR method.
Supposing that the energy of the moving wind could

be fully captured by the turbine rotor, the total power
provided to the rotor would be

Pt ¼ 1
2
ρaV 3; ð1Þ

where ρ is the air density, a is the section area of turbine
rotation, and V is the wind speed. In fact, this power is
partially transferred to the turbine's rotor and transformed
into mechanical power, which is further transformed into
electrical power by means of an electrical generator. In
these transformations, the mechanical power, Pwt, that is
smaller than the total power, Pt, is obtained from [13] as

Pwt ¼ 1
2
ρaV 3Cp λð Þ ð2Þ

Where Cp denotes the power coefficient, defining the
aerodynamic efficiency of the wind turbine rotor. In fact,
Cp is a function of the tip speed ratio, scalar λ, which is
defined as follows:

λ ¼ ΩR
V

; ð3Þ

Where Ω is the rotational speed of the blades and R is
the blade length; and in fact, λ is the ratio of the linear
speed of blades to wind speed.
In order to reduce mechanical fatigue on the wind tur-

bine system, the torque variations should be minimized
by controlling the generator torque variation, ΔΓG

����� tð Þ;
hence, due to the stochastic behavior of wind, a stochas-
tic control system is provided.
The most common methods that have been applied

for solving this optimal problem can be classified as
maximum power point tracking (MPPT) approach, based
on an on-off controller [14], fuzzy control techniques [15],
linear quadratic Gaussian (LQG) approach [16], and sliding
mode techniques [17]. In all of the mentioned methods,
the main goal is the maximization of energy efficiency.
In this paper, based on the LQR approach, a new opti-

mal control structure is proposed, which optimizes the
combined stochastic criterion that includes the identifi-
cation of the optimal coefficient for adjusting the given
trade-off. Thus, the aim of this paper is to optimize the
energy produced by the turbine. To achieve this goal, a
real-valued genetic algorithm (GA) and Matlab software
tools were applied to obtain the best trade-off coefficient
for the variable speed, fixed pitch turbine. Moreover, the
LQR stochastic approach is used to design an optimal
strategy, which could lead to the optimal solution of the
dynamical system.
This paper is organized as follows: in the ‘Methods’

section, the modeling of the control system is explained,
the linearization of the wind energy conversion system is
presented, the optimization problem formulation is the
focus, and the performance index is introduced. Further-
more, the stochastic LQR controller and the optimal con-
trol law are presented. In ‘Results and discussion’ section,
some simulation results are summarized. This paper fin-
ishes with some closing remarks in the ‘Conclusions’
section.

Methods
Modeling of the wind power system
The wind energy conversion chain is modeled in Figure 1.
It consists of three subsystems: (1) the aerodynamic sub-
system (S1 in Figure 1) is composed of the blades and the
hub which capture as much power as possible. (2) The
mechanical subsystem (S3 in Figure 1) is composed of the
gearbox (drive train). Gears increase the turbine speed re-
quired by most of the generators to produce electricity in
an efficient manner.(3) The electromechanical subsystem
(S2 in Figure 1) is composed of the generator. The mech-
anical power of a wind turbine is converted to electrical
power by means of the generator.
By regarding the above-mentioned remarks, the aero-

dynamic subsystem is modeled by the nonlinear wind
torque characteristic [18]:

Γwt ¼ Γwt Ω;Vð Þ ¼ 1
2
πρR2V 3 Cp λð Þ

Ω
¼ kV 3 Cp λð Þ

Ω
ð4Þ

Where Γ is denoted as the torque (Γwt is the electrical
and ΓG is the mechanical torque) and k ¼ 1

2πρR
2.

The electromechanical subsystem interacts with the
turbine rotor through the drive train; the dynamics of
the latter is expressed by

J t
dΩ
dt

¼ Γwt−ΓG: ð5Þ

Where Jt expresses the total inertia of the turbine.



