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Abstract

Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines
after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of
the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches.
Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not
considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning
based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the
distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the
protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our
classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications,
after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field
of drug development. The results presented here can significantly accelerate the translation into the clinics of known
compounds for novel therapeutic uses.
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Background
Despite the enormous increase of financial investments
in pharmaceutical R&D, the number of newly approved
drugs has greatly diminished during the past decade [1].
Finding new uses for approved drugs has consequently
become amajor alternative strategy for the pharma indus-
try. This practice, usually referred to as drug reposition-
ing, is highly attractive because of its potential to speed
up the process of drug development, hence reducing costs
in addition to providing new treatments for unmet medi-
cal needs [2]. In this regard, compounds that have passed
through phases II or III in the drug discovery pipeline
but never made it to the market due to efficacy issues
bear great potential for drug repositioning approaches.
Successful drug repositioning requires that a known drug

*Correspondence: dario.greco@ki.se
†Equal contributors
3Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland
5Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm,
Sweden
Full list of author information is available at the end of the article

has a positive impact on a different disease, but its high-
est value resides in that its use for the novel indication
surpasses the currently available therapeutic options for
that condition. Experimental approaches to drug reposi-
tioning generally involve high-throughput assays where
libraries of approved compounds are tested against bio-
logical targets of interest. The effects of a large num-
ber of Food and Drug Administration (FDA)-approved
compounds on gene expression have been measured on
several cultured human cell lines (the Connectivity Map,
CMap) [3], and these information has been used to inves-
tigate similarities between drugs mechanisms of action
[4]. Further, the CMap data has been systematically re-
analyzed in search of differential expression patterns of
the genes encoding the drug targets [5]. Computational
approaches more specifically aimed at drug repositioning
have been designed to find correlations between disease-
associated and drug-associated expression signatures
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under the assumption that an effective drug should be
able to counterbalance the perturbations caused by a dis-
ease. Remarkably, this kind of approach has already led
to the identification and experimental validation of novel
therapeutic indications for the antiepileptic topiramate in
inflammatory bowel disease (IBD) [6]. Genetic risk effects
associated with druggable genes in complex diseases have
also been considered in order to attempt drug reposition-
ing [7]. Finally, more comprehensive methods that take
into account chemical, molecular and biological aspects of
the drug-disease interactions have also been recently pro-
posed [8]. Although the above studies have demonstrated
that computational approaches to drug repositioning are
feasible, there are still large margins for improvement. For
instance, deriving drug repositioning from drug-disease
interactions alone can be difficult due to the complex-
ity, variability and sparsity of data currently available for
the diseases, and to the intrinsic nature of publicly avail-
able gene expression data, which derive from patients
already treated with other drugs in most of the cases. In
order to overcome such limitations, in this study we have
decided to establish a methodological approach focus-
ing primarily on drug characteristics. Aiming at enhanc-
ing the predictive power of the available computational
methods, we have developed a novel approach based on
machine-learning classification algorithms, where mis-
matches between known and predicted drug classifica-
tions are purposely interpreted as potential alternative
therapeutic indications. We have studied 410 drugs by
integrating different layers of information based on their
similarities, including their chemical structures, molecu-
lar targets and induced gene expression signatures.

Results and discussion
Computational pipeline
We have integrated different techniques and data sources
in order to build a classifier whose outcome is a thera-
peutic class for a given drug. The steps of our computa-
tional strategy are summarized in Figure 1. We have first
re-analyzed the CMap gene expression data using state-
of-the-art methods for probe annotation and normaliza-
tion. The drug-drug similarities for the gene expression
layer have been based on the ranks of the genes in
each drug-induced expression profile and their associ-
ated p-values. Next, pairwise similarities for themolecular
structures have been assessed by computing the dis-
tances between the corresponding binary fingerprints.
Finally, target-based similarities have been obtained by
taking into account known common targets and their
distances across the global human protein-protein inter-
action network. Subsequently, we have combined the
drug similarities into a single information layer used to
train a multi-class SVM (Support Vector Machine) classi-
fier [9]. Receiver Operating Characteristic (ROC) curves
show that integrating information coming from different
sources into a single kernel improves the performance
of the corresponding classifier (Figure 2). This has also
been confirmed by testing the performance of the classi-
fiers built on a single information layer. Similarity (kernel)
matrices have the advantage of being directly compa-
rable even when computed from highly heterogeneous
data. However, our kernels, designed to weigh informa-
tion according to what is considered a priori to be relevant
(molecular structure features in the fingerprints, differen-
tially expressed genes in profiles, known protein-protein
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Figure 1 Flowchart of the analysis. Green boxes indicate data, red boxes indicate processes.
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Figure 2 Classification performance and data integration.
Receiving Operator Curve for the three separated kernels (GEX: gene
expression; CHEM: chemical structure; TAR: molecular targets) and the
final joint kernel in respect with ATC classes.

