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Abstract

In this work the adsorption features of activated carbon and the magnetic properties of iron oxides were combined
in a composite to produce magnetic adsorbent. Batch experiments were conducted to study the adsorption
behavior of arsenate onto the synthetic magnetic adsorbent. The effects of initial solution pH, contact time,
adsorbent dosage and co-existing anionic component on the adsorption of arsenate were investigated. The results
showed that the removal percentage of arsenate could be over 95% in the conditions of adsorbent dosage 5.0 g/L,
initial solution pH 3.0-8.0, and contact time 1 h. Under the experimental conditions, phosphate and silicate caused
greater decrease in arsenate removal percentage among the anions, and sulfate had almost no effect on the
adsorption of arsenate. Kinetics study showed that the overall adsorption rate of arsenate was illustrated by the
pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the arsenate
adsorption data was tested. Both the models adequately describe the experimental data. Moreover, the magnetic
composite adsorbent could be easily recovered from the medium by an external magnetic field. It can therefore

be potentially applied for the treatment of water contaminated by arsenate.
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Introduction

Recognized as a highly toxic element, arsenic (As) is abun-
dant in our environment with both natural and anthropo-
genic sources [1]. Natural sources include the washout and
erosion of arsenic-rich rocks and soils, which probably
occur because of long-term geochemical changes. Anthro-
pogenic sources include forestry, agricultural application of
various pesticides, herbicides and fertilizers, and industrial
effluents from metallurgy, electronics, mining, pharmaceu-
ticals, glass processing, ceramic, dye and pesticides manu-
facturing, wood preservatives, petroleum refining, and
landfill leaching [2,3].

Arsenic occurs in both organic and inorganic forms in
natural waters but organic arsenic is of little importance as
it goes through biotransformation and detoxifies through
methylation. Inorganic arsenic occurs in -3, 0, +3, and +5
oxidation states in aquatic systems. The elemental state -3
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and O are extremely rare whereas +3 and +5 oxidation
states are commonly found in water systems depending on
the prevailing redox conditions and pH conditions [4].
Under oxidizing conditions such as those prevailing in
surface waters, the predominant species is pentavalent ar-
senic, which is mainly present with the oxyanionic forms
(HyAsO4, HAsOZ") with pK, =2.19; pKj, = 6.94; respect-
ively. On the other hand, under mildly reducing conditions
such as in groundwater, As(IlI) is the thermodynamically
stable form, which at pH values of most natural waters is
present as non-jonic form of arsenious acid (H3AsO3, pK, =
9.22) [5]. Inorganic species of arsenic [As(III) and As(V)]
represent a potential threat to the environment, human
health, and animal health due to their carcinogenic and
other effects. Permanent arsenic intake can lead to chronic
intoxication, and prolonged arsenic exposure can damage
the central nervous system, liver, and skin and results in the
appearance of diverse types of cancers, such as hyperkera-
tosis, lung, skin, and prostate cancers [3,6].

Arsenic contamination has aroused attention due to
groundwater levels in many parts of the world at much
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higher concentrations than the maximum contaminant
level (MCL) of 10 upg/L for arsenic in drinking water
recommended by the World Health Organization (WHO)
[7]. Arsenic pollution has been reported recently in
Bangladesh, Taiwan, Argentina, Mexico, Chile, China,
Hungary, Thailand, USA, New Zealand, South Africa
and India [8-10]. Therefore, an effective arsenic removal
technology is thus highly desirable to provide safe drink-
ing water to the affected people. Several methods have
evolved over the years on the removal of arsenic present
in water and wastewater. These are chemical precipi-
tations, conventional coagulation, reverse osmosis, ion
exchange and adsorption. One of which, adsorption
method, is simple and cost-effective, thus has been widely
used [11-15]. Among various absorbents, adsorption onto
activated carbon has proven to be one of the most effect-
ive and reliable physicochemical treatment methodologies
[16-19]. Due to its high surface area and porous structure
it can efficiently adsorb gases and compounds dispersed
or dissolved in liquids [20]. The adsorption of several
organic contaminants in water, such as pesticides, phenols
and chlorophenols, has recently been reported [21-23].
However, the application of activated carbon powders in
water treatment system is limited because it is difficult to
separate after the treatment process and reuse the tiny
particles. The application of magnetic particle technology
is one of the choices for field application of the activated
carbon adsorbent. Magnetic particles can be used to ad-
sorb contaminants from aqueous or gaseous effluents,and
after adsorption, can be separated from the medium by a
simple magnetic process.