Figure 1 The wind turbine model [16].
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The wind model is added to the general model of the
system. The wind can be modeled as a stochastic process
with two components: the seasonal �V and the turbu-
lence ΔV(t) with

V tð Þ ¼ �V þ ΔV tð Þ: ð6Þ
The antagonistic demands of maximizing the energy

conversion and minimizing the torque variations are
expressed by a combined optimization criterion as [16]

Min : I ¼ lim
t→∞

E α λ tð Þ−λopt
� �2n o

þ lim
t→∞

E ΔΓ���G tð Þf g:
ð7Þ

Here, the positive coefficient α is introduced in the model
to adjust the trade-off between the two above-mentioned
contrary requirements. We also would like to mention that
the scalar λopt will be introduced in the next section.

Linearization of the system
Due to the existing difficulties in determining an optimal
control for the nonlinear systems, it is necessary to achieve
a solution for an equivalent linear control system. In the
sequel, the nonlinear relations (4) and (5) will be linearized
around the operating point, characterized by a well-
defined value of the tip speed ratio, i.e., �λ≡λopt. For a vari-
able x of the model, the following notations are adopted:

�x ¼ xjoptimal operating point;Δx ¼ x−�x;Δx��� ¼ Δx
�x

ð8Þ

Using the Taylor expansion of Γwt, Equation 4 is linear-
ized as follows:

Γwt Ω;Vð Þ≅Γwt �Ω; �Vð Þ þ
∂Γwt
∂V

�Ω; �Vð ÞΔV þ ∂Γwt
∂Ω

�Ω; �Vð ÞΔΩ:
�������

����
����

ð9Þ
By applying Equations 3 and 4 and assuming C ′
p λð Þ ¼

∂Cp λð Þ
∂λ in Equation 9, we obtain

Γwt ¼ �Γwt þ
3k �V 2Cp

�λ
� �

�Ω
−
k �V 3C ′

p
�λ
� �

�ΩR
�Ω �V 2

 !
ΔV

þ k �V 3C ′
p
�λ
� �

�λ

�Ω
2 −

k �V 3Cp
�λ
� �

�Ω
2

 !
ΔΩ:

Since Γwt ¼ �Γwt þ ΔΓwt , the above equation can be re-
written as

ΔΓwt ¼ k �V 3

�Ω
3Cp

�λ
� �

−C ′
p λð Þ�λ� �

ΔV����

þ k �V 3

�Ω
C ′

p
�λ
� �

�λ−Cp
�λ
� �� �

ΔΩ���� ð10Þ

From Equation 4 and dividing Equation 10 by Γwt
�� , the

following relation is obtained for ΔΓ���wt:

ΔΓ���wt ¼ 2−γð ÞΔV����þ γΔΩ���� ð11Þ

where γ≡γ �λ
� � ¼ C ′

p
�λð Þ�λ−Cp

�λð Þ
Cp

�λð Þ and is called the torque

parameter.
On the other hand, by regarding the definition of the

differential, Equation 5 can be approximated as J t ΔΩΔt ¼
Γwt−ΓG . Also, by differentiating this relation in respect to
time, one can reach

J tΔ _Ω ¼ ΔΓ���wt�Γwt−ΔΓ
���

G�ΓG ð12Þ
Where ΔΓ���wt ¼ ΔΓwt

�Γwt
and ΔΓ���G ¼ ΔΓG

�ΓG
. Substituting Δ _Ω ¼

�Ω � �Ω: into Equation 12 and using �Γwt ¼ �ΓG gives



Fakharzadeh J et al. Energy, Sustainability and Society 2013, 3:19 Page 4 of 8
http://www.energsustainsoc.com/content/3/1/19
J t ΔΩ
���: � �Ω ¼ ΔΓ���wt−ΔΓ

���
Gð Þ�Γwt . Thus, Equation 5 can be

represented by the following linearization:

JTΔΩ
���: ¼ ΔΓ���wt−ΔΓ

���
Gð Þ ð13Þ

where JT ¼ J t �Ω
�Γwt

is the mechanical time constant.

