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Abstract

Background: The World Anti-Doping Agency (WADA) publishes the Prohibited List, a manually compiled
international standard of substances and methods prohibited in-competition, out-of-competition and in particular
sports. It would be ideal to be able to identify all substances that have one or more performance-enhancing
pharmacological actions in an automated, fast and cost effective way. Here, we use experimental data derived from
the ChEMBL database (~7,000,000 activity records for 1,300,000 compounds) to build a database model that takes
into account both structure and experimental information, and use this database to predict both on-target and
off-target interactions between these molecules and targets relevant to doping in sport.

Results: The ChEMBL database was screened and eight well populated categories of activities (Ki, Kd, EC50, ED50,
activity, potency, inhibition and IC50) were used for a rule-based filtering process to define the labels “active” or
“inactive”. The “active” compounds for each of the ChEMBL families were thereby defined and these populated our
bioactivity-based filtered families. A structure-based clustering step was subsequently performed in order to split
families with more than one distinct chemical scaffold. This produced refined families, whose members share both
a common chemical scaffold and bioactivity against a common target in ChEMBL.

Conclusions: We have used the Parzen-Rosenblatt machine learning approach to test whether compounds in
ChEMBL can be correctly predicted to belong to their appropriate refined families. Validation tests using the refined
families gave a significant increase in predictivity compared with the filtered or with the original families. Out of 61,660
queries in our Monte Carlo cross-validation, belonging to 19,639 refined families, 41,300 (66.98%) had the parent family
as the top prediction and 53,797 (87.25%) had the parent family in the top four hits. Having thus validated our
approach, we used it to identify the protein targets associated with the WADA prohibited classes. For compounds
where we do not have experimental data, we use their computed patterns of interaction with protein targets to make
predictions of bioactivity. We hope that other groups will test these predictions experimentally in the future.

Keywords: Protein target prediction, Polypharmacology, Machine learning, Side effects, Multi-label prediction, Drugs in
sport, Drug repurposing
Background
The use of performance-enhancing substances in sport,
“doping”, not only jeopardizes the health of the athletes,
but also threatens the integrity of sporting competition.
The World Anti-Doping Agency (WADA) defines what
chemical compounds and medical procedures are
prohibited by publishing the prohibited list, an inter-
national standard for identifying substances and methods
prohibited in-competition, out-of-competition and in
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particular sports. The list groups methods and substances
into categories, prohibiting both specified compounds
within each class and also "other substances with a similar
chemical structure or similar biological effect" [1].
In previous computational work, [2,3] we demon-

strated that molecules can be classified into perfor-
mance-enhancing classes using MACCS and CDK
cheminformatics descriptors and machine learning
methods including Random Forest, k-Nearest Neigh-
bours and Naive Bayes. We subsequently [4] introduced
the UFS-MACCS hybrid descriptor, combining shape
and chemistry information, using this to classify a
dataset containing 5,245 molecules in ten prohibited
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classes from the 2005 WADA dataset and 111,231 pre-
sumed inactive molecules from the National Cancer In-
stitute (NCI) database. These classification exercises,
however, were based entirely on molecular similarity and
included no explicit predictions of interactions of com-
pounds with protein targets.
In silico protein target prediction has recently become

the subject of intense research [5-12], since it helps us
both to infer and to understand molecular bioactivities.
The incorporation of such predictions into our workflow
represents one of the main advances of this work. As
well as being valuable for understanding the perform-
ance-enhancing effects of molecules, target predictions
are important for in silico toxicology and early drug de-
velopment. Due to the inherent promiscuity of many
molecules in binding to multiple protein targets, plural-
ity of bioactivities must be considered when building
models to predict the protein targets or pharmacological
activities of small organic compounds. Thus, in addition
to using predictions of the primary target for in silico
virtual screening, identifying secondary protein target in-
teractions facilitates the prediction and interpretation of
off-target effects [13]. Such predictions play a critical
role in linking biological effects at the organism level to
molecular interactions at the protein-ligand level.
Many publicly available databases, such as ChEMBL,