The application of magnetic particle technology to
solve environmental problems has received considerable
attention in recent years [24-26]. To our knowledge, the
preparation of magnetic composites based on activated
carbon and iron oxide and their adsorption properties
for arsenic have few been reported so far. In the present
work, a series of magnetic composites having high sur-
face area and high adsorption capacity were prepared
based on activated carbon and iron oxide. The adsorp-
tion of As(V) on the prepared magnetic composites were
investigated, the effects of different parameters such as
contact time, initial pH, adsorbent dosage and co-existing
anionic component on adsorption process were studied,
and the optimum adsorption isotherm as well as the rate
of adsorption kinetics were found. Compared with other
previous reports [27-30], the prime novelties of this work
are (1) coating activated carbon onto iron oxide to prepare
a magnetic adsorbent; (2) the regeneration of adsorbent
was one of key steps to making adsorption technology for
practical applications. The separation problem of the pre-
pared adsorbent has been solved, after adsorption, the
magnetic composite can be separated from the medium
by a simple magnetic process.
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Experimental

Chemicals

All the chemicals used in the study were of analytical
grade. All the solutions in the study were prepared using
de-ionized water. All glassware was cleaned by rinsing
with hydroxylamine hydrochloride, soaking in 10% HCI,
and rinsing with de-ionized water.

As(V) stock solution (1000 mg~L’1) was prepared by
dissolving dehydrated sodium arsenate(NaAsOs) in the
de-ionized water. Dissolution of NaAsOs also includes
addition of HCl. Further working solutions were freshly
prepared from stock solution for each experimental run.

The activated carbon (AC) (AC12 x 40, China Calgon)
was used in this study. This kind of AC has moisture
content of 1.2%, ash content of 10.3%, iodine values of
AC adsorption of 1029 mg/g, the hardness of 96.2%, and
the density of 480 g/L. Grain sizes of AC were: less than
1.7 mm in diameter and more than 0.425 mm in diam-
eter. The virgin activated carbon was firstly rinsed with
de-ionized water to remove dirties, and then was washed
by 0.001 mol - L™* HCl solution to remove all salts precipi-
tated in its pores. Then, the AC was repeatedly washed
with de-ionized water to remove all traces of the acid.
Subsequently, the washed activated carbon was modified
by 10% HNO; for 12 h at the room temperature and re-
peatedly washed with de-ionized water, finally, the modi-
fied activated carbon was oven-dried at 85°C for 24 h to
volatilize the organic impurities.

Adsorbent synthesis

The composite adsorbent used in this study was syn-
thesized using a slightly modified procedure from that
reported in the literature [24]. Briefly, the composite adsor-
bent was prepared from a suspension of the modified
activated carbon in a 400 mL solution of FeCl; (7.8 g,
28 mmol) and FeSOy (3.9 g, 14 mmol) at 70°C. NaOH solu-
tion (100 mL, 5 mol/L) was added dropwise to precipitate
the iron oxides. Later, the obtained material was washed
with de-ionized water until rinsing water became neutral,
then the adsorbent was dried in an oven at 100°C for 8 h
and finally stored in polystyrene bottles for further usage.

Characterization

The BET specific surface area and pore volumes of
adsorbent before and after loading iron oxide were ob-
tained by the cumulative adsorption of nitrogen at 77 K
using a Micromeritics 2000 instrument (ASAP 2000,
Micromeritics, USA). The point of zero charge (pHpzc)
of iron oxide was obtained by interpolating the data to
zero EM [31]. The morphologies of iron oxide/activated
carbon composite and activated carbon were examined by
a scanning electron microscope (SEM, Holland Philips,
JSM-5800). X-ray diffraction pattern was taken from a Cu
target X-ray diffractometer (Rigaku D/max-r B).
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Batch adsorption experiments

A batch technique was used to investigate As(V) adsorp-
tion. Batch experiments included: the kinetic studies,
adsorption isotherms and some operating parameters.

