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Abstract

MicroRNAs (miRNAs) are short non-coding RNAs that are involved in several important biological processes
through regulation of genes post-transcriptionally. Carcinogenesis is one of the key biological processes where
miRNAs play important role in the regulation of genes. The miRNAs elicit their effects by binding to the 3’
untranslated region (3’UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the
mRNA, depending on the degree of complementary base pairing. To-date more than 1,000 miRNAs are postulated
to exist, although the field is moving rapidly. Currently, miRNAs are becoming the center of interest in a number of
research areas, particularly in oncology, as documented by exponential growth in publications in the last decade.
These studies have shown that miRNAs are deregulated in a wide variety of human cancers. Thus, it is reasonable
to ask the question whether further understanding on the role of miRNAs could be useful for diagnosis, prognosis
and predicting therapeutic response for prostate cancer (PCa). Therefore, in this review article, we will discuss the
potential roles of different miRNAs in PCa in order to provide up-to-date information, which is expected to
stimulate further research in the field for realizing the benefit of miRNA-targeted therapeutic approach for the
treatment of metastatic castrate resistant prostate cancer (mCRPC) in the near future because there is no curative
treatment for mCRPC at the moment.
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Introduction
Prostate cancer (PCa) is considered to be the most diag-
nosed cancer [1] and the second leading cause of cancer
death in men older than 40 years of age in the USA [2].
The major problem of PCa is the development and
acquisition of castrate resistant prostate cancer (CRPC)
phenotype which eventually leads to the development of
skeletal metastasis (mCRPC), at which point it becomes
an incurable disease [1]. Therefore, investigations are
underway to find the molecular basis of mCRPC so that
novel therapeutic strategies could be devised. To that
end many novel molecules are being tested and interro-
gated, among which microRNAs (miRNAs) are becom-
ing an attractive area of research.
The miRNAs are small, noncoding subset of RNAs

which consist of about 18-22 nucleotides and bind to
the 3’ untranslated region of messenger RNAs (mRNAs)

[3]. By this action, they cause post-transcriptional inhibi-
tion or degradation of target mRNA, depending on the
degree of complementary base pairing [4-6]. The miR-
NAs were first discovered in 1993 while studying Cae-
norhabditis elegans [7]. The first miRNA discovered was
lin-4. It is a small, non-coding RNA molecule that was
found to play a role in the development through a nega-
tive effect on lin-14 expression [7-9]. Seven years later,
in 2000, let-7, the second miRNA was discovered, again
in the C. elegans [9,10]. During the past 12 years, signifi-
cant advances have been made in miRNA research lead-
ing to the discovery of over 4,500 miRNAs in
vertebrates, flies, worms, plants, and viruses [9,11,12]
out of which more than 1,000 miRNAs have been fully
characterized and the number is expected to grow in
the coming years. The miRNAs are being implicated in
the regulation of an increasing number of physiological
processes. It is also believed now that they play an
important role in the regulation of many cellular func-
tions ranging from maintenance to differentiation and
tissue development, from metabolism to cell cycle
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[13-16]. All of these facts leads to the conclusion that
aberrant expression of miRNAs will have impact on var-
ious biological processes where they are implicated,
which will result in a variety of pathological events such
as infection [13,17,18], cardiovascular diseases [19], neu-
rodegenerative diseases [20] and, most importantly, can-
cer [13].
The role of miRNAs in cellular growth, differentiation

and apoptosis of cancer cells through their interactions
with their target mRNA has been studied [21-23]. miR-
NAs may be oncogenic or tumor suppressors [23,24],
with oncogenic being up-regulated and the tumor sup-
pressors being down-regulated in cancers. Generally, the
importance of miRNAs in cancer is emphasized by the
fact that around 50% of all miRNA genes are positioned
in the so called ‘fragile sites’, the cancer associated geno-
mic regions which are repeatedly changed in cancer. A
lot of information has already been identified about
aberrant miRNAs expression in cancers; the understand-
ing of the functional importance of these aberrations has
not been molecularly exploited [25].
The role of miRNAs in PCa is becoming clearer by

understanding the interactions between miRNAs and
their targets and the resulting impact on carcinogenesis
of the prostate [23,26,27]. It is believed that several miR-
NAs and their targets are aberrantly expressed in PCa
which, in turn, alter the cellular growth, invasion, and
metastatic potential of prostate cancer cells. The abnor-
mal expressions of certain miRNAs are now considered
valuable biomarkers for diagnosis, prognosis and classifi-
cation of PCa [23,28,29]. All of the above information
underscores the importance of the biology of miRNAs
in PCa. Their specific abnormalities, and how one could
regulate their expressions will likely become novel ave-
nues by which newer therapeutic strategies could be
developed for the treatment of mCRPC.