[14] BindingDB, [15] DrugBank, [16] PubChem, [17]
KiBank, [18] the PDSP Ki Database, [19] ChemProt-2.0
[20] and PDBbind [21] and commercial products inclu-
ding WOMBAT [22] and MDDR, [23] contain either
specific assay data for the binding of compounds with
targets, or associations of molecules with pharmaco-
logical properties. Databases such as ChEMBL bring
together in one place bioactivity data for hundreds of
thousands of different molecules and for thousands of
protein targets. When combined with information from
sources such as DrugBank, these can also be associated
with specific biological and pharmacological activities.
Those molecules which have been investigated in different
assays may have activities listed against more than one tar-
get. A known limitation in molecular bioactivity data is
that not every compound has been experimentally assayed
against all targets, thus the matrix of available molecule-
target data is sparse. Cheminformatics target prediction
methods can fill in these gaps with predicted data,
allowing the bioactivity spectrum of a molecule’s activity
against the whole panel of targets to be assessed.
Here we propose a novel methodology that can be

used to predict unexplored compound to target associa-
tions, illustrated using a number of compounds explicitly
mentioned in the WADA prohibited list, by taking into
account the wealth of information that is found in the
ChEMBL database. Orthogonally, for each target we can
identify the set or sets of mutually similar ligands that
are active against it. We will also show here that special
care has to be taken when one wants to use this vast
amount of information, because there is a lot of noise
(non-active compounds) and the data include protein
targets with multiple binding sites or modes, and also
some classes based on organisms rather than on pro-
teins. These data require careful curation and handling
in order to generate useful knowledge and avoid errone-
ous conclusions. Therefore, one of the steps of our
methodology is to apply a clustering algorithm, capable
of finding the optimum number of clusters for a given
dataset, in order to identify structurally different groups
of ligands. Diverse ligands with distinct scaffolds modu-
lating one target may represent alternative binding
modes for the same active site, but on occasion may also
indicate binding at an allosteric site or a pharmacologic-
ally distinct function.
Given a prediction profile for a query compound, we

can identify the pattern or patterns of activity against
particular targets associated with that bioactivity. Our
methodology can identify novel targets, as well as known
ones, associated with a given pharmacological function.
We sometimes identify just one such pattern of target
interaction for a given activity or, on other occasions,
find distinct sets of targets whose modulation is associ-
ated with the same function.
Our work allows early identification of potential

doping molecules. These compounds can then be
prioritised for experimental testing, ahead of those with
negative in silico predictions. The use of this computa-
tional technology could massively reduce the need for
animal or human experiments. Our results can be
interpreted as a quantitative definition of the “similar
chemical structure” criterion, based on similar predicted
protein-target interactions, which will prevent inactive
molecules being prohibited and hence protect athletes
against unjust disqualification.
Methods
Dataset
ChEMBL currently has 8,845 families of compounds and
1,059,559 unique compounds, which are associated with
the targets, based on experimental activity data derived
from 44,682 publications. Each of the targets has a num-
ber of compounds associated with it. Each such associ-
ation implies the existence of an experimental datum
indicating activity or otherwise of the molecule against the
target – however this may be that the molecule is found
to be inactive. Thus, compounds can be associated with
targets in ChEMBL without evidence of activity or some-
times without any experimental values. A compound can
be a member of more than one family; that is, either asso-
ciated with or active against more than one target.
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Filtered families
In order to fill in the blanks in the target-molecule
bioactivity matrix, we have to predict whether a given
molecule will be active against a particular target. The
first step is assembling a list of other molecules in the
database that are active against the target, using a defin-
ition of “active” that is valid across the different kinds of
experimental data. We took the eight most common cat-
egories of affinity data (IC50, Ki, Kd, EC50, ED50, po-
tency, activity, inhibition) relevant to bioactivity, and
applied a number of rules in order to generate sets of
molecules that are explicitly and experimentally deter-
mined to be bioactive, as shown in Table 1. These rules
depend on the distribution of values of the relevant
quantity within ChEMBL and on the ranges of values
corresponding to the relatively few compounds explicitly
labelled as “active” or “inactive” against that target, as
shown for Ki values in Figure 1. This process generates
bioactivity based definitions of families, which we refer
to as filtered families.

Refined families
Although the filtered families consist of compounds that
have significant experimental activities against the rele-
vant targets, there are many targets that have distinct
groups of ligands with different scaffolds. This may be
because there is more than one binding site, or because
different scaffolds can fit the same site. Figure 2 shows
an example family from ChEMBL, one of the Androgen
Receptor families (ChEMBL1871), with a number of dif-
ferent clusters of compounds. Splitting such a family
into smaller groups based on ligand structure will allow
us to identify the different sets of ligands; therefore
PFClust [24] (brief description in Additional file 1) was
applied to all the filtered ChEMBL families. We selected
the PFClust algorithm because it is a parameter free
clustering algorithm and does not require any kind of
parameter tuning. We could instead have used any one
of many well-known clustering algorithms, but then we
would have had to decide on a stopping criterion for the
Table 1 Bioactivity thresholds