The adsorption capacities of activated carbon and iron
oxide/activated carbon composite were determined by
batch adsorption isotherms at room temperature (20 + 1°C)
in aqueous solution. In several glass vials, 100 mL of solu-
tion containing various As(V) concentrations (50, 100, 150,
200, 250 mg/L) were contacted with 5.0 g/L of adsorbent.
The vials were placed in a water bath at 20°C and shaken at
150 r/min for approximately 24 h to ensure equilibrium
was reached, and the pH was adjusted by adding 0.1 mol/L
NaOH or HNOj until it remained constant (+0.10). After
filtration through a 0.22 pm membrane filter, the As(V)
concentration of the filtered solutions was analyzed with
an atomic fluorescence spectrometer (AFS) (PS Analytical
Ltd., Kent, UK).

The adsorption kinetic study was performed for As(V)
in solution at pH 6.0 and room temperature (20 + 1°C).
Several glass vials were used to hold 50 mL As(V) solu-
tion of known initial concentration (2, 5, and 10 mg/L)
and 5.0 g/L of composite adsorbent, and shaken at
150 r/min for a duration ranging from 0 to 240 min. At
certain period of time, each vial was removed from the
shaker, and the solution was then filtered through 0.22
micron filter paper. The filtrates were analyzed for re-
sidual As(V) concentration with an atomic fluorescence
spectrometer (AFS) coupled with a hydride generator.
Arsenic concentration was determined by treating the
solution with a reducing agent containing 5% thiourea
and 5% ascorbic acid prior to hydride generation and AFS
measurement, using a solution containing 1.5% KBH, and
0.3% NaOH as reducing solution and 1% HCI as carrier
solution.

To determine the effects of different parameters on As
(V) adsorption, experiments were performed at various
initial pH, ranging between 2 and 11. Initial concen-
tration of 10 mg/L of As(V) and composite adsorbent
dosage 5.0 g/L were employed. The effects of adsorbent
dosage and contact time were conducted.

Results and discussion

Characterization of adsorbents

The microstructure changes of pure iron oxide, pure
activated carbon and iron oxide/activated carbon compos-
ite adsorbent were listed in Table 1. As shown in Table 1,
the deposited iron oxide contributes to a decrease in the
N,—BET surface area, total pore volume and average pore
diameter. As iron oxide has a relatively small surface area
and microporous volume (62.8 m*/g and 0.009 cm’/g,
respectively) its presence in the composites should cause
a decrease in the surface area and microporous volume
compared to pure activated carbon. The point of zero
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Table 1 Microstructure of pure iron oxide, pure activated
carbon and iron oxide/activated carbon composite

Sample SBET Average pore Total pore
(m?/g)  diameter (hnm)  volume (cm>/g)

iron oxide 62.8 0.926 0.009

Activated carbon 1022.6 1.859 0.861

Composite adsorbent 6783 1.688 0.632

charge (pHpzc) of prepared iron oxide was found to
be 7.9.

Figure 1 shows the SEM micrographs of activated car-
bon and composite adsorbent. It could be found from
Figure 1 that there are a few macropores in activated car-
bon, and small aggregates are observed from the general
view of the composite, which appear brighter, supported
on the darker surface of the activated carbon.

To obtain information on the crystal structure of the
prepared composite adsorbent, X-ray diffraction patterns
were measured. The XRD patterns of pure iron oxide
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Figure 1 SEM micrographs of activated carbon (a) and iron
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oxide/activated carbon composite (b).
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and composite adsorbent were shown in Figure 2. XRD
analyses of pure iron oxide suggest the presence of a cubic
iron oxide phase, which may be related to the presence of
maghemite (y-Fe,O3) and magnetite (Fe3O,4). So the pre-
pared iron oxides are magnetic. For the composite the
iron oxide maintained cubic spinel structure. This illu-
minated that the magnetic properties of iron oxide were
basically invariable, which makes the composite adsorbent
can be separated more easily by an applied magnetic filter.
It could also be seen from Figure 2 that the peaks of cubic
iron oxide phase in the composite appear broader, sug-
gesting a smaller crystallite size.

Effect of initial solution pH

The solution pH is an important factor for all water and
wastewater treatment processes. Therefore, experiments
were performed in order to investigate the effect of initial
pH of solution to be treated regarding As(V). Figure 3
shows the percentage of As(V) removed as a function of
pH value at pH =2.0 ~ 11.0.