miRNA biogenesis
The biogenesis of miRNA involves many critical steps;
the initial phase is the transcription by RNA polymerase
II that leads to the formation of primary miRNA (pri-
miRNA) which comprises of hundreds to thousands of
nucleotides [9,30]. The second phase is catalyzed by a
ribonuclease called ribonuclease III (RNase III), Drosha.
This step leads to the split of pri-miRNA and results in
what is called a precursor miRNA (pre-miRNA), which
usually comprises of around 70 nucleotides, and this
phase is accomplished with the help of dsRBD protein,
DGCR8, a protein that helps to ensure a perfect and
efficient processing of pri-miRNA into pre-miRNA
[9,31,32]. Thereafter, a nuclear export factor, called
exportin 5, binds to the pre-miRNA and transports it
into the cytoplasm where the next processing phase take
place [9,33,34]. Here another RNase III, dicer, interacts

with the pre-miRNA, and the outcome of this process is
the formation of a RNA duplex of around 22 nucleo-
tides, which is the mature miRNA consisting of double-
stranded duplex. Dicer usually operates with the help of
a different dsRBD protein, the trans-activator RNA
(tar)-binding protein (TRBP) [9,35,36]. Subsequently, all
these steps allow the mature miRNA cooperate with the
RNA-induced silencing complex (RISC) [9,37,38], and
ultimately allow miRNA to control post transcriptional
regulation of functional mRNAs.

miRNA and cancer stem cells in prostate cancer
Cancer stem cells (CSCs), also called tumor-initiating
cells, are a group of cells which play an important role
in the progression of cancer and its metastasis [39]. The
CSCs hypothesis assumes that cancers are basically
derived from a small fraction of cancer cells that have
exclusive ability to self-renew and initiate/maintain the
tumor [40,41]. This specific ability of CSCs allows to
initiate the development of cancer as documented first
in human leukemia [42,43]. For the isolation and identi-
fication of CSCs many markers have been used. Early
on, CD44 (an adhesion molecule) was used to identify
CSCs, individually or sometimes in combination with
other markers. It was shown that Prostate CSCs that
have increased clonogenic potential [44], and tumor
initiating ability and metastasis [45,46] capacities, have
increased CD44+ cell population.
Emerging evidence suggests that miRNAs may func-

tion as the regulators of CSC characteristics, as docu-
mented by many studies [47-50]. Studies have clearly
shown that the expression levels of certain miRNAs in
stem cells are different from other normal tissues
[40,51], suggesting that miRNAs are important regulator
of CSC function. One example is miR-34a, a p53 target
[52-56], which has strong anti-tumor and anti-metastasis
effects [57]. Studies have shown that miR-34a is down
regulated in CD44+ PCa cells, and its forced expression
in CD44+ PCa cells resulted in the inhibition of clono-
genic growth and inhibition of metastatic behavior and
tumor regeneration [57]. The miR-34a was also estab-
lished as an important negative regulator of CD44+ PCa
cells, and it is assumed that this decreased expression of
miR-34a in CD44+ PCa cells (including CSCs) plays an
important role in PCa development and metastasis [57].
Moreover, the expression of miR-34a antagomirs in
CD44- prostate cancer cells promoted tumor develop-
ment and metastasis [57].
Taking into consideration the prevalent expression of

CD44 in CSCs and the role of CD44 in mediating CSC
migration and homing, suggesting its role in metastasis
in various malignancies including PCa whereby the role
of miR-34a in controlling CSC characteristics appears to
be important, and thus targeting of miR-34a pathways
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could become innovative treatment strategies for PCa
[57]. Further studies are underway in order to establish
the molecular interplay between miRNAs and CSCs in
PCa and other human malignancies.