Activity Active Inactive

IC50 ≤50 μM >50 μM

Ki <20 μM ≥20 μM

Kd ≤10 μM >10 μM

EC50 ≤40 μM >40 μM

ED50 ≤10 μM >10 μM

Potency ≤10 μM >10 μM

Activity ≥40% <40%

Inhibition ≥45% <45%

The eight selected bioactivity categories and the rule-based thresholds that
were selected.
algorithm. Since this is not straightforward, and a separ-
ate analysis on the morphology of the clusters would
have been required, we decided to use our own in-house
software. The compounds were clustered on the basis of
their chemical structures, represented by Circular Fin-
gerprints (CFP) [25] as discussed below. This leads to a
set of refined families, each consisting of a group of mol-
ecules which share similarity of both chemical structure
and bioactivity.

Molecular fingerprints and similarities
Throughout this study, the molecules are represented as
vectors of CFPs. In order to calculate the pairwise
similarity between two molecules we use Tanimoto simi-
larity scores, [26] which we transform into probabilities
(p-values) using an appropriate kernel function.
In order to find the best suited kernel function for our

data, we have calculated the Tanimoto similarities of all
against all compounds in the ChEMBL database, the
resulting distribution being shown in Figure 3. ChEMBL
consists of 1,059,559 unique compounds and can be
used as a representative set for estimating the distribu-
tion of Tanimoto similarities amongst all the possible
subsets that we might wish to select.
We fitted a kernel probability function to our data

using a Gaussian distribution, as seen in Figure 3.

Converting a similarity into a probability (pairwise
p-value)
Now we can calculate the probability that a given ran-
dom pairwise similarity score X is bigger than a value x
as p(X > x) Using the fitted Gaussian function, we can
transform a Tanimoto similarity into a p-value p(X > x)
as follows:

p X > xð Þ ¼ p X > t xi; xj
� �� � ¼ e−

t xi ;xjð Þ2
2h2

where t(xi,xj) is the Tanimoto similarity between mole-
cules xi and xj. We empirically found the best smoothing
factor (h) to be 0.125.

Assessing the similarity of a test molecule to a known
family using the molecule-family Parzen-Rosenblatt value
(PR-score)
An essential part of this work is to assign activities for
molecule-target pairs that have no experimental data.
Thus, we need to calculate how similar a given molecule
is to a class or group of molecules. Typically this is de-
fined by interaction with a given target in ChEMBL, or
by a biological activity in a database like DrugBank. We
can calculate and visualize the similarities of test com-
pounds to a gold standard set of pre-defined families. To
calculate how similar the molecule xi is to the members



Figure 1 Defining activity based on a Ki cut-off. Experimental Ki values of active, inactive and unspecified compounds found in ChEMBL.

Figure 2 Clustering the CHEMBL1871 family (Androgen Receptor Ligands). The left hand frame shows the compounds in the filtered family
in their original order. In the right hand frame, the multi-coloured strips show the proposed restructuring of these compounds into meaningful
clusters, with each colour representing a different grouping of structurally similar compounds and hence one of the 126 separate refined families;
the top left hand region is populated by singletons.
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Figure 3 Distributions of Tanimoto similarity scores and the fit of the data to a Gaussian. On the left is the distribution of all pairwise
Tanimoto similarities between pairs of molecules in ChEMBL version 11. The plot on the right, fitting the similarities to a Gaussian distribution,
shows the proportion of molecule pairs that have similarity greater than the value on the x-axis.

Table 2 Number of molecules in each WADA prohibited
class in this study

WADA list

P2- Beta-Blockers 20

S1- Anabolic Agents 72

S3- Beta-2-Agonists -

S4- Hormone Antagonists & Modulators 14

S5- Diuretics & Masking Agents 20

S6- Stimulants 64

S7- Narcotics 11

S8- Cannabinoids 10

S9- Glucocorticoids -

Total 211
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of family ω, we enumerate the pairwise p-values of
molecule xi with all members of ω = {x1, x2, … , xn} Having
calculated the distribution of p(t[xi,ω]) between molecule xi
and the known members of ω, we will apply the Parzen-
Rosenblatt (PR) [27,28] kernel density estimation method
to estimate the probability density function of p(t[xi,ω]). We
calculate the density estimation of xi given ω as follows:

f xi;ωð Þ ¼ 1
n
∑
n

j¼1
p X > t xi;ωxj

� �� �

where n is the number of members of ω and p(X > (xi,ωxj))
is the p-value of xi with xj, a typical member of ω.