It is evident that the percentage of As(V) removal
strongly depended on the media pH. Furthermore, it can
be noticed that the maximum adsorption capacities of
composite adsorbent for As(V) occurred at pH 3.0-8.0.
Nevertheless, the highest removal efficiency has taken
place at pH 6.0 (95.27%) which was chosen as an optimum
pH condition for further experiments. The As(V) above
the pH value of 3.0 is present in anionic forms and there-
fore, it can be effectively removed by the iron hydroxides,
which at this pH range are present as cationic monomers
(Fe(OH),") [32]. Above pH 8.0 As(V) removal was found
to be decreased. This observation could be well correlated
with the point of zero charge (PZC) of iron oxides. Pure
iron oxides, whether they can be identified as having a

A magnetite

* * maghemite

@ cubic phase

pure iron oxide
P

Intensity (cps)
E’

composite

20 26 30 35 40 45 50 55 60
26 (°)
Figure 2 Powder XRD for pure iron oxide and iron oxide/activated
carbon composite.
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Figure 3 Effect of solution pH on the adsorption of As(V).
(Experiment conditions employed: initial As(V) concentration 10 mg/L,
adsorbent dosage 5.0 g/L, adsorption time 1 h, agitation speed
150 r/min).

particular crystal structure or not, typically have PZCs in
the pH range 7.0-9.0 [33]. The point of zero charge
(pHpzc) of the prepared iron oxide was found to be 7.9.
Over the PZC value, iron oxide is present in the mono-
meric anionic form [Fe(OH), ], hence inappropriate for
adsorbing anionic components. So the removal of As(V)
was suppressed by Fe(OH), ions that surrounded the sur-
face of the adsorbent by hindering the approach of As(V)
to the adsorption sites present on the surface of adsorbent.

Effect of adsorbent dosage

The effect of adsorbent dosage on percentage adsorption
of As(V) was shown in Figure 4. It could be seen from
Figure 4 that the removal efficiency of As(V) considerably
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Figure 4 Effect of adsorbent dosage on the adsorption of As
(V). (Experiment conditions employed: initial As(V) concentration
10 mg/L, solution pH 6.0, adsorption time 1 h, agitation speed 150 r/min).
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increased with the increase of adsorbent dosage. The in-
crease in adsorbent dosage from 1.0 to 5.0 g/L resulted in
an increase from 25.8 to 89.7% in adsorption of As(V).
This may be due to the greater availability of the ex-
changeable sites or surface area at the higher concentra-
tions of the adsorbent. On the other hand, the increase in
the efficiency of removal may be attributed to the fact that
with an increase in the adsorbent dosage, more adsorbent
surface or more adsorption spots were available for the
solute to be adsorbed [3,15,34]. A further increase in ad-
sorbent dosage (>5.0 g/L) did not cause significant im-
provement in As(V) adsorption. This may be due to the
adsorption of almost all As(V) to the adsorbent and the
establishment of equilibrium between the As(V) adsorbed
to the adsorbent and those remaining unadsorbed in
the solution. The results of this study are in accordance
with obtained findings by other researchers [2,3,15]. Thus
5.0 g/L of iron oxide/activated carbon composite adsorb-
ent was chosen for next study.

Effect of contact time

Contact time is one of the effective factors in batch
adsorption process. The effect of contact time on As(V)
adsorption efficiency was shown in Figure 5. As it is
shown, the removal efficiency of As(V) onto the com-
posite adsorbent significantly increase during the initial
adsorption stage (0—40 min) and then continue to in-
crease at a relatively slow speed with contact time until
a state of equilibrium is attained after 60 min. There was
no significant change in As(V) removal rates after 1 h
up to 3 h. Based on these results, 1 h was taken as the
time in adsorption experiments. Generally the removal
rate of sorbate is rapid initially, but it gradually decreases
with time until it reaches equilibrium. This phenomenon
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Figure 5 Effect of contact time on the adsorption of As(V).
(Experiment conditions employed: initial As(V) concentration 10 mg/L,
adsorbent dosage 5.0 g/L, solution pH 6.0, agitation speed 150 r/min).
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can be attributed to the fact that a large number of
vacant surface sites are available for adsorption at the
initial stage, and after a lapse of time, the remaining
vacant surface sites are difficult to be occupied due to
repulsive forces between the solute molecules on the
solid and bulk phases. Similar findings were reported by
other researchers [3,35].