The role of miRNAs in the processes of Epithelial-to-
Mesenchymal Transition (EMT) in PCa
The process of EMT is defined as one when epithelial
cells acquire phenotypic characteristics of mesenchymal
cells whereby the epithelial cells change their epithelial
cobblestone phenotype to a mesenchymal elongated
fibroblastic phenotype, which contributes to increased
cell motility and invasion that is required for metastatic
process. During EMT, cancer cells lose epithelial cell-
cell junctions associated with a decrease in the expres-
sion of epithelial proteins such as E-cadherin and junc-
tion plakoglobin, and the increase in expression of
mesenchymal markers such as vimentin, fibronectin and
a-smooth muscle actin. These changes are also asso-
ciated with augmented activity of matrix metalloprotei-
nases (MMPs), such as MMP2, MMP3, MMP9, which
leads to an invasive phenotype [58]. All of the above
mentioned processes lead to increased invasion and
migration in many cancers including PCa [59]. Because
the miRNAs are part of the cellular signaling circuit
that controls EMT [60], it has been suggested that many
miRNAs families, including miR-200 family and miR-
205, play important roles in controlling EMT [61-63].
The miRNA 143 and miRNA 145 are other two miR-

NAs that are assumed to play a role in EMT. In PCa,
miR-143 and miR-145 are deregulated in primary cancer
compared with normal prostate tissue [64-67]. The up-
regulation of miR-143 in prostate cancer cells represses
mesenchymal markers (vimentin and fibronectin) and
increases the epithelial marker E-cadherin [1], while the
up-regulation of miR-145 leads to the same effects
except for vimentin [1]. The previous information shows
that miRs-143 and -145 may be suppressors of EMT,
and based on the fact that EMT plays an important role
in invasion and migration consistent with mesenchymal
characteristics allows detachment and movement of cells
from the primary tumor [68]. Therefore, it can be
assumed that miRs-143 and -145 inhibit invasion and
migration in prostate cancer.
The role of most miRNAs in regulating EMT is still

not a clear-cut with just a handful of miRNAs being

evaluated for their role in EMT of PCa [1,69,70] (Table
1). With the crucial role of miRNAs in EMT, it is
expected that the regulation of EMT by miRNAs in PCa
will be the center of many cutting-edge research in the
upcoming years.

The relationship between circulating miRNAs and tumor
progression in prostate cancer
Circulating miRNAs have been suggested as encouraging
biomarkers for noninvasive diagnosis in many tumors
[71]. It has been proposed that miRNAs profiles in
tumor cells have a prognostic value for some cancer
patients, and a similar correlation with serum miRNAs
profiles should be a viable approach [71].
Brase et al. [71] found that miR-375 was the top marker

in a screening study (metastatic vs. localized prostate
cancer) and that its expression is higher in prostate can-
cer tissue compared to normal epithelium. They also
found that it was considerably related to lymph-node sta-
tus of the prostate cancer patients, but no significant dif-
ference was observed in the serum levels of patients with
gleason score 8 tumors and gleason score 7 tumors. So, it
seems that the circulating level of miR-375 is associated
mainly with systemic disease (lymph node involvement
and metastasis) rather than the grading of primary pros-
tate cancer [71]. However, the definite role of miR-375 in
prostate cancer is still not very clear.
The role of miR-141 and miR-200b (both belong to the

same family of miRNAs) were reported to be the two lar-
gely over regulated miRNAs in prostate epithelial cells in
comparison with prostate stromal cells [71]. But the circu-
lating levels of miR-141 were found to be much higher in
the serum of patients with high-risk tumors when com-
pared to intermediate-risk samples. Also, circulating levels
of miR-141 have been found to differentiate between
patients with metastatic PCa and healthy controls [71].
Based on these limited studies, one could conclude

that circulating miRNAs may offer good perspective as
noninvasive biomarkers for tumor progression, including
prostate cancer, but further research has to be done in
this field in order reach a better understanding of the
role of miRNAs in the serum or plasma [71].