Validation
In order to validate our methodology, we performed a
fivefold Monte Carlo cross-validation for each of the dif-
ferent ChEMBL family definitions: the original ChEMBL
with all the compounds assigned to their label based
ChEMBL families; bioactivity-based filtered families de-
fined with the help of our rule based scheme; and finally
the refined families obtained by clustering the filtered
ones on chemical structure using PFClust. For each
cross-validation run, we removed 10% of the members
of each family, which we then used as a test set of quer-
ies. To investigate the relative performances using the
three different definitions of families, we calculated two
validation metrics. For computing both measures, we
classified a hit to the parent family from which the query
compound was taken as a true positive (TP), and hits to
all other families as false positives (FP). For the first
measure, we took the four top hits for each query and
counted the TPs and FPs amongst these. For the second
metric, we used the results of the same runs in order to
calculate the Matthews Correlation Coefficient (MCC)
[29], a measure of prediction success.
MCC ¼ TP � TNð Þ− FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp :

Identifying the targets of the explicitly prohibited WADA
molecules
We used 211 molecules that are explicitly mentioned in
the WADA prohibited list (Table 2) as queries against
the three versions of the families we have derived from
ChEMBL: (a) original families based on ChEMBL labels;
(b) filtered families based on bioactivity; (c) refined fam-
ilies consisting of scaffold-groups within a given filtered
family.
For seven WADA-defined classes of prohibited com-

pounds and each of the three definitions of families above,
we used our methodology to retrieve from ChEMBL the
most significant families having p-values less than 0.05.
This allows us to identify biological targets relevant to
each category of performance-enhancing pharmacological
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activity. We check whether these molecules have explicit
activities against these targets in ChEMBL, and if so we
exclude them from the test for the relevant family.
We created a matrix in which the columns were the

explicitly prohibited compounds in that class, the rows
were the relevant families retrieved from ChEMBL, and
the values were the relevant values of the Parzen-
Rosenblatt function f(xi,ω). Each column of this matrix
was considered as a vector and we calculated the pair-
wise Euclidean distances between the points obtained by
considering these vectors as position vectors relative to
the same origin. Based on these distances, we used
PFClust to cluster the compounds.

How many different groups of ligands exist in each
prohibited class?
Clustering of compounds by structure
We have used PFClust to identify the number of struc-
turally different groups in each WADA prohibited class.
All the compounds were represented as CFP fingerprints
and we calculated all against all p-values for each class,
similarly to how we previously clustered structures to
generate refined families from filtered families.

Clustering of compounds by activity
For each WADA class, we performed a database search
and a vector of PR-scores against the refined families
Figure 4 Validation results. Validation results for the three models of ChE
filtered (right) models. On the bottom left are the results for the refined m
five runs.
was retrieved. Using these vectors for each compound as
position vectors, we calculated the Euclidean distances
between the resulting points and a similarity matrix was
created; we again clustered the vectors using PFClust.

Results
Validation
The TPs and FPs obtained in the first four top-ranked
positions for each query in all the cross-validation runs
for each of the three definitions of families were
analysed; the results are shown in Figure 4. For the ori-
ginal ChEMBL definition of families, we had 136,646
queries that belonged to 5,443 families, from which (on
average over five runs) only 3,500 (2.58%) had the parent
family as the top prediction, and only 6,078 (6.61%) had
the parent family amongst the top four hits. Similarly,
for the filtered families we had 78,369 queries that
belonged to 3,563 families, from which on average only
2,490 (3.18%) had the parent family as the top prediction
and only 4,256 (7.21%) had the parent family in the top
four hits. In contrast, using the refined families gave a
significant increase in predictivity. Out of 61,660 queries
belonging to 19,639 families, 41,300 (66.98%) had the
parent family as the top prediction and 53,797 (87.25%)
had the parent family in the top four hits.
For the original label-based ChEMBL families, the

MCC value of 0.02 indicates that there is no meaningful
MBL. On the top row we have the results for the original (left) and
odel and on the bottom right we show the MCC values for each of the



Figure 5 Correspondence between activity-based and
structure-based clusters for Beta blockers. PFClust results for the
P2 compounds. Activity-based clustering is shown on the x-axis, the
three clusters being the black, red and green horizontal ribbons at the
top of the Figure, while the activity singletons are white. Structure-based
clustering is shown by the blue, red (non-contiguous), green and black
vertical ribbons against the y-axis, while structural singletons are also
white. The ordering of the molecules, and the division by horizontal
and vertical lines, are the same on both axes and represent the
bioactivity-based clustering. Coloured cells above the main diagonal
represent the similarity in bioactivity between the two molecules;
those below represent structural similarity.