Effect of co-existing anionic component

In groundwater sources several anionic components
might exist, which could compete with arsenic for the
available adsorption sites. Among the major co-existing
anionic components, sulfate (SO&), phosphate (POSY)
and silicate (SiO5”") are usually present in groundwater
streams possibly inhibiting arsenic removal. In order to
investigate the effect of co-existing ions on As(V) re-
moval, arsenic solutions were spiked with SO, PO,
and SiO5>, respectively and the removal of arsenic was
determined. At fixed pH of 6.0, the effects of different
anions (Figure 6) showed that phosphate or silicate caused
the greatest percentage decrease in As(V) removal among
the anions. Under the experimental conditions, phosphate
resulted in a bigger decrease in As(V) removal than sili-
cate. The effect of sulfate was minimal under the experi-
mental conditions.

It is well known that silicate and phosphate strongly
adsorb to metal oxide surfaces via inner-sphere complex-
ation similar to the interaction mode of arsenate with
metal oxides. The significant reduction in As(V) adsorp-
tion capacity in the presence of Si04*” and PO~ was due
to the competition of the anions with As(V) for metal
oxides adsorption sites. As(V), silicate, and phosphate are
adsorbed on metal oxides through the formation of sur-
face complexes with the surface hydroxyl groups [36].
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Figure 6 Effect of co-existing anionic component on the
adsorption of As(V). (Experiment conditions employed: initial As(V)
concentration 10 mg/L, adsorbent dosage 5.0 g/L, solution pH 6.0,

agitation speed 150 r/min).
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Sulfate can be absorbed by metal oxides both specifically
and non-specifically via inner- and outer-sphere com-
plexation. In addition, the sulfate binding affinity for metal
oxides was much weaker than As(V) [37]. Hence, the re-
moval of As(V) is most significantly affected by silicate
and phosphate.

Kinetic study

In order to obtain the adsorption kinetic information of
As(V) on the iron oxide/activated carbon composite
adsorbent, the change of As(V) concentration with ad-
sorption time was recorded for an initial concentration
of 2, 5, 10 mg/L. Figure 7 shows the adsorption per-
centage of As(V) on the composite adsorbent. Obviously,
the adsorption is a rapid process, and the equilibrium is
reached at 60 min for all three concentrations. For longer
periods, adsorption trend seems to remain constant.

In order to investigate the mechanism of As(V) adsorp-
tion on the composite adsorbent, the pseudo-second-
order rate equation model was applied to the kinetic data.
The pseudo-second-order kinetic equation could be deri-
ved as [38]:

dq,/dt = kZ(qe_qt)2 (1)
Separating the variables in equation (1) gives
~d(qe=4,)/(qe=a,)” = ko -dt (2)

Integrating both sides for the boundary conditions ¢ =0
to t=t and g, = 0 to ¢, = g, gives the integrated rate law for
a pseudo- second-order reaction,

1/(qe-q) = 1/q. + k2t (3)

Equation (3) can be rearranged to obtain:

Percentage of As(V) adsorbed (%)

0 1 1 1

1 1 1 1 1
0 30 60 90 120 150 180 210 240
Time (min)
Figure 7 Adsorption kinetics of As(V) by iron oxide/activated

carbon composite. (Experimental conditions employed: solution
pH 6.0, agitation speed 150 r/min, adsorbent dosage 5.0 g/L).
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Table 2 Kinetic parameters for As(V) adsorption by iron
oxide/activated carbon composite

¢o (mg/L) gde (mg/g) ky (L/(mg.min)) R?
2 04123 04035 0.9996
5 1.0389 0.1163 0.9994
10 20716 0.0418 0.9995
2
t/q.=1/(ky-q.°) +t/q. (4)

The kinetic constant, k,, can be determined by plotting
of t/q, against t.

The kinetic experimental data of As(V) on the com-
posite adsorbent was simulated by pseudo-second-order
rate equation (4). The results were listed in Table 2.

Remarkably, the kinetic data could be described well
by the pseudo-second-order kinetic equation which was
based on the assumption that the rate limiting step may
be chemical sorption or chemisorptions involving valency
forces through sharing or exchange of electron between
adsorbent and adsorbate [39]. It could also be seen that
the values of the pseudo-second-order rate constant de-
creased with increasing the initial As (V) concentrations.