The specific roles of certain microRNAs in prostate cancer
As mentioned above, miRNAs are known to play impor-
tant roles in the progression of different cancers,

Table 1 Regulation of EMT in PCa by miRNAs

miRNA Effect in PCA Reference

miR-200b Down-regulation of ZEB1, ZEB2 and Snail 2 Kong 2009 [69]

miR-200 family Reverses EMT and down-regulates Notch-1 and Lin28B Kong 2010 [70]

miR-143 and miR-145 Suppression of mesenchymal markers and up-regulation of epithelial marker Peng 2011 [1]

Let-7 family Expression of epithelial markers Kong 2010 [70]
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including PCa. Some miRNAs can function as tumor
suppressors wherein their elevated levels are indicators
of good prognosis. On the contrary, other miRNAs are
promoters of carcinogenesis and their expression levels
are elevated in advanced stage of some cancers, which
clearly suggests that these miRNAs may offer attractive
targets for therapy. In this section, we will discuss the
roles of certain miRNAs in prostate cancer as summar-
ized in Table 2.

Tumor suppressor miRNAs
The role of miRNA-15a and miRNA-16
Both of these miRNAs work as tumor suppressors
mediated through deregulation of multiple oncogenes,
and these oncogenes include: BCL2, MCL1, CCND1,
and WNT3A [25]. The aforementioned oncogenes can
promote cell proliferation, survival and invasion [25].
The down regulation of these miRNAs has been
reported in many malignancies including: CLL, Pituitary
adenoma, and Prostate carcinoma [25]. The miR-15a
and miR-16 are both located at 13q14.3, and the dele-
tions at this location have been reported in many malig-
nancies including: CLL, MM, Mantle cell lymphoma,
and Prostate carcinoma [25]. In a recent study, the
expression of miR-15a, miR-16-1 in PCa samples
showed consistent down regulation of these genes in
around 80% of cancer samples compared with that of
normal samples [25]. Studies have also shown that miR-
15a, miR-16-1 are down regulated in pituitary adenomas
in comparison with normal pituitary, which basically
enhances the assumption that they work as tumor sup-
pressors and that their knock down by allelic loss may
contribute to tumorigenesis.

BCL2 is an oncoprotein that performs an important
role in the genetic program of the eukaryotic cells, it
prevents cell death and its over-expression was found to
be related to many cancers such as: leukemia, lym-
phoma, and carcinomas in general [25]. It was reported
that miR-15a, miR-16-1 sequences and BCL2 mRNA
sequences share a complementary homology, and thus
the previous information collectively suggests that miR-
15a, miR-16-1 could suppress BCL2 by post transcrip-
tional repression [25]. It has been reported that miR-
15a, miR-16-1 cluster targets not only BCL2 but also
CCD1 (encoding cyclin D1) and WNT3A mRNAs,
which promote many prostate carcinogenic features
including; survival, proliferation, and invasion [25]. The
in vivo knock down of miR-15a, miR-16-1 resulted in
hyperplasia associated with CCD1 and WNT3A up reg-
ulation, all of the above evidence suggest that loss of
miR-15a and miR-16-1 may be a significant pathogenic
event during the development of PCa [25].
The miR-15 and miR-16 are usually down-modulated

in the tumor sustaining stroma, an observation that can
be explained by the effect of cancer cells on the stroma
[72]. The miR-15 and miR-16 have a tumor suppressor
activity on both cancer cell level and at the stromal
microenvironment [72]. Lately, it was also proposed that
miR-15 and miR-16 direct the expression of VEGF and
IL-6, two factors that stimulate tumor angiogenesis and
bone metastasis, respectively. Moreover, it was shown
that re-expression of miR-15 and miR-16 in cancer-
associated fibroblasts (CAFs) will cause attenuation of
the stromal support capability, and this will result in the
decrease in cell proliferation and migration in primary
and metastatic tumors [72]. These observations lead us

Table 2 miRNAs that influence PCa progression

miRNA Role in PCa Function Study

miR-15a and
miR-16

Tumor
suppressors

Inhibit cell proliferation, invasion and angiogenesis through regulation of
multiple targets

Aqeilan 2010 [25], Musumeci 2011[72]

miR-21 Onco-miRNA Increases tumor growth, invasion and metastasis Si 2007 [79], Selciklu 2009 [80], Li 2009
[81], Ribas 2009 [82]

miR-125b Onco-miRNA Increases cell proliferation and inhibits apoptosis Lee 2005 [84], Shi 2007 [26], Vere
White 2009 [85]

miR-143 Tumor
suppressor

Inhibits cell proliferation and migration by regulating KRAS, MAPK pathways
and cell cycle. Also inhibits metastasis