interactions), have shown poor results when used to train
kernel classifiers. Conversely, proper projections of the
data by using Classical Multidimensional Scaling (cMDS,
or Principal Coordinate Analysis [10], see Section “Mate-
rials and Methods”) and subsequent computation of a
classical kernel (Gaussian) has allowed higher classifica-
tion rates, thus providing an effective way to transform
a kernel directly built from biological data to another
that is technically efficient. The therapeutic class of each
drug has been extracted from the Anatomical Therapeu-
tic Chemical classification (ATC, see Section “Materials
and Methods”), as defined by theWorld Health Organiza-
tion (WHO). By using the ATC second level (therapeutic
subgroup) and the classes with at least 8 drugs, with the
best kernel, we have applied random sub-sampling and
re-training iterations both to improve classification per-
formance and to reduce over-fitting, thus contributing
to the final 78% accuracy, and producing reliable hints
for repositioning. The final classification for each drug
has been thus obtained by choosing the most frequently
predicted ATC code. On the other hand, hints for repo-
sitioning have been obtained as the most frequent mis-
classifications. Thus, a classifier is built in order to obtain
knowledge about known samples, as opposed to predict
classes for new ones. Moreover, the inverted use of the
classifier results, where correct classifications are used to
assess the reliability of the misclassifications, puts auto-
matic classifiers in a new perspective that could provide
more interesting applications in the future.
Our computational strategy of drug repositioning

crosses previous work at different levels. A recent study

[11] has tackled our same task of predicting ATC codes
by collecting chemical data for 3,883 drugs. Although
our study is focused on a more specific level of ATC
codes (level 2 as opposed to level 1) and includes a
smaller database of drugs (a sizeable portion of drugs
are not in CMap), our method provides higher classi-
fication performance (78% as compared to 73%). The
predictive power of gene expression alone with respect to
ATC codes has been also investigated in two related stud-
ies [4,5]. While focusing on drugs mechanisms of action,
the first study has detected scarce correlation between
similarities obtained through the gene expression profiles
and those based on ATC codes. The second study has
shown how this correlation could be improved by alter-
native data processing strategies. However, in both cases
no attempt has been made at directly predicting ATC
codes. More recently, an approach based on comparing
multi-layered drug-drug and drug-disease similarities has
been proposed to produce possible treatment predictions
[8]. The results have been validated through Area Under
the ROC Curve (AUC). From a methodological point of
view, the classification accuracy of our approach cannot
be directly compared with such score, which is meant
to test edge predictions, as opposed to class predictions.
From a methodological point of view, the main novelty of
our work resides in the development of a data integration
framework for efficiently predicting drugs ATC codes and
in its use as a tool for drug repositioning.

Drug repositioning
Figure 3 shows the main trends of repositioning
highlighting that, among our selected drug portofo-
lio, the repositioning of antihelmintics to antineoplasic
agents and of antineoplasic agents to antibacterials of
systemic use were the most frequent drug reclassifica-
tions. Table 1 highlights the 12 top scoring drug repo-
sitionings identified by our model (presented in full in
Additional file 1). We have found that our model correctly
assigned the corresponding activity of the ophthalmo-
logicals levobunolol and sulfacetamide to beta-blocking
agents and antibacterials, respectively. In addition, it has
accurately underlined drugs known structural similarities,
such as the beta-adrenergic agonist dobutamine reclas-
sified from cardiac therapy to beta blocking agents, and
the antihelmintic ivermectin reclassified as an antibac-
terial. It is known that, despite being structurally sim-
ilar to macrolide antibiotics and antifungal macrocyclic
polyenes, irvemectin is actually devoid of antibacterial or
antifungal activities [12]. Inspection of our results also
indicates that our method has accurately predicted very
plausible alternative therapeutic classes for known drugs.
Antihistamines, known to have antipsychotic effects
(chlorphenamine, thiethylperazine) or currently in use
for their antipsychotic properties (hydroxyzine), were
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Figure 3 Repositioning overview. Direction of the arrows represent direction of repositioning from one ATC class to another. Thickness and
opacity of the edges represent a score-weighted sum of the reclassification events.