Adsorption isotherms

The adsorption isotherm indicates how the adsorption
molecules distribute between the liquid phase and the
solid phase when the adsorption process reaches an
equilibrium state. Langmuir and Freundlich isotherm
equations are the most widely used models to describe
the experimental data of adsorption isotherms. As(V)

Q
o
> 1.1+
—m— gctivated carbon
1.0 g —e— activated carbon/iron oxide
| |
0.9+
0'8 1 1 1 1 1 1 1

1 1
0O 20 40 60 80 100 120 140 160 180 200

Ce (mg/L)
Figure 8 Adsorption isotherms of As(V) by iron oxide/activated

carbon composite. (Experimental conditions employed: adsorbent
dosage 5.0 g/L, solution pH 6.0, adsorption time 24 h, agitation

speed 150 r/min).
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Table 3 The parameters of Langmuir and Freudlich equation
Adsorbent Langmuir equation Freundlich equation

Gm (Mg/g) B (L/mg) R? 1/n K¢ R?
Activated carbon 17.86 0.1816 0.9998 0.1808 7.3161 0.9806
Iron oxide/activated carbon 20.24 0.2502 0.9996 0.1642 9.1806 0.9831

adsorption isotherms obtained for activated carbon and
iron oxide/activated carbon composite adsorbent were
shown in Figure 8. These isotherms represent the adsorp-
tion behavior of As(V) on the different adsorbents as a
function of increasing aqueous As(V) concentration for a
contact time of 24 h. All the isotherms show that the ad-
sorption capacity increases with increasing equilibrium
concentration of As(V), but the increasing slope of iron
oxide/activated carbon composite adsorbent is higher than
that of activated carbon.

The results of As(V) adsorption on all adsorbents
(Figure 8) were analyzed by using the Langmuir model to
evaluate parameters associated to the adsorption behavior.
The linear form of Langmuir equation at a given tempe-
rature is represented by:

qe:qm'b'ce/(1+b'ce) (5)

where c. is the aqueous phase ion equilibrium concen-

tration (mg/L), g. is the amount of As(V) sorbet onto

1 g of the considered adsorbent (mg/g), b is the adsorp-

tion constant (L/mg) related to the energy of adsorption

and g, is the maximum adsorption capacity (mg/g).
Equation (5) can be rearranged to obtain:

Ce/qe = 1/(b ' qm) + Ce/qm (6)

Experimental isotherm data acquired were correlated
with the linear form of Langmuir model. The isotherm
parameters related to the model were listed in Table 3. It
could be seen that both g, and b remain the higher for
As(V) adsorption onto iron oxide/activated carbon com-
posite. This implies iron oxide/activated carbon compos-
ite has a higher adsorption of As(V) than pure activated
carbon. High value of b was reflected in the steep initial
slope of an adsorption isotherm, indicating desirable
high affinity. Therefore, iron oxide/activated carbon per-
formed well in As(V) adsorption.

The Freundlich isotherm model was also used to analyze
the result of As(V) adsorption on different adsorbents
(Figure 8). The Freundlich model can be expressed by the
following equation:

ge = k- Cel/n (7)

where k; and n are constants related to the adsorption cap-
acity and affinity, respectively. The equation is conveniently

used in the linear form by taking the logarithm of both
sides as:

lgg. = lgkr + (1/n) Ige. (8)

Experimental isotherm data acquired on different ad-
sorbents were fit with the linear form of Freundlich
model and the isotherm parameters related to the model
were listed in Table 3. The data showed that the k¢ con-
stant is higher for iron oxide/activated carbon than that
for activated carbon, 1/n value for iron oxide/activated
carbon composite is smaller than that for pure activated
carbon. These imply more favorable adsorption of As(V)
on iron oxide/activated carbon composite.

Conclusion

A magnetic composite adsorbent was successfully pre-
pared with activated carbon and iron oxide as raw
materials for the removal of As(V) from solution. The
performances of the composite adsorbent were compared
to those of pure activated carbon, the composite adsorbent
showed fast adsorption kinetics as well as high adsorption
capacities. The adsorption properties of the composite ad-
sorbent for As(V) depend on contact time, initial solution
pH, adsorbent dosage and co-existing anionic component.
The adsorption kinetic data of As(V) can be illustrated
very well by the pseudo-second-order rate equation. The
equilibrium data obtained from this study was well pre-
sented by Langmuir and Freundlich models.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

YSH was the main investigator, collected the data, performed the statistical
analysis, and drafted the manuscript. LZR carried out detailed adsorption and
kinetic studies and their interpretation. SZL had done the quantitative
analysis of arsenic, extended help in other laboratory studies related to the
manuscript and supervised the study. All authors read and approved the
final manuscript.