Mavridis and Mitchell Journal of Cheminformatics 2013, 5:31 Page 7 of 13
http://www.jcheminf.com/content/5/1/31
correlation between the experimental data and the pre-
dictions. We see only a very small and insignificant im-
provement in the MCC, from 0.02 to 0.03, on applying
the rule based filtering to obtain bioactivity-based fil-
tered families. These are disappointing results that are
probably mainly influenced by the number of families
that either collate all results for a given organism or tis-
sue type, or represent proteins with multiple binding
sites. The compounds that are members of these families
will be quite diverse and it is then unlikely that our
method will retrieve the parent family as the correct
one. Due to the nature of these families, their size is sig-
nificantly larger than of those of the simple protein tar-
get families representing one binding site; we observe
this to be a big influence on the results.
In contrast, we see a considerable improvement when

we use structural clustering to obtain refined families;
the MCC for the refined bioactivity-based families from
ChEMBL is 0.66. We also note that many of the predic-
tions counted as FP nonetheless have biologically rele-
vant connections between the predicted family and the
compound, so the quoted MCC may underestimate the
true number of biologically meaningful predictions.

Identifying the targets of the explicitly prohibited WADA
molecules
For each of the seven classes defined in the WADA
Prohibited List, we queried the refined families from
ChEMBL using every such compound as a query. For
every WADA class, a heat map with the top predictions
(PR-score ≤ 0.05) was calculated. Furthermore, for each
class there is a table that summarizes the experimental
validation for the most confident predictions, those with
PR-scores below 0.05.

P2 Beta blockers
For the P2 class, there are 20 explicitly prohibited com-
pounds clustered by bioactivity into three groups and
four singletons (and by structure into four groups and
three singletons), see Figure 5. The top ChEMBL predic-
tions are shown in Figure 6. Every compound, except
timolol and levobunolol, was predicted with a good PR-
score for at least one family. We see in Table 3 that the
majority of the families are Beta-1, 2 & 3 adrenergic re-
ceptor families (six out of eight). This is what we expect
to find, since beta blockers are named for their well-
known interactions with such beta receptors. A strong
connection was shown between the Cavia porcellus fam-
ily and the compounds of group one (in black). ChEMBL
has a number of such families that group all experimen-
tal data for a given species, Cavia porcellus being the
guinea pig. After refining these families, we see good
predictions for some compounds, presumably based on
chemical scaffolds alone since there is no common
bioactivity. Other families also generate some interesting
results, such as the serotonin 1a receptor which is indi-
cated to make off-target interactions with pindolol [30].

S1 Anabolic agents
For the S1 family, there are 72 explicitly prohibited com-
pounds clustered by activity into three groups and one
singleton (but by structure into eight groups and 12
singletons), see Figure S1 which is provided as part of
Additional file 2. The top ChEMBL predictions are also
shown in Figure S1A, again part of Additional file 2. For
35 compounds we have made no prediction, given the
threshold score of 0.05; for the remaining 37 com-
pounds, there were 52 targets which were predicted for
at least one compound. Table S1, in Additional file 2,
shows all these 37 compounds with their predicted fam-
ilies. Of the 52 refined families, two were structurally
distinct groups of ligands for the androgen receptor,
which is known to bind testosterone. The biggest group



Figure 6 Molecule-target associations for Beta Blockers. The predicted molecule-target associations obtained by querying the 20 explicitly
prohibited P2 beta blocker molecules against our refined families.

Table 3 Beta blocker results

Compound Target PR-Score E-Value

P2-Beta Blockers

Alprenolol (266195) Cavia Porceullus (369) 0.039 LogB/F = −0.158

Carvedilol (723) β-1 adrenergic
receptor (3252)

0.032 Ki = 0.81 nM

β-2 adrenergic
receptor (210)

0.044 Ki = 0.166 nM

β-2 adrenergic
receptor (3754)

0.047 Prediction

β-3 adrenergic
receptor (4031)

0.036 Prediction

Pindolol (500) β-1 adrenergic
receptor (3252)

0.017 Ki = 1 nM

β-2 adrenergic
receptor (210)

0.015 Ki = 0.4 nM

β-2 adrenergic
receptor (3754)

0.026 Inhibition = 84%

β-3 adrenergic
receptor (4031)

0.018 Ki = 1 nM

Serotonin 1a
(5-HT1a (214)