reclassified as psychoanaleptics/psycholeptics. Finally,
the antiepileptic carbamazepine, known to have car-
diovascular side effects, has been reclassified for car-
diac therapy, and the diuretic spirolonactone, which has
known anti-androgenic effects, has been repositioned
in the class of sex hormones and modulators of the
genital system. The repositioning of antihelmintics to
antineoplasic agents is consistent with the fact that
some antihelmintic drugs included in this study (ben-
zimidazole antihelmintics) interfere with microtubule
synthesis in the parasites and could have the poten-
tial to cause mitotic arrest in tumor cells. Anti-
cancer properties related to microtubule disruption have
already been reported for mebendazole and albenda-
zole, which has inclusively been studied on Phase I
clinical trials for patients with advanced cancer [13].
Mebendazole has been reported to show survival ben-
efit in two preclinical models of glioblastoma mul-
tiforme, and to induce apoptosis of several cancer
cell lines including melanoma, human adrenocortical
carcinoma, and non-small cell lung cancer [14-18].

Praziquantel, which is chemically different from the ben-
zimidazole antihelmintics, has been however best repo-
sitioned by our model as an antiepileptic, most likely
due to its effects on calcium homeostasis. Of note, the
antihelmintics niclosamide and oxamniquine have been
also repositioned as anticancer agents. In agreement
to our computational prediction, niclosamide has been
recently shown multiple anticancer effects in tumors of
the ovary and colon, and also in leukemia and myeloma
[19-24]. Some of its molecular targets have been dis-
closed and include, among others, the Wnt/Frizzled 1
[25], the mammalian target of rapamycin complex 1
(mTOR) [26], and the signal transducer and activator of
transcription 3 (STAT 3) [27] signaling pathways. Inter-
estingly, oxamniquine exerts its antihelmintic effects by
causing paralysis and contraction of the worms after
interference with their DNA [28], a mechanism that
could also account for its potential activity in cancer.
Thus, not only our model has predicted the reposition-
ing of several antihelmintics to anticancer agents in line
with most recent literature, but has also suggested that
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Table 1 Top drug repositioning predictions

Drug name Original ATC therapeutic class Predicted ATC therapeutic class

Carbamazepine Antiepileptics (N03) Cardiac therapy (C01)

Chlorphenamine Antihistamines for systemic use (R06) Psychoanaleptics (N06)

Dobutamine Cardiac therapy (C01) Beta blocking agents (C07)

Gefitinib Antineoplastic agents (L01) Antibacterials for systemic use (J01)

Hydroxyzine Psycholeptics (N05) Antihistamines for systemic use (R06)

Ivermectin Anthelmintics (P02) Antibacterials for systemic use (J01)

Levobunolol Ophthalmologicals (S01) Beta blocking agents (C07)

Niclosamide Anthelmintics (P02) Antineoplastic agents (L01)

Oxamniquine Anthelmintics (P02) Antineoplastic agents (L01)

Spironolactone Diuretics (C03) Sex hormones and modulators of the genital system (G03)

Sulfacetamide Ophthalmologicals (S01) Antibacterials for systemic use (J01)

Thiethylperazine Antihistamines for systemic use (R06) Psycholeptics (N05)

The top 12 repositioned drugs (classification score =1) are shown in rows. The drug name, the original and the predicted therapeutic class are reported. The level 2
ATC codes are also reported in brackets.

a systematic investigation of this therapeutic class may
disclose important information that could be of therapeu-
tic use for anticancer treatment and/or drug discovery.
The significance of the direct repositioning of antineo-
plasic drugs as systemic antibacterials is however more
difficult to extrapolate because most of these drugs do not
offer advantages to the antimicrobials in current use due
to toxicity issues. Nonetheless, gefitinib, a more selective
chemotherapeutic agent, presents the highest score for
reposition as antibacterial. To the best of our knowledge,
there is yet no prior evidence or related supportive infor-
mation concerning this finding, which could pave the way
for the development of a novel class of antibacterials.

Conclusions
In summary, we report a novel computational approach
to predict drug repositioning based on a machine-
learning algorithm and data integration. The novelty of
our approach relies on the purposeful interpretation of
classification mismatches as genuine reclassifications
opportunities. Our procedure also gains from integrat-
ing different layers of information and maximizing their
efficacy through computational procedures based on
dimensionality reduction. Our results showed high accu-
racy levels, which were consistent with several litera-
ture reports. We believe our work offers new directions
towards repositioning of known drugs and also for the
development of novel drug discovery programs.