Optimal control structure
The linearized relations (11) and (13) are used to repre-
sent the state space matrix equations.
Considering e(t) as a white noise as well as Tw ¼ L

�V ,
where matrix L is the turbulence length, the stochastic
model of wind can be presented as (see [16])

ΔV����
:

tð Þ ¼ −
1
Tw

ΔV���� tð Þ þ 1
Tw

e tð Þ ð14Þ

On the other hand, differentiating Equation 11 with
respect to time (γ is a constant) gives

ΔΓ���
:

wt tð Þ ¼ γ ΔΩ���
:

tð Þ
� �

þ 2−γð ÞΔV����
:

tð Þ: ð15Þ

Now, by substituting Equations 13 and 14 into
Equation 15, Equation 16 is obtained:

ΔΓ���
:

wt tð Þ ¼ γ

JT
ΔΓ���wt tð Þ−ΔΓ���G tð Þð Þ þ 2−γ

Tw
e tð Þ−ΔV���� tð Þð Þ:

ð16Þ
Hence, Equation 16 together with Equation 13 defines

the state space equation as

_X tð Þ ¼ AX tð Þ þ Bu tð Þ þ Le tð Þ ð17Þ
where X tð Þ ¼ ΔΩ��� tð Þ ΔΓ���wt tð Þ½ �T is the state vector, u
tð Þ ¼ ΔΓ���G is the control input, and by regarding
Figure 2 Optimal control scheme [16].
Equations 11, 13, and 16, we achieve the following
coefficient matrixes:

A ¼
0

1
JT

γ

Tw

γ

JT
−

1
Tw

2
64

3
75; B ¼

−
1
JT

−
γ

JT

2
64

3
75; L ¼

0
2−γ
Tw

" #
:

Moreover, the output variable is defined as being the
normalized variation of the tip speed ratio, i.e., y tð Þ ¼ Δλ���
tð Þ ¼ Δλ

�λ
. Hence, the output equation is

y tð Þ ¼ Cx tð Þ; ð18Þ
and by considering the principle of superposition, we ob-

tain C ¼ 2
2−γ

−1
2−γ

� �
: Therefore, relations (17) and (18)

represent the linearized model of the wind power system.
In this manner, the performance index (7) can be
expressed as a quadratic form of the state variables and
the control input as follows:

M in : I ¼ lim
t→∞

E xT tð ÞQx tð Þ þ uT tð Þu tð Þ	 

where Cα ¼

ffiffiffi
α

p
C and Q ¼ CT

α Cα is a positive semi-
definite matrix. Hence, the optimal control problem for
optimizing the produced energy in the wind turbine can
be expressed as

Min : I ¼ limt→∞ E xT tð ÞQx tð Þ þ uT tð Þu tð Þ	 

Subject to : _x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ Le tð Þ;

ð19Þ
where the disturbance input e(t) is a white noise random
signal with spectral density Se Se ¼ σ2e

� �
.
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As mentioned before, up to now, problem (19) has
been solved by different methods such as LQG, MPPT,
sliding mode, and fuzzy techniques. But as a different view,
Equation 19 is an LQR stochastic problem. So, we present
a new and simple solution method in the next subsection.
Optimal LQR stochastic controller design
In Equation 19, the state equation is linear, the cost
function is quadratic, and it is assumed that all states are
measurable; thus, the optimal control problem of wind
turbine (Equation 19) can classically be considered as an
LQR stochastic problem. Based on [19], the unique opti-
mal control input which minimizes the expressed index
in Equation 19 for the dynamic system given by relations
(17) and (18) is the full state feedback law:

u ¼ −Kx tð Þ ð20Þ
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Figure 3 The simulation results of optimal trajectories, output, and co
where the feedback matrix, K, is introduced by means of

K ¼ R−1BTP ð21Þ

where P must be satisfied by the following algebraic
Riccati equation:

PAþ ATP þ Q−PBR−1BTP ¼ 0: ð22Þ

By applying the diagonalized form of the Hamiltonian
matrix, it is proven that the solution of Equation 22 is
evaluated as P = ψ21ψ11

− 1 (see [12]), where the columns of
ψ11 ψ12
ψ21 ψ22

� �
are the eigenvectors of the Hamiltonian

matrix. Also, the cost function value could be computed
by using singular value decomposition as [20]

I ¼ tr PLSeL
T

� 

; ð23Þ
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where the matrix Se is the constant of the white noise.
Recalling that the asymptotic stability of the closed-loop
system, whose structure is presented in Figure 2 and de-
scribed by x: tð Þ ¼ A−BKð Þx tð Þ, should be guaranteed. In
the next section, the LQR stochastic approach will be
used to obtain the optimal control of the given wind tur-
bine system.