Clape 2009 [67], Xu 2011 [4], Friedman
2009 [73]

miR-145 Tumor
suppressor

Inhibits migration, invasion and metastasis Friedman 2009 [73]

miR-200 s Tumor
suppressor

Inhibit cell migration and invasion by reversing EMT Kong 2009 and 2010 [69,70]

miR-221 Onco-miRNA Stimulates cell growth and influences cell cycle progression Zheng 2011 [78], Galardi 2007 [77],
Sun 2009 [76], Pang 2010 [23].

miR-222 Onco-miRNA Increased cell cycle progression Galardi 2007 [77], Sun 2009 [76], Pang
2010 [23].

miR-488 Tumor
suppressor

Inhibits Androgen Receptor-mediated cell growth Sikand 2010 [75]
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to conclude that in the context of prostate cancer, miR-
15 and miR-16 are tumor suppressors, at least, on two
levels such as at the levels of tumor cell and stromal
cells.

The role of miR-143 and miR-145
We have discussed above the role of miR-143 in EMT.
Studies have shown that miR-143 is considerably
decreased in PCa, and its expression is further decreased
during cancer progression [67]. K-RAS (V-Ki-ras2
Kirsten rat sarcoma), a key molecule of EGFR/RAS/
mitogen-activated protein kinase (MAPK) signaling
pathway, is a viral oncogene homolog that was incrimi-
nated in cell proliferation and migration in response to
growth factors. The MAPK pathway also works at
another level through its effect on Androgen receptors
(AR), where it increases AR in response to low andro-
gen, and this is considered a main process in Androgen
derivation therapy relapse. K-RAS is a potential target of
miR-143 [73], thereby lower levels of miR-143 in pros-
tate cancer cells may be incriminated in carcinogenesis
due to the lack of its inhibitory effect on K-RAS and
MAPK pathway.
Xu et al. [4] showed that miR-143 regulates K-RAS, p-

ERK1/2, and cyclin D1 and plays a role in cell prolifera-
tion, migration, and chemosensitivity in prostate cancer.
They also showed that miR-143 over-expression in pros-
tate cancer cells represses proliferation and migration,
thereby augmenting sensitivity to docetaxel by affecting
EGFR/RAS/MAPK pathway. The expressions of miR-
NAs-143 and -145 (another miRNA which is assumed
to be tumor suppressor) were found to be down-regu-
lated considerably in metastasis samples [73]. Exploring
the correlation of the levels of miRNAs-143 and -145
with clinico-pathological features of PCa showed that
down-regulation of miRNAs-143 and -145 were nega-
tively associated with bone metastasis, the gleason score
and the levels of free PSA in primary PCa patients [73].
Over-expression of miR-143 and -145 by retrovirus
transfection decreased the ability of migration and inva-
sion in vitro, and tumor development and bone invasion
in vivo of PC-3 cells (a human PCa cell line originated
from a bone metastatic PCa specimen) [73]. Their up-
regulation also enhanced E-cadherin expression and
decreased fibronectin expression in PC-3 cells with fea-
tures of a less invasive morphologic pattern [73].
The information above suggests that miRs-143 and

-145 are related to bone metastasis of PCa and may play
a biological role in this process [73]. One could postu-
late that the possibility of using them in the clinical set-
ting as biomarkers to individualize different stages of
human PCa and could predict the development of bone
metastasis in patients well ahead of time [73]. Even
though up-regulation of miRNAs-143 and -145 are

found to suppress the aggressiveness and EMT of PC-3
cells with regard to bone metastasis, it did not have the
same effects on LNCaP cells that was derived from
lymph node metastasis [73]. Actually, deregulation of
miRs-143 and -145 was not found in lymph node metas-
tasis in comparison to primary PCa specimens. This
information suggests that miR-143 and -145 may have a
cell type-specific activity and could suppress only bone
metastasis without inhibiting lymph node metastasis,
and that the loss of these miRNAs could selectively pro-
mote metastasis, which could be due to deregulated
expression of other miRNAs such as miR-221 [73].