Methods/Experimental
Microarray data processing
The processing pipeline for the Microarray data is illus-
trated in Figure 4. A total of 7056 Affymetrix GeneChip
raw data files (.CEL files) belonging to two chipsets

(HG-U133A and HTHG-U133A) were collected from the
Connectivity Map (CMap) [3] website and imported into
R v. 2.12.1 [29]. Raw data files were quality checked
using the R package affy v.1.32.0 [30] and affyQCRe-
port v.1.32.0 [31] to exclude the poor quality data points,
resulting in a set of usable 6736 CEL files. The probes
of each chipset were re-annotated according to NCBI
Entrez Gene database [32]. For this, the CDF packages
v.14.1.0 were downloaded from brainarray website [33].
The background estimation and the probe summariza-
tion were done on the raw data from each chipset sep-
arately according to the RMA algorithm [34]. The two
data matrices were then combined for 12139 common
probe-sets obtaining an expression matrix of dimensions
12139 × 6736. Consequently, this matrix was normal-
ized with the quantile method. Next, the ComBat algo-
rithm was used to estimate and remove the technical
bias (array type, scanner and vehicle) from the normal-
ized data matrix [35]. Linear models followed by mod-
erated t-test statistic were used to compute the p-values
and the fold-changes in each drug-control pairs, by the
limma package v.3.10.0 [36].

Drug similarities
The Jaccard Index JI, the Cosine Similarity CS and the
Dice Coefficient DC similarity measurements were used
to calculate the similarity between drugs based on their
molecular structure in form of fingerprint of simplified
molecular-input line-entry specification (SMILES [37])
retrieved for 6594 small molecules from the DrugBank
database [38] and processed by the package rcdk v.3.1.3
[39]. Let D be as set of drugs {D1,D2, . . . ,Dn}. Let B =
{B1,B2, . . . ,Bn} be such that Bi is the binary fingerprint
representation of the drug Di, i ∈ {1, . . .n}. Note that
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Figure 4 Flowchart of the CMap gene expression data analysis. Green boxes indicate data, red boxes indicate processes.

binary vectors can be seen as representations of sets,
where included elements are indicated as 1-s in the vector.
With abuse of notation, here we use Bi as its correspond-
ing set. We defined the dissimilairty measure between any
two drugs Di, Dj ∈ D as:

KCHEM(Di,Dj) = 1 − JI(Bi,Bj) + CS(Bi ,Bj) + DC(Bi,Bj)

3
The same measure was used to compute drug similari-
ties based on molecular targets, obtained for 1571 drugs
from the DrugBank database. Given a drug Di ∈ D, let Ti
be the set of targets associated with the drug Di in Drug-
Bank. Let K̂CHEM be defined like KCHEM, but with Bi =
Ti, i ∈ {1, . . . , n}. We used KTAR′

(Di,Dj) = K̂CHEM(Di,Dj)
as the dissimilarity value between two drugs Di and Dj.
To cope with the scarce granularity of this measure, we
also defined a finer dissimilarity measure KTAR′′ based on
on the PPI database [40,41] as follows. Let Pi,j be the set
of shortest paths from each target in Ti to each target
in Tj according to the PPI network. We used the range-
normalized length of the shortest among the paths in Pi,j
as the dissimilarity value between drug i and drug j. As
final molecular target dissimilarity measure we used:

KTAR(Di,Dj) = KTAR′
(Di,Dj) + KTAR′′

(Di,Dj)

2
Finally, we used a weighted Spearman’s Footrule (WSF)
as a drug dissimilarity measure based on gene expression
profiles from the Cmap as ranked and weighted according
to their p-values. Given the gene expression profiles asso-
ciated with two drugs Di and Dj, we ranked the genes in

ascending order of their signed p-values, where the sign
is given by the opposite of the sign of their fold change.
This way, top-ranking genes were those over-expressed
with low p-values and bottom-ranking genes were those
under-expressedwith low p-values. Genes associated with
high p-values tend to stay in the middle of the ranked
lists. Let’s define RD(g) as such rank for the gene g in the
expression profile of drug D. Analogously, let WD(g) be 1
minus the p-value of the gene g in the expression profile of
drug D. The gene expression profile dissimilarity measure
between drug i nd j was then defined as:

KGEX(Di,Dj) = N
⎛
⎝∑

g

∣∣Ri(g) − Rj(g)
∣∣ [Wi(g) + Wj(g)

2

]⎞
⎠

where, in order to simplify notation, we usedN to indicate
range normalization.