Results and discussion
Simulation results
The necessary data for performing the simulation are
taken from [16], where the proposed control strategy is
validated using an electromechanical simulator of the
wind energy conversion system. Therefore, the following
set of parameters has been used:

J t ¼ 3 kg m2;R ¼ 2:5 m; λopt ¼ 7; Cpmax ¼ Cp λopt
� �

¼ 0:47:

This provides us with the following values for the linear-
ized system's parameters around the operating point
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Figure 4 The simulation results of optimal trajectories, output, and co
corresponding to �V ¼ 7 m=s; JT ¼ 0:5632;Tw ¼ 21:4286
s and γ =−1. The standard deviation of e(t) is σe = 0.0475.
The results have shown that the performance index values
are sensitive to the α values. So, the real-value genetic algo-
rithm from [21] is used to find the optimal value of α.
For this purpose, the crossover relations applied to

generate offsprings ac1 and ac2 from parents a1 and a2,
respectively, are as follows:

rc ¼ rand random variableð Þ;
ac1 ¼ rc� a1 þ 1−rcð Þ � a2;
ac2 ¼ 1−rcð Þ � a1 þ rc� a2:

Also, the following mutation relations used to generate
offsprings am1 and am2 from parent a are described as

rf ¼ rand; b ¼ 3;

f ¼ rf 1−
itergen
gensize

� �� �b

;

am1 ¼ aþ max αð Þ−að Þ � f ;
am2 ¼ aþ min αð Þ þ að Þ � f ;
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where the parameters ‘gensize’ denotes the population
size and ‘itergen’ denotes the number of iteration of the
population (see [6]).
Using the genetic algorithm, the optimal value of α

was found to be α = 0.0099. Moreover, using the Matlab
software (R2006A), the gain matrix K and the perform-
ance index for several amounts of α are calculated from
Equations 21 and 23 as

K ¼ −0:1211 −0:0257½ �; I ¼ 3:45� 10−5 for α ¼ 0:2;
K ¼ −6:6399 2:4100½ �; I ¼ 2:28� 10−4 for α ¼ 100;
K ¼ −0:0065 −0:0016½ �; I ¼ 2:02� 10−6 for α ¼ 0:0099:

Obviously, these results show that the best obtained
numerical results belong to the optimal value α = 0.0099,
given by applying GA.
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Figure 5 The simulation results for the best a = 0.0099 obtained from
Finally, the optimal state vectors, output variable, and
control trajectory for these different values of α are illus-
trated in Figures 3, 4, and 5, respectively.
Comparing these simulation results with those taken

from [16] intuitively shows that the corresponding re-
sults to α = 0.0099 do not only have better performance
index and stability, but also quite reduced torque varia-
tions; this is a good reason for the suitability of α = 0.0099
when we know that its related eigenvalues of the A − BK
matrix are 0.0467 and −1.7843. It may be necessary to bear
in mind that in [6], for a certain case of the objective
function, the optimal value of α was obtained as 0.0011
with I = 3 × 10−5, but there, the optimal control resulted
in an approximated piecewise constant function.
For further research, it is a very interesting and useful

idea to measure the noise and find out how much it is
reduced. As mentioned in [22] and [23], ‘it is a big chal-
lenge’ and needs some deep experience on concepts like
the Langevin and Ornstein-Uhlenbeck process.
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Conclusions
This paper proposes an optimal control strategy for
variable-speed fixed-pitch wind turbines. The optimality
of the whole system is defined in relation to the trade-
off between wind energy conversion maximization and
the minimization of the generator torque variation. This
optimal problem is treated using an LQR stochastic ap-
proach, whose effectiveness was proven by a numerical
solution. Since this combination is dependent on the
definition parameter for the required trade-off, this
method is able to define the parameter in an optimal
way by genetic algorithms. Applying the best of the
obtained trade-off coefficients in an LQR stochastic ap-
proach allows us not only to produce a larger amount of
energy, but also to obtain a better stability; moreover,
the torque variations were extremely reduced and the
numerical conclusion showed the desired ability and ap-
plication of this method. These results demonstrated
that the curves of the state variables and output vari-
ables for the different values of α converge to zero,
which shows that the design controller was fully able to
reduce the effectiveness of the white noise.
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