0.026 Ki = 24 nM

Propranolol (27) β-2 adrenergic
receptor (210)

0.003 IC50 = 12 nM

Sotalol (471) β-3 adrenergic
receptor (246)

0.009 IC50 = 7200 nM

Experimental validation of the predictions for the most significant PR-Scores
(≤0.05) for the Beta Blocker P2 WADA class. Where no experimental activity
exists in ChEMBL, the compound-family association retains the status
of ‘Prediction’.
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of families with near-identical predicted profiles of inter-
action with S1 compounds, containing 19 members, was
the GABA receptors. Previous studies have shown that
anabolic steroids induce region-specific and subunit-
specific rapid modulation of GABA receptors [31]. The
second largest group numbers 11 families, all associated
with two cytochrome P450 targets (17A1 and 19A1),
both of which play an important role in the synthesis of
steroid hormones (steroidogenesis) [32]. The last group
of families, with six members, comprises two distinct
groups of ligands for each of three β-1,3-glucuronyl-
transferase receptors, which have proven connections
with steroids [33]. Four of the remaining families are
ligands for carbonic anhydrase; drugs used for osteopor-
osis are potential inhibitors of this enzyme [34]. Vitamin
D, having a very close relationship with the steroid hor-
mone family, is prescribed for osteoporosis. Other inter-
esting hits include the UDP-glucuronosyltransferase
2B7, of which androsterone is a representative substrate,
[35] a species family Xenopus laevis, and even bacterial
and protozoan families (Mycobacterium tuberculosis
and Trypanosoma brucei). Both of these infections have
clinical relationships with usage of various steroids,
[36,37] with Trypanosoma brucei glucose-6-phosphate
dehydrogenase being inhibited by dehydroepiandroster-
one and epiandrosterone [38] and treatment with
corticosteroids being found to increase susceptibility to
Mycobacterium tuberculosis infection [36].

S4 Hormone antagonists and modulators
For the S4 WADA class, there are 14 explicitly
prohibited compounds clustered by activity into two
groups and three singletons (and by structure into three
groups and two singletons), see Figure S4 in Additional
file 2. The top ChEMBL predictions are shown in Figure
S4A in Additional file 2. For six of the compounds, we
make no prediction with a high significance value. For
the remaining eight compounds, there are 33 targets
which were predicted for at least one compound. Table
S4, in Additional file 2, shows all the compounds with
their predicted families. Of the 33 targets, 15 were estro-
gen receptors (α, β and γ) and three were cytochrome
P450 11A1/19A1, which are all targets with known func-
tions relevant to the endocrine system. Four phospho-
diesterase targets and the MCF7S target were predicted
for both tamoxifen and toremifene, for which associa-
tions there is again significant experimental validation
and supporting literature [39,40].
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S5 Diuretics and masking agents
For the S5 family, there are 20 explicitly prohibited com-
pounds clustered by activity into four groups and three
singletons (and by structure into one group and 17
singletons), see Figure S5 in Additional file 2. The top
ChEMBL predictions are shown in Figure S5A in
Additional file 2. For only five of the 20 compounds is
there at least one high significance prediction. Table S5,
also in Additional file 2, shows all the compounds with
their predicted families. From the 186 targets, 20 were the
carbonic anhydrases (I/II/III/IV/IX/VA/VB/VI/VII/XII/
XIII/XIV) and the carbonic anhydrase-related proteins
(10/2/8), all of which showed a highly significant score for
acetazolamide. As can be seen from Table S5, there is very
strong experimental support for each of those 20 targets
with acetazolamide. We also show that three amiloride-
sensitive families, as well as the epithelial cells family, had
significant scores against amiloride, with strong experimen-
tal support cited in ChEMBL. The compound spironola
was only predicted to interact with the androgen receptor,
again with strong experimental support. On the other hand,
mannitol was predicted for the maltase-glucoamylase tar-
get, probably because the target is experimentally known to
interact with maltose which has a very similar chemical
structure to mannitol. The remaining 159 targets were all
predicted to interact strongly only with desmopressin; for
five of those interactions there was experimental validation
in ChEMBL.