Data integration
Data were collected in the form of dissimilarity matri-
ces in order to easily integrate information over the three
datasets (gene expression, chemical structure and molec-
ular targets). The three databases had 410 drugs in com-
mon. Let D be the set of such drugs. We simply defined
the joint kernel matrix K as:

∀ (
i, j

)
: {Di,Dj} ⊂ D, K̂i,j =
KGEX(Di,Dj) + KTAR(Di,Dj) + KCHEM(Di,Dj)

3
K̂ was a 410 × 410 symmetric matrix representing our
training set for the prediction of level 2 ATC codes. Since
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the number of different ATC codes at level 2 is large com-
pared with the number of drugs in our dataset, a number
of classes appeared empty or highly under-represented at
that level. For this reason we removed all the drugs falling
into ATC classes with less than 8 exemplars, obtaining a
final 281×281 kernel K. We made this choice on the basis
of a required lower bound on the classification perfor-
mance of 75%, which is verified a posteriori with a simpler
version (without bootstrap) of the approach described in
the next Section.

Noise reduction and classification
Let K be the 281 × 281 kernel as defined in the previous
Section. The ATC classification codes for such drugs were
retrieved from the World Health Organization (WHO).
In this system, the active compounds are grouped accord-
ing to relevant pharmacological and clinical properties.
The classification is organized in five hierarchical lev-
els: the first level describes the anatomical site where the
compound is active; the second level refers to pharmaco-
logical/therapeutic subgroups; the third and fourth levels
define chemical/pharmacological/therapeutic subgroups.
In the fifth level, the individual substances are identi-
fied. We used ATC codes (at second level: therapeutic
subgroup) as targets for our classifier.
In order to maximize the efficiency of this kernel, we

exploited Classical Multidimensional Scaling (cMDS, or
Principal Coordinate Analysis [10]) to search for an opti-
mal Euclidean embedding of the 281 drugs in the fol-
lowing way. The number of eigenvalues larger than 0
was 241. Let Mi∀i ∈ {1, . . . , 241} be the 241 × i matrix
representing the cMDS projection of K into the sub-
space spanned by the first i Principal Components of K.
Let e(Mi) be the classification error of a Support Vec-
tor Machine (native Multiclass SVM [42] using Gaussian
kernel) on Mi by 6-fold cross validation. Cross-validation
was used to reduce the risk of over-fitting the data dur-
ing the assessment of the model. K-fold is chosen because
of the low number of samples. Note that in our context
the minimization of the validation error is only needed
to obtain reliable classifications for the given data and
not to assess the performance of the classifier on new
data.
The validation error e(Mi)∀i ∈ {1, . . . , 241}, when plot-

ted versus the number of dimensions, suggests the exis-
tence of a hypothetical smooth latent function between
the two variables (See Figure 5). We choose arg i ∈
{1, . . . , 241}mine(Mi) = 107 as a reasonable approx-
imation of the theoric minimum of such hypothetical
function. On the 281 drugs at ATC level 2 projected
on the 107-dimensional MDS subspace, using 10, 000
bootstrap iterations with 10% holdout (see also next
Section), we reached a final classification performance
of 78%.
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Figure 5 Kernel noise reduction throughMDS projections. Values
on the x axis correspond to SVM classifiers trained with kernel K (see
text) as projected into the subspace spanned by its first x Principal
Components. The y axis reports the corresponding 6-fold cross
validation error. The green dot indicates minimum error.

Frommisclassifications to repositioning
For each drug we assigned a probability distribution to
the outcome of the classier basing on the frequencies col-
lected during bootstrap. Let Di, i ∈ {1, 2, . . . ,m} be the
subsets of D obtained during bootstrap iteration i. Each
Di contained 90% of the drugs of D and was used to train
an SVM. Different sets induce different predictions for
each drug in general, with the level of variability depend-
ing on the sensitivity of each data point to perturbations in
the overall distribution. Given a drug Dj ∈ D, and m pre-
dictions Pj = {p1, . . . , pm}, pi ∈ {1, . . . , c}, where c is the
number of classes, we defined the repositioning score Si,j of
each prediction pi for the drug Dj as the frequency of pi in
Pj. While the final prediction for the drug Dj was assumed
to be themost frequent one (which gives overall 78% accu-
racy as stated in the previous Section), we used all the
other predictions as repositioning suggestions and their
Si,j as a corresponding index of reliability. By definition,
Si,j ∈[ 0, 1], with higher values indicating higher reliability.
Table 1 reports all the obtained misclassifications having
Si,j = 1.

Additional file

Additional file 1: Complete list of the drug repositioning predictions
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