The role of miRNA-200
Studies from our laboratory have shown that the miR-
200 family controls epithelial-mesenchymal transition
(EMT) by targeting zinc-finger E-box binding homebox
1 (ZEB1) and ZEB2 [63,69,74]. There is enough evidence
to suggest that the processes of EMT can be elicited by
various growth factors, such as transforming growth fac-
tor b and platelet-derived growth factor-D (PDGF-D),
which is expressed in PCa tissue [69], and it was shown
that over-expression of PDGF-D in PC3 cells (prostate
cancer cell lines with high metastatic potential) leads to
the acquisition of the EMT phenotype [69]. It was also
proved that significant down-regulation of the miR-200
family in PC3 PDGF-D cells and in PC3 cells exposed
to purified active PDGF-D protein, resulting in the up-
regulation of ZEB1, ZEB2, and Snail2 expression (a tran-
scription factor which belongs to the snail protein family
and plays critical roles in the formation of tissues during
embryonic development) [69]. Interestingly, re-expres-
sion of miR-200b in PC3 PDGF-D cells led to reversal
of the EMT phenotype accompanied with the down-reg-
ulation of ZEB1, ZEB2, and Snail2 expression, and all of
these events were associated with greater expression
levels of epithelial markers [69]. Moreover, it was proved
that transfection of PC3 PDGF-D cells with miR-200b
considerably decreased the expression of ZEB1, ZEB2,
and Snail2 at both the mRNA and protein levels, with
simultaneous greater expression levels of epithelial mar-
kers such as E-cadherin, stratifin, CRB3, EpCAM, F11R,
and connexin 26, all of these events collectively led to
the inhibition of cell migration and invasion [69]. In a
breast cancer model, our studies have shown that in
vivo manipulation of miR-200b leads to significantly
reduced pulmonary metastases of breast cancer cells
[74] which further supports the role of miR-200 family
in metastases of human cancers.
It is well known that NF-�B plays an essential role in

facilitating the processes of EMT induced by different
factors through up-regulation of ZEB1 and ZEB2, which
in turn suppress the expression of miR-200 family mem-
bers by binding to the E-box sequence of the miR-200
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promoter [69]. Whereas miR-200 can down-regulate the
expression of ZEB1 and ZEB2 by interacting with the 3’-
UTR of ZEB1 and ZEB2 mRNA [69]. All of these find-
ings suggest a double-negative feedback loop between
miR-200 and ZEB1/ZEB2 that permits the preservation
of the EMT phenotype, even after withdrawal of the
initial inducing signal, which might become a critical
target for the reversal of EMT [63]. From these facts, we
can conclude that PDGF-D-stimulated attainment of the
EMT phenotype in PC3 cells is, partly, an outcome of
suppression of miR-200 and that new strategies in
which miR-200 would be up-regulated will become an
auspicious approach for the treatment of invasive pros-
tate cancer [69].

The importance of miRNA-488
Another miRNA that has been associated with PCa is
miR-488. The miR-488 is encoded through AsTN1
gene. Two mature molecules results from the processing
of its precursors: miR-488* and miR-488 and both of
them are expressed predominantly in human brain tis-
sue [75]. Studies have shown that miR-488* was not
expressed in several prostate cancer cell lines, although
the etiology is still unclear and thus it is currently being
further investigated [75].
Androgen receptor is a direct target of miR-488, as

miR-488 has a binding site at the 3’UTR of AR gene
where it binds and suppresses its expression [75]. It was
shown that cells transfected with miR-488 results in
reduced expression of AR in both Androgen-dependent
(LNCaP) and Androgen-independent (C4-2B) PCa cells.
In both the cell lines, treatment with miR-488 mimics
was found to retard the growth of these cells, but this
was not the fact with AR-negative DU145 cells [75],
suggesting the regulatory role of miR-488 on AR expres-
sion. These results suggest that miR-488 could function
as a tumor growth suppressor, which is mediated by
deregulation of AR expression [75].
Although it is still too premature to make conclusions,

the results of these studies clearly showed that miR-488*
transfection into LNCaP and C4-2B cells led to the
repression of AR expression, thereby suggesting that
finding a way to increase the levels of endogenous miR-
488* could have a great impact on designing novel treat-
ment strategies for PCa.

Tumor promoter oncomiRNAs
The miRNA expression profiling analyses have shown
that many miRNAs are up-regulated in prostate cancer
[23]. These oncogenic miRNAs suppresses the apopto-
sis-related genes, so their over-expression leads to
increased tumor growth and metastasis [23].