S6 Stimulants
For the S6 class, there are 64 explicitly prohibited com-
pounds clustered by activity into eight groups and three
singletons (and by structure into eight groups and six
singletons), see Figure S6 in Additional file 2. The top
ChEMBL predictions are shown in Figure S6A, also in
Additional file 2. For this family, only six of the 64 com-
pounds had at least one target predicted with high sig-
nificance. Table S6, again in Additional file 2, shows the
six compounds with their predicted families. There are
20 families, of which six are ryanodine receptors (RyR), a
class of intracellular calcium channels primarily expres-
sed in skeletal muscle (RyR1), myocardium (RyR2) and
brain (RyR3). Another family comprises ligands for the
norepinephrine transporter, a monoamine transporter
for which amphetamine-like drugs are substrates [41].
We also see other interesting receptors, such as monoa-
mine oxidase B, σ-opioid receptor, β-1 adrenergic recep-
tor, and the glutamate NMDA receptor.

S7 Narcotics
For the S7 class, there are eleven explicitly prohibited
compounds clustered by activity into two groups and
two singletons (and by structure into one group and
seven singletons), see Figure S7 in Additional file 2. The
top ChEMBL predictions are shown in a Figure S7A in
Additional file 2. For two of the eleven compounds,
there was no family predicted with high significance.
Table S7, also in Additional file 2, shows the 67 pre-
dicted families and the experimental data, when avail-
able. The table shows very good agreement between
predictions and experiment. Of the 67 targets, 52 are δ,
κ, μ and σ opioid receptors. We also see four species tar-
get families, derived from Mus musculus and Cavia
porcellus. Four glutamate NMDA receptor families are
also predicted, for which we found good experimental
validation in ChEMBL.

S8 Cannabinoids
For the S8 class we have ten query molecules JWH-018,
JWH-073, HU-210, tetrahydrocannabivarin-9, tetra-
hydrocannabinol, cannabicyclol, cannabigerol, cannabi-
varol, cannabichromene and cannabidivarin, which are
split by bioactivity into three small groups and one
singleton (and by structure into two groups and three
singletons), see Figure 7. The top ChEMBL predictions
are shown in Figure 8. There are 17 resulting refined
families, of which 13 are cannabinoid CB1/2 receptors.
All the compounds show strong predicted affinity to at
least one cannabinoid receptor, except for tetrahydro-
cannabivarin-9. Table 4 shows that there is again good
agreement between the PR-scores and the experimental
results. For some matches, there is no available experi-
mental evidence for or against activity in ChEMBL, and
the association between the compound and family re-
tains the status of ‘Prediction’.

Discussion
We have shown that, using the wealth of information in
ChEMBL and our refined families, we can retrieve
on- and off-target predictions for most of the explicitly
mentioned molecules in the WADA prohibited list. The
initial rule based filtering removes the noise from the
ChEMBL families, but, as we demonstrated in the valid-
ation study, this alone is not sufficient to provide ad-
equately good results. This is because there can be more
than one structural scaffold associated with a ChEMBL
family, or more than one binding site for a given recep-
tor family. Hence, using PFClust to generate refined
families significantly improves the validation results. As
a consequence, for example, the beta-2 adrenergic recep-
tor family (CHEMBL210) is predicted for two different
groups of ligands, those comprising activity clusters one
and two (black and red) in Figure 6. The compounds of
group one have a highly significant prediction for one of
the two refined families (these refined families being
subfamilies of the same filtered family), with 0.0 ≤ PR-
score ≤ 0.2, but not for the other refined family, with
0.2 ≤ PR-score ≤ 0.4. The opposite preference is shown



Figure 7 Correspondence between activity-based and structure-based clusters for Cannabinoids. PFClust results for the S8 compounds.
Activity-based clustering is shown on the x-axis, the three clusters being the black, red and green horizontal ribbons at the top of the Figure,
while the activity singletons are white. Structure-based clustering is shown by the red and black vertical ribbons against the y-axis, while
structural singletons are also white. The ordering of the molecules, and the division by horizontal and vertical lines, are the same on both axes
and represent the bioactivity-based clustering. Coloured cells above the main diagonal represent the similarity in bioactivity between the two
molecules; those below represent structural similarity.

Figure 8 Molecule-Target Associations for Cannabinoids. The predicted molecule-target associations obtained by querying the 10 explicitly
prohibited S8 cannabinoid molecules against our refined families derived from ChEMBL.
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Table 4 Cannabinoid results