Acknowledgments

The authors gratefully acknowledge financial support for this work from the
National Natural Science Foundation of China (41373127) and Liaoning
Provincial Natural Science Foundation of China (2013020121).

Author details

'School of Applied Chemistry, Shenyang University of Chemical Technology,
Shenyang, China. “GE-HE Wind Energy (Shen Yang) Co, Ltd, Shenyang,
China.



Yao et al. Journal of Environmental Health Science & Engineering 2014, 12:58
http://www.ijehse.com/content/12/1/58

Received: 28 August 2013 Accepted: 26 February 2014
Published: 6 March 2014

References

1.

20.

21.

22.

23.

24.

25.

26.

Smedley PL, Kinniburgh DG: A review of the source, behaviour and
distribution of Arsenic in natural waters. Appl Geochem 2002, 17:517-568.
Li Q Xu XT, Cui H, Pang J, Wei ZB, Sun Z, Zhai J: Comparison of two
adsorbents for the removal of pentavalent arsenic from aqueous
solutions. J Environ Manage 2012, 98:98-106.

Kord Mostafapour F, Bazrafshan E, Farzadkia M, Amini S: Arsenic removal
from aqueous solutions by Salvadora Persica stem ash. J Chem 2013,
2013:1-8. 740847.

Tallman DE, Shaikh AU: Redox stability of inorganic arsenic(lll) and arsenic
(V) in aqueous solution. Anal Chem 1980, 52:199-201.

Cullen WR, Reimer KJ: Arsenic speciation in the environment. Chem Rev
1989, 89:713-764.

Hudak PF: Nitrate, arsenic and selenium concentrations in the pecos
valley aquifer, West Texas, USA. Int J Environ Res 2010, 4:229-236.

WHO: Guidelines for Drinking-water Quality: Recommendations. 3rd edition.
Geneva: World Health Organization; 2008.

Fw P, Brown KG, Chen CJ: Health implications of arsenic in drinking
water. J AWWA 1994, 86:52-63.

Su C, Puls RW: Arsenate and arsenite removal by zerovalent iron: kinetics,
redox transformation, and implications for in situ groundwater
remediation. £nviron Sci Technol 2001, 35:1487-1452.

Chen SL, Dzeng SR, Yang MH, Chiu KH, Shieh GM, Wai CM: Arsenic species
in groundwaters of the blackfoot disease area, Taiwan. Environ Sci
Technol 1994, 28:377-881.

Erdem M, Ozverdi A: Lead adsorption from aqueous solution onto
siderite. Sep Purif Technol 2005, 42:259-264.

Shukla SR, Pai RS, Shendarkar AD: Adsorption of Ni(ll), Zn(ll) and Fe(ll) on
modified coir fibres. Sep Purif Technol 2006, 47:141-147.

Yao SH, Lai H, Shi ZL: Biosorption of methyl blue onto tartaric acid
modified wheat bran from aqueous solution. /ran J Environ Health Sci Eng
2012, 9:1-6.

Gallegos-Garciaa M, Ramirez-Muniza K, Songa S: Arsenic removal from
water by adsorption using iron oxide minerals as adsorbents: a review.
Mineral Processing & Extractive Metall Rev 2012, 33:301-315.

Bazrafshan E, Faridi H, Kord Mostafapour F, Mahvi AH: Arsenic removal
from aqueous environments using Moringa Peregrina seed extract as a
natural coagulant. Asian J Chem 2013, 25:3557-3561.

El Qada EN, Allen SJ, Walker GM: Adsorption of methylene blue onto
activated carbon produced from steam activated bituminous coal: a
study of equilibrium adsorption isotherm. Chem Eng J 2006, 124:103-110.
Kouakou U, Ello AS, Yapo JA, Trokourey A: Adsorption of iron and zinc on
commercial activated carbon. J Environ Chem Ecotoxicol 2013, 5:168-171.
Abechi ES, Gimba CE, Uzairu A, Kagbu JA: Kinetics of adsorption of
methylene blue onto activated carbon prepared from palm kernel shell.
Arch Appl Sci Res 2011, 3:154-164.

Tefera DT, Lashaki MJ, Fayaz M, Hashisho Z, Philips JH, Anderson JE, Nichols
M: Two-dimensional modeling of volatile organic compounds adsorption
onto beaded activated carbon. Environ Sci Technol 2013, 47:11700-11710.
Ruthven DM: Principles of Adsorption and Adsorption Processes. New York:
Wiley; 1984.