The role of miRNA -221 and miRNA-222
The miR-221 and miR-222 are both considered as onco-
genic and were found to be associated with the develop-
ment and metastasis of prostate cancer [23]. One of the
methods through which these miRNAs elicit their effect
is by binding to one of their target mRNA, p27kip1 and
cause suppression, which results in tumor growth
[76,77]. Another action for them is their role in the
development or maintenance of castration-resistant
prostate cancer (CRPC), phenotype through a mechan-
ism that is not yet clearly understood, although it may
be through influencing response of AR-mediated signal-
ing in prostate cancer cells [76].
With regards to miR-221, studies have shown that

miR-221 levels are up-regulated in both ADPC and
AIPC compared to normal control [78]. One pathologic
process that plays an important role in the carcinogen-
esis and hormone therapy failure in PCa is neuroendo-
crine differentiation (NE), a process that is associated
with tumor progression and poor prognosis. Studies
have shown that miR-221 is capable of inducing NE dif-
ferentiation in LNCaP cells in an androgen deprived
environment, which may lead to Androgen Indepen-
dence (AI) [78]. It was revealed that miR-221 stimulates
the growth of LNCaP and LNCaP-AI cells, and it is con-
sistent with findings that the ectopic introduction of
miR-221 in low expressing LNCaP cells bolstered their
growth potential by inducing a G1-S shift in cell cycle
[78].
One paradox to mention about miR-221 is that

although the expression of miR-221 is higher in LNCaP-
AI cells (which are more invasive) compared to LNCaP
(which are less invasive), suggesting that miR-221 pro-
motes invasion of PCa cells [78] whereas the up-regula-
tion of miR-221 in LNCaP cells did not increase its
ability of increased cell migration, while the invasion
capacity of LNCaP-AI cells was deregulated by knock-
down of miR-221 expression. The aforementioned facts
can be explained by assuming that other pathways are
involved in regulating the migration capability of cells
during the progression of ADPC into AIPC. It was
further concluded that miR-221 could influence PCa via
regulation of DVL2 (Dishevelled 2), which in summary
is an important intracellular mediator of the WNT sig-
naling pathway. An important target gene for WNT is
MMP-7 (a member of cellular adhesion molecules
which controls cellular adhesion, invasion, and migra-
tion), and the activation of MMP-7 was found to greatly
strengthen the capability to destroy extracellular matrix,
especially in cancer cells [78], suggesting that miR-221
may play important role in the regulation of invasion
and metastasis.
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The role of miR-21
Another onco-miRNA is miR-21; it is usually up-regu-
lated in prostate cancer and plays a role in tumor
growth, invasion, and metastasis [79,80]. Lately, miR-21
was individualized as an oncogene which is up-regulated
in various cancers (glioma, breast cancer, colorectal can-
cer, stomach/gastric cancer, hepatocellular carcinoma,
pancreas cancer, lung cancer, cholangiocarcinoma, leu-
kemic cancer, and prostate cancer etc.) [81]. Anti-sense
studies of miRNA-21 in glioblastoma cell lines revealed
that it directs cell growth by inhibiting apoptosis while
it does not influence cell proliferation [81]. Recent stu-
dies have revealed an increase in apoptosis in DU145
and PC-3 cells after blocking miR-21 function, while
LNCaP cells, which have low level of miR-21, showed
no changes in apoptosis in response to miR-21 blockade
[81]. The information mentioned above insinuated that
miR-21 plays an important role in the resistance to
apoptosis observed in DU145 and PC-3 cells [81]. These
results also suggest that miR-21 might have a role to
play in AR-negative cells but this needs to be further
investigated.
Many genes have been identified as targets of miR-21