Compound Target PR-Score E-Value

S8-Cannabinoids

Cannabidivarin (−) Cannabinoid CB1 receptor (218) 0.037 Prediction

Cannabinoid CB2 receptor (253) 0.037 Prediction

Cannabigerol (497318) HL-60 (383) 0.047 Prediction

HU-210 (70625) Cannabinoid CB1 receptor (3571) 0.035 Ki = 0.82 nMa

Cannabinoid CB2 receptor (5373) 0.029 Prediction

JWH-018 (561013) Cannabinoid CB1 receptor (218) 0.002 pKi = 8.7

Cannabinoid CB1 receptor (3571) 0.015 pKi = 8.045

Cannabinoid CB2 receptor (253) 0.009 pKi = 8.2

Isoprenylcysteine carboxyl methyltransferase (4699) 0.031 Prediction

MDA-MB-231 (400) 0.030 Prediction

JWH-073 (−) Cannabinoid CB1 receptor (218) 0.002 Prediction

Cannabinoid CB1 receptor (3571) 0.025 Prediction

Tetrahydrocannabinol (465) Cannabinoid CB1 receptor (218) 0.037 Ki = 2.9 nM

Cannabinoid CB1 receptor (3571) 0.037 Ki = 37 nM

Cannabinoid CB2 receptor (2470) 0.034 Ki = 20 nM

Cannabinoid CB2 receptor (253) 0.033 Ki = 3.3 nM

Cannabinoid CB2 receptor (5373) 0.049 Ki = 9.2 nM

Experimental validation of the predictions for the most significant PR-Scores (≤0.05) for the Cannabinoid S8 WADA class. Where no experimental activity exists in
ChEMBL, the compound-family association retains the status of ‘Prediction’.
aThe experimental value is for the corresponding receptor in Homo sapiens while the PR-Score is for the receptor in Rattus norvegicus. The PR-Score for the Homo
sapiens receptor was just a little above the 0.05 threshold at 0.067.
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by the other group of compounds. A similar case is
JWH-018 which shows a highly significant prediction for
the cannabinoid CB1 family (CHEMBL218), as well as
for cannabidivarin, with an even bigger difference be-
tween the predictions for the subfamilies. The import-
ance of this that JWH-018 and cannabidivarin are each
matched with a specific refined subfamily, and in each
case the scores for the wrong subfamily are insignificant.
As for any method, the success of our approach de-

pends on the quality of the underlying data that are
available. Our methodology tries to address the problem
that, for each molecule that could be synthesised and
tested, only a small fraction of its activities against differ-
ent targets have been assayed. For ChEMBL families that
are not well populated, or for protein targets which too
few compounds are assayed against, we cannot make
predictions since we do not have the required data.
Hence we cannot produce any predictions for a number
of the compounds that are already in the WADA
prohibited list.
Our current methodology has proved that it enhances

the predictive power of the CFP representations, and
that the filtering and refinement of ChEMBL families
enriches our results. However, the portability of our tar-
get prediction approach is as important as the quality of
the results for the WADA prohibited compounds. This
workflow can easily be used with different molecular
representation techniques, new sets of rules, and with a
different clustering algorithm (with due consideration of
the stopping criterion); hence it represents a truly port-
able methodology.

Experimental
The computations described in Methods were carried
out on a custom-built computer using an Intel i3 pro-
cessor @ 3.10Ghz with 4GB of RAM.

Conclusions
We have presented here a novel application of a state-
of-the-art protein target prediction approach to predict
compound-target associations relevant to the athletic
performance-enhancing properties of molecules. Further,
we have shown how one of the most important and
well-populated cheminformatics resources, the freely
available ChEMBL database, can be decomposed into
bioactivity-based refined families of ligands. Our refined
families consist of separate scaffold-groups, and their
use significantly improves the classification performance;
full details of our refined families are given in Additional
file 3. Our validations show an encouraging correspond-
ence with independent experimental results, with 66.98%
of test cases having the parent refined family as the top
prediction and 87.25% having the parent refined family
among the top four hits. Having thus validated our
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approach, we used it to identify the protein targets associ-
ated with the WADA prohibited classes. Across the seven
WADA classes considered, we find a combination of
expected and unexpected protein targets for their con-
stituent molecules. Analysis of the literature, however,
demonstrates that many of the non-obvious targets have
biochemically or clinically validated connections with the
expected bioactivities. For compounds where we do not
have experimental data, we make predictions of bioactiv-
ity, seeing a number of very interesting predictions of rele-
vant pharmacological activities for diverse compounds.
These predictions are testable by future experiments.

Additional files

Additional file 1: Outline of the PFClust clustering algorithm.
Summary of the PFClust algorithm including pseudocode.

Additional file 2: The results for the remaining WADA classes. The
additional tables and figures for the S1, S4, S5, S6, and S7 WADA classes
in pdf format.

Additional file 3: Filtered and refined families. For each of the
filtered families, we list all the compounds in the filtered family and the
refined families that they are members of.
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