Baup S, Jaffre C, Wolbert D: Adsorption of pesticides onto granular
activated carbon: determination of surface dif fusivities using simple
batch experiments. Adsorption 2000, 6:219-228.

Jung MW, Ahn KH, Lee Y, Kim KP, Rhee JS: Adsorption characteristics of
phenol and chlorophenols on granular activated carbons (GAC).
Microchem J 2001, 70:123-131.

Denizli A, O" zkan G, Ucar M: Removal of chlorophenols from aquatic
systems with dye-affinity microbeads. Sep Purif Technol 2001, 24:255-262.
Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM: Activated
carbon/iron oxide magnetic composites for the adsorption of
contaminants in water. Carbon 2002, 40:2177-2183.

Zhang HL, Li XC, He GH, Zhan JJ, Liu D: Preparation of magnetic
composite hollow microsphere and its adsorption capacity for basic
dyes. Ind Eng Chem Res 2013, 52:16902-16910.

Dankova Z, Mockovciakova A, Orolinova M: Cd(ll) adsorption by magnetic
clay composite under the ultrasound irradiation. Energy Environ Eng 2013,
1:74-80.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Page 8 of 8

Ahsan N, Faruque K, Shamma F, Islam N, Akhand AA: Arsenic adsorption
by bacterial extracellular polymeric substances. Bangladesh J Microbiol
2011, 28:80-83.

Mertens J, Rose J, Kagi R, Chaurand P, Plotze M, Wehrli B, Furrer G:
Adsorption of arsenic on polyaluminum granulate. Environ Sci Technol
2012, 46:7310-7317.

Nasseri S, Heidari M: Evaluation and comparison of aluminum-coated
pumice and zeolite in arsenic removal from water resources.

Iran J Environ Healt Sci Eng 2012, 9:38.

Darban AK, Kianinia Y, Taheri-Nassaj E: Synthesis of nano-alumina powder
from impure kaolin and its application for arsenite removal from
aqueous solutions. J Environ Healt Sci Eng 2013, 11:19.

Goldberg S, Johnston CT: Mechanisms of arsenic adsorption on
amorphous oxides evaluated using macroscopic measurements,
vibrational spectroscopy, and surface complexation modeling. J Colloid
Interf Sci 2001, 234:204-216.

Katsoyiannis 1A, Zouboulis Al: Removal of arsenic from contaminated
water sources by sorption onto iron-oxide-coated polymeric materials.
Water Res 2002, 36:5141-5155.

Benjamin MM, Sletten RS, Bailey RP, Bennet T: Sorption and filtration of
metals using iron-oxide coated sand. Water Res 1996, 30:2609-2620.
Pandey PK, Choubey S, Verma Y, Pandey M, Chandrashekhar K: Biosorptive
removal of arsenic from drinking water. Bioresource Technol 2009,
100:634-637.

Gulnaz O, Sahmurova A, Kama S: Removal of reactive red 198 from
aqueous solution by Potamogeton crispus. Chem Eng J 2011, 174:579-585.
Goldberg S: Chemical modeling of anions competition on goethite using
the constant capacitance model. Soil Sci Soc Am J 1985, 49:851-856.
Meng XG, Bang SB, Korfiatis GP: Effects of silicate, sulfate, and carbonate
on arsenic removal by ferric chloride. Water Res 2000, 34:1255-1261.

Ho YS, McKay G: Pseudo-second-order model for lead ion sorption from
aqueous solutions onto palm kernel fiber. J Hazard Mater B 2006,
129:137-142.

Ho YS, McKay G: The kinetics of sorption of divalent metals ions onto
sphagnum moss peat. Water Res 2000, 34:735-742.

doi:10.1186/2052-336X-12-58

Cite this article as: Yao et al.: Arsenic removal from aqueous solutions
by adsorption onto iron oxide/activated carbon magnetic composite.
Journal of Environmental Health Science & Engineering 2014 12:58.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Introduction
	Experimental
	Chemicals
	Adsorbent synthesis
	Characterization
	Batch adsorption experiments

	Results and discussion
	Characterization of adsorbents
	Effect of initial solution pH
	Effect of adsorbent dosage
	Effect of contact time
	Effect of co-existing anionic component
	Kinetic study
	Adsorption isotherms

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