in carcinogenesis including; TPM1, PDCD4, and
MARCKS [81]. It has been shown that MARCKS (a
gene which encodes myristoylated alanine-rich C-kinase
substrate) has high frequency frameshift mutations dur-
ing carcinogenesis in hereditary nonpolyposis colorectal
cancer (HNCC) [81]. It was also revealed that the
expression of MARCKS is down-regulated in HCC tis-
sues in comparison with cirrhotic, benign liver tissues
[81]. MARCKS plays a part in TPA-mediated cellular
migration in neuroblastoma, probably through its effect
as a downstream target of Protein kinase C epsilon [81].
All these results suggest that MARCKS plays a role in
tumorigenesis, and the effect of miR-21 on PCa cell
motility and invasion may in part be due to its regula-
tion of MARCKS gene. Recent studies have also shown
that in the presence of androgen, AR can bind to
miPPR-21, a miR-21 promoter, and this results in the
over-expression of miR-21 at its transcription level, lead-
ing to castration resistance [82]. In support of what has
been mentioned above, anti-miR-21 may augment the
sensitivity of prostate cancer cells to apoptosis [81], and
also negatively affect the motility and invasive character-
istic of cancer cells [81].
In summary, it appears that miR-21 plays an essential

role in apoptosis and metastasis of PCa [81]. Since no
effective therapy is available to cure PCa, in part due to
the resistance of androgen-independent advanced pros-
tate cancer cells to apoptotic death, gene therapy that
targets miR-21 may be a potential alternative therapy
for androgen-independent PCa that have an up-regu-
lated expression of miR-21. Moreover, it is tempting to

speculate that natural agents (nutraceuticals) could serve
as a therapeutic strategy for PCa because many of these
agents could inhibit the expression of miR-21 as sug-
gested by our recent results in pancreas cancer [83].

The role of miRNA-125b
Another onco-miRNA is miR-125b which is considered
very important for cell proliferation [84] and it is over-
expressed in prostate cancer [23]. It has been reported
that the reduction of miRNA-125b was found to be
associated with the regulation of cellular proliferation of
cancer cells, and this effect was attenuated by co-trans-
fection of mature miRNA [84]. The biological role of
miR-125b in PC-3 cells was studied and it was revealed
that the depletion of miR-125b by numerous transfec-
tions of si-125b2 was followed by a substantial prolifera-
tion defect in PC-3 cells [84]. This growth defect was
not associated with aberrant accumulation of cells in
one stage of cell cycle or by apoptosis. Also, the deple-
tion of miR-125b by 2’-O-methyl oligonucleotide
showed the same phenotype with a similar effect on cell
proliferation [84].
Studies have also shown that transfection of mature

synthetic miR-125b causes PCa cell growth [84,85] and
this was in part due to its effect on the 3’UTR of BAK1
(a pro-apoptotic member of the BCL-2 gene family that
is involved in initiating apoptosis) transcript [26]. None-
theless, down-regulation of BAK-1 only could not
attenuate miR-125b’s growth stimulatory effect, suggest-
ing that there are other targets for miR-125b in prostate
cancer cells [26,85]. Some recent reports individualized
EIF4EBP1 (Eukaryotic translation initiation factor 4E-
binding protein 1, a gene that encodes one member of a
family of translation repressors proteins) as another spe-
cific target for miR-125b in PCa [65], but it is still not
conclusive, suggesting that future in-depth investigation
is warranted.

Conclusions and perspectives
Research investigations focused on miRNAs have sug-
gested a strong prognostic and therapeutic importance
of miRNAs in PCa. Such studies have established an
intimate relationship between prostate cancer and
miRNA with emerging data clearly suggesting that
miRNA is a very promising field although further in-
depth mechanistic studies are required to ascertain the
role of specific miRNA(s) and relevant target(s) in the
development and progression of PCa especially the
emergence of metastatic castrate resistant prostate can-
cer. Once we gain additional scientific knowledge it
would be easier to focus on the development of strate-
gies for up-regulation and down-regulation of specific
miRNA as a novel and targeted therapeutic approach
for the treatment of PCa. For example, our own studies
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with miR-21 in pancreatic and colon cancer models
have shown that targeted regulation of this miRNA can
lead to effective anticancer therapy [83,86-90]. As dis-
cussed above, miR-21 has been implicated in PCa as
well and, therefore, our strategy may also work in PCa,
which requires in-depth mechanistic pre-clinical studies.
Together, we believe that identification of key miRNAs
and their targets that are intimately involved with the
development and progression of PCa and parallel devel-
opment of strategies for deregulation of miRNAs would
allow inhibition of tumor growth, invasion, angiogenesis
and metastasis in PCa, which is expected to be clinically
useful for the management of patients diagnosed with
PCa